Датчик для непрерывного контроля изоляции проводов

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Представленный датчик для непрерывного контроля изоляции проводов содержит корпус, внутри которого расположен проводящий рабочий элемент, и стойку. Корпус изготовлен в виде тройника, выполненного в виде двух взаимно перпендикулярных горизонтального и вертикального полых цилиндров. В горизонтальном цилиндре выполнено сквозное отверстие, а вертикальный цилиндр выполнен в виде стакана, объем внутренней полости которого превышает объем внутренней полости горизонтального цилиндра, внутренняя полость вертикального цилиндра сообщается с внутренней полостью горизонтального цилиндра, стойка выполнена в виде двух параллельных опор, закрепленных на горизонтальной платформе, в верхней части опор выполнены соосные отверстия, в торцах горизонтального цилиндра выточены цилиндрические проточки, в которые вставлены уплотняющие манжеты. Рабочий элемент, размещенный в полостях цилиндров, представляет собой низкотемпературный сплав галлия с индием. Технический результат заключается в упрощении конструкции для исключения сложной схемы разогрева, необходимой для приведения галлия в расплавленное состояние. 1 ил.

 

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов.

Известен способ контроля дефектности изоляции проводов, описанный в [1].

В упомянутом способе в качестве датчика для непрерывного контроля изоляции проводов используют две фетровые пластины, погруженные в электролитический раствор сернокислого натрия Na2SO4 в воде (концентрация 30 г/л).

При этом между жилой провода и раствором, соединенными в электрическую цепь, прикладывают испытательное напряжение постоянного тока 50±3 В при разомкнутой цепи. В соответствии с этим способом при помощи упомянутого датчика определяют целостность изоляции, которая выражается числом точечных повреждений изоляции провода, зафиксированных