Способ контроля параметров состояния многокомпонентной газовой среды в герметичном контейнере

Изобретение относится к области методов измерений параметров состояния изменяющейся во времени газовой среды и может быть использовано для контроля безопасного состояния наблюдаемой многокомпонентной газовой среды, содержащей токсичные или взрывопожароопасные компоненты. Предложен способ измерения параметров многокомпонентной газовой среды в герметичном контейнере с хранящимися в нем объектами. Способ включает измерение параметров с использованием датчиков температуры, относительной влажности и давления и контроль безопасного состояния многокомпонентной газовой среды. Согласно изобретению герметичный контейнер с исследуемой многокомпонентной газовой средой с хранящимися в нем объектами размещают в защитном контейнере, который затем помещают в климатическую камеру. В каждом из упомянутых контейнеров и в климатической камере устанавливают систему независимых малогабаритных датчиков температуры, относительной влажности и давления либо датчики с комбинированной функцией этих параметров. Наблюдение за изменяющимися параметрами многокомпонентной газовой среды ведут в режиме реального времени с регистрацией измерительных сигналов и последующей передачей измеренных аналоговых сигналов на этап преобразования аналоговых сигналов в цифровые сигналы и передачей последних в ПК, в котором в автоматическом режиме формируется БД текущих значений параметров наблюдаемой многокомпонентной газовой среды и в котором имеются предварительно сформированные БД номинальных значений и БД критических значений измеряемых параметров многокомпонентной газовой среды. Контроль безопасного текущего состоянии многокомпонентной газовой среды в герметичном контейнере осуществляют на основании сравнения величин перепада давления, относительной влажности и температуры в многокомпонентной газовой среде герметичного контейнера с хранящимися в нем объектами и защитного контейнера по сравнению с параметрами газовой среды в климатической камере и по сравнению с критическими значениями этих параметров в контрольных БД. При этом, если текущие значения измеренных параметров находятся в диапазоне величин БД номинальных значений параметров и не достигают величин БД критических значений параметров, констатируют наличие безопасного состояния многокомпонентной газовой среды в герметичном контейнере. Технический результат - повышение достоверности измеряемых результатов. 1 ил.

 

Предлагаемое изобретение относится к области методов измерений параметров изменяющейся во времени многокомпонентной газовой среды в замкнутых объемах и может быть использовано для контроля параметров состояния наблюдаемой многокомпонентной газовой среды, содержащей токсичные или взрывопожароопасные компоненты.

Известен способ мониторинга состояния наблюдаемых объектов (патент РФ №2413193, МПК G01M 7/00, опубл. 27.02.2011 г.), включающий измерения с помощью датчиков, установленных в критически важных точках, интегральных характеристик наблюдаемых объектов, проведение сбора и обработки данных с датчиков и сравнения измеренных интегральных характеристик с элементами матрицы граничных значений этих характеристик.

Известен в качестве прототипа предлагаемый способ определения параметров газовой среды (патент РФ №2438121, МПК G01N 27/416, опубл. 27.12.2011 г.), согласно которому осуществляют динамическое измерение изменения параметров влажности и температуры в герметизированном контейнере и контроль параметров влажности в герметизированном контейнере с помощью датчиков температуры и влажности.

К недостаткам аналогов относятся сравнительно высокая сложность, необходимость присутствия оператора и проведения оператором действий, необходимых для контроля и управления процессом, а также отсутствие возможности использования способа в зонах, дистанционно удаленных от центра обработки данных.

Задачей авторов предлагаемого изобретения является разработка способа, позволяющего определять одновременно параметры температуры, относительной влажности и давления многокомпонентной газовой среды в герметичных контейнерах с хранящимися в них объектами и изменения этих параметров во времени, позволяющих контролировать экологическую и функциональную безопасность.

Новый технический результат, обеспечиваемый предлагаемым изобретением, заключается в обеспечении повышения достоверности измеряемых результатов за счет изоляции объекта от воздействия внешних факторов, обеспечении динамического контроля за изменяющейся во времени многокомпонентной газовой средой в герметичном контейнере с исследуемыми объектами, автоматизация операционного процесса измерений, сокращение трудовых ресурсов, автономность и оптимизация процесса измерения и контроля.

Указанные задача и новый технический результат обеспечиваются тем, что в известном способе измерения параметров многокомпонентной газовой среды в герметичном контейнере с хранящимися в них объектами с изменяющимся во времени компонентным составом, включающем измерение параметров с использованием датчиков температуры, относительной влажности и давления, и контроль безопасного состояния многокомпонентной газовой среды, согласно изобретению герметичный контейнер с исследуемой многокомпонентной газовой средой с хранящимися в нем объектами размещают в защитном контейнере, который затем помещают в климатическую камеру, в каждый из упомянутых контейнеров и в климатической камере устанавливают систему независимых малогабаритных датчиков температуры, относительной влажности и давления либо датчики с комбинированной функцией этих параметров, наблюдение за изменяющимися параметрами многокомпонентной газовой среды ведут в режиме реального времени, с регистрацией измерительных сигналов независимых малогабаритных датчиков температуры, относительной влажности и давления либо датчики с комбинированной функцией этих параметров, с последующей передачей измеренных аналоговых сигналов на этап преобразования аналоговых сигналов в цифровые сигналы и передачей последних на ПК, на котором в автоматическом режиме формируется БД текущих значений параметров наблюдаемой многокомпонентной газовой среды и на котором имеются предварительно сформированные БД номинальных значений и БД критических значений измеряемых параметров многокомпонентной газовой среды, а контроль безопасного текущего состоянии многокомпонентной газовой среды в герметичном контейнере осуществляют на основании сравнения величин перепада температуры, относительной влажности и давления в многокомпонентной газовой среде герметичного контейнера с хранящимися в нем объектами и защитного контейнера по сравнению с параметрами газовой среды в климатической камере и по сравнению с критическими значениями этих параметров в контрольных БД, при этом, если текущие значения измеренных параметров находятся в диапазоне величин от БД номинальных значений параметров и не достигают до величин БД критических значений параметров, констатируют наличие безопасного состояния многокомпонентной газовой среды в герметичном контейнере.

Предлагаемый способ поясняется следующим образом.

На фиг. 1 представлен общий вид конструкции, на которой опробован предлагаемый способ, где: 1 - климатическая камера; 2 - защитный контейнер; 3 - герметичный контейнер с исследуемыми объектами; 4 - исследуемые объекты; 5 - датчики температуры, относительной влажности, давления; 6 - элементы коммутации (кабели-переходники); 7 - АИПБ.

Предварительно герметичный контейнер 3 с исследуемой многокомпонентной газовой средой с хранящимися в нем объектами 4 размещают в защитном контейнере 2, который затем помещают в климатическую камеру 1. В каждом из упомянутых контейнеров и в климатической камере устанавливают систему независимых малогабаритных датчиков 5 температуры, относительной влажности и давления либо датчики с комбинированной функцией этих параметров. Наблюдение за изменяющимися параметрами многокомпонентной газовой среды ведут в режиме реального времени с регистрацией измерительных сигналов независимых малогабаритных датчиков 5 температуры, относительной влажности и давления либо датчиков с комбинированной функцией этих параметров. Затем зарегистрированные сигналы передают на этап преобразования аналоговых сигналов в цифровые сигналы в АИПБ 7 (автономном измерительно-преобразовательном блоке) посредством кабельных переходников 6.

После этого производят передачу преобразованных сигналов на ПК, в котором в автоматическом режиме формируется БД текущих значений параметров наблюдаемой многокомпонентной газовой среды и в котором имеются предварительно сформированные БД номинальных значений и БД критических значений измеряемых параметров многокомпонентной газовой среды. Предварительно сформирована БД номинальных значений измеряемых параметров, прокалиброванная по индивидуальным газовым средам с эталонными содержаниями компонентами. В память ПК заложена также и БД критических значений измеряемых параметров многокомпонентной газовой среды.

В заявляемом способе используют датчики температуры, относительной влажности и давления либо датчики с комбинированной функцией этих параметров, расширение функциональных возможностей датчиков обеспечено наличием в их конструкции независимых электрических схем, в основу которых заложена зависимость электрических параметров этих схем индивидуально от разнородных факторов газовых сред (температуры, относительной влажности и давления), что существенно упрощает измерительную схему и в конструктивном и в функциональном планах.

Контроль безопасного текущего состоянии многокомпонентной газовой среды в герметичном контейнере осуществляют на основании сравнения величин перепада давления, относительной влажности и температуры в многокомпонентной газовой среде герметичного контейнера с хранящимися в нем объектами и защитного контейнера по сравнению с параметрами газовой среды в климатической камере и по сравнению с критическими значениями этих параметров в контрольных БД. При этом, если текущие значения измеренных параметров находятся в диапазоне величин от БД номинальных значений параметров и не достигают величин БД критических значений параметров, констатируют наличие безопасного состояния многокомпонентной газовой среды в герметичном контейнере.

Данные мероприятия позволяют минимизировать операционный процесс измерений, освободить дополнительный персонал от необходимости постоянного наблюдения за изменением параметров, исключить ошибки, связанные с воздействием «человеческого фактора», за счет чего повысить достоверность и точность измерений, оперативность контроля.

Таким образом, при использовании предлагаемого способа обеспечивается достижение более высокого технического результата по сравнению с прототипом, а именно обеспечивается повышение достоверности измеряемых результатов за счет изоляции объекта от воздействия внешних факторов, обеспечивается динамический оперативный контроль за изменяющейся во времени многокомпонентной газовой средой герметичных контейнеров с исследуемыми объектами, автоматизация операционного процесса измерений, сокращение трудовых ресурсов, автономность и оптимизация процесса измерения и контроля.

Возможность промышленной реализации предлагаемого способа подтверждается следующим примером.

Пример 1. В лабораторных условиях предлагаемый способ реализован на установке, изображенной на фиг. 1.

В климатической камере 1 расположен защитный контейнер 2, в который помещен герметичный контейнер 3 с исследуемыми объектами 4. В герметичном контейнере 3 и защитном контейнере 2 установлены независимые датчики температуры, относительной влажности и давления 5 или датчики с комбинированной функцией этих параметров, которые при помощи элементов коммутации (6) соединены с автономным измерительно-преобразовательным блоком (АИПБ) (7), передающим цифровые сигналы на ПК.

После сборки опытной установки (фиг. 1) для динамического контроля параметров состояния многокомпонентной газовой среды осуществляют регистрацию в режиме реального времени сигналов измерительных датчиков 5, которые передают посредством электрических контактов на соответствующие выходы измерительного блока, вынесенного за пределы климатической камеры на этап преобразования (АИПБ) и формирования БД (на ПК) текущих значений измеряемых параметров - температуры, относительной влажности и давления. Процессы измерения и преобразования сигналов происходят в автоматическом режиме, с построением графиков зависимости измеряемых сигналов от времени.

Измерение сигналов указанных датчиков 5 осуществляют в климатической камере 1, защитном контейнере 2 и в герметичном контейнере 3. Перед проведением экспериментальных исследований за изменением параметров состояния наблюдаемой многокомпонентной газовой среды проводят измерения контрольных контейнеров с эталонными пробами, на основе которых формируется БД номинальных значений. Все измерения проводят в режиме онлайн с последующим преобразованием и передачей сигналов на ПК.

Процесс контроля состояния наблюдаемой многокомпонентной газовой среды осуществляют на основании сравнения величин перепада давления, относительной влажности и температуры в многокомпонентной газовой среде герметичного контейнера с хранящимися в нем объектами и защитного контейнера по сравнению с параметрами газовой среды в климатической камере и по сравнению с критическими значениями этих параметров в контрольных БД, при этом, если текущие значения измеренных параметров находятся в диапазоне величин БД номинальных: значений параметров и не достигают уровня величин БД критических значений параметров, констатируют наличие безопасного состояния многокомпонентной газовой среды в герметичном контейнере.

Как показал пример реализации, при использовании предлагаемого способа обеспечивается повышение достоверности измеряемых результатов за счет изоляции объекта от воздействия внешних факторов окружающей среды, обеспечивается динамический контроль за изменяющимися во времени параметрами газовой среды герметичных контейнеров с исследуемыми объектами, обеспечивается минимизация операционного процесса и сокращение трудовых ресурсов, автономность и оптимизация процесса измерения и контроля.

Способ контроля параметров состояния многокомпонентной газовой среды в герметичном контейнере с хранящимися в нем объектами с изменяющимся во времени компонентным составом, включающий измерение параметров с использованием датчиков температуры, относительной влажности и давления и контроль безопасного состояния многокомпонентной газовой среды, отличающийся тем, что герметичный контейнер с исследуемой многокомпонентной газовой средой с хранящимися в нем объектами размещают в защитном контейнере, который затем помещают в климатическую камеру, в каждом из упомянутых контейнеров и в климатической камере устанавливают систему независимых малогабаритных датчиков температуры, относительной влажности и давления либо датчики с комбинированной функцией этих параметров, наблюдение за изменяющимися параметрами многокомпонентной газовой среды ведут в режиме реального времени с регистрацией измерительных сигналов независимых малогабаритных датчиков температуры, относительной влажности и давления либо датчиков с комбинированной функцией этих параметров, с последующей передачей измеренных аналоговых сигналов на этап преобразования аналоговых сигналов в цифровые сигналы и передачей последних на ПК, в котором в автоматическом режиме формируется БД текущих значений параметров наблюдаемой многокомпонентной газовой среды и в котором имеются предварительно сформированные БД номинальных значений и БД критических значений измеряемых параметров состояния многокомпонентной газовой среды, а контроль безопасного текущего состоянии многокомпонентной газовой среды в герметичном контейнере осуществляют на основании сравнения величин перепада давления, относительной влажности и температуры в многокомпонентной газовой среде герметичного контейнера с хранящимися в нем объектами и защитного контейнера по сравнению с параметрами газовой среды в климатической камере и по сравнению с критическими значениями этих параметров в контрольных БД, при этом, если текущие значения измеренных параметров находятся в диапазоне величин БД номинальных значений параметров и не достигают величин БД критических значений параметров, констатируют наличие безопасного состояния многокомпонентной газовой среды в герметичном контейнере.



 

Похожие патенты:

Изобретение относится к области измерительной техники. Представлена система, включающая в себя платформу для выполнения по меньшей мере одного протокола анализа.

Изобретение относится к области измерительной техники. Представлена система, включающая в себя платформу для выполнения по меньшей мере одного протокола анализа.

Изобретение может быть использовано на тепловых и атомных электрических станциях в сверхчистых водах типа конденсата и питательной воды энергоблока. В способе калибровки рН-метров, заключающемся в дозировании корректирующего реагента - вещества, изменяющего рН среды, в частности аммиака, в поток охлажденной пробы рабочей среды, с последующим измерением удельной электропроводности и температуры, расчете значения рН и установке на рН-метре рассчитанного значения рН, используют штатную линию измерения электропроводности охлажденной до температуры 25±10°С Н-катионированной пробы питательной, котловой воды или воды типа конденсата, устанавливают расход рабочей среды 5-10 л/ч, измеряют значение удельной электропроводности (χH25), вводят в поток рабочей среды корректирующий реагент с молярной концентрацией равной 0,001-0,002, повышая удельную электропроводность среды не более чем до 10 мкСм/см, для чего устанавливают расход корректирующего реагента 0,5-1,0 л/ч, при этом используют в качестве корректирующего реагента для щелочной среды водный раствор аммиака, измеряют удельную электропроводность (χK25) в потоке рабочей среды с водным раствором аммиака и определяют значение рН для щелочной среды с дозировкой аммиака по предложенному выражению: pHK25=8+lg(3,68⋅χK25-1,09⋅χH25-1,91⋅(χH25)2), для слабокислой среды в качестве корректирующего реагента используют раствор смеси кислого углекислого натрия, хлорида натрия и угольной кислоты, взятые в равных концентрациях, значение рН определяют по значению константы диссоциации угольной кислоты по первой ступени с учетом условий процесса равной 6,37 единиц рН, а для среды близкой к нейтральной используют раствор кислого углекислого натрия, значение рН25 которого равно 8,33.

Изобретение относится к области методов регулирования параметров газовых сред и может быть использовано для регулирования концентрации газовых компонентов исследуемых газовых сред.

Изобретение относится к области методов регулирования параметров газовых сред и может быть использовано для регулирования концентрации газовых компонентов исследуемых газовых сред.

Группа изобретений относится к определению аналита в биологической текучей среде. Представлена электрохимическая аналитическая тест-полоска для определения аналита в образце биологической текучей среды, содержащая: первую камеру для приема образца, содержащую: первое отверстие для нанесения образца; и второе отверстие для нанесения образца; первый электрод, размещенный в первой камере для приема образца между первым отверстием для нанесения образца и вторым отверстием для нанесения образца; второй электрод, размещенный в первой камере для приема образца между первым отверстием для нанесения образца и вторым отверстием для нанесения образца; вторую камеру для приема образца, которая пересекает первую камеру для приема образца между первым электродом и вторым электродом, образуя таким образом пересечение камер, и по меньшей мере первый рабочий электрод, второй рабочий электрод и противоэлектрод/электрод сравнения, размещенные во второй камере для приема образца.

Изобретение относится к устройству для определения концентрации газа: оксида серы (SOX), содержащегося в выхлопных газах из двигателя внутреннего сгорания. Устройство определения концентрации газа включает в себя элемент определения концентрации газа и электронный блок управления.

Изобретение относится к области потенциометрических методов анализа и мембранных технологий и может быть использовано для совместного определения органических и неорганических ионов в многокомпонентных водных средах.

Использование: область методов анализа газовых сред и устройств для измерения параметров газовых сред, для контроля и определения физико-химических параметров указанных сред.

Использование: для контроля значения pH раствора. Сущность изобретения заключается в том, что устройство контроля pH содержит камеру для вмещения раствора, полимер, погружаемый в раствор, причем размер полимера способен изменяться в зависимости от того, превышает ли pH раствора пороговое значение, детектор для обнаружения изменения размера полимера.
Наверх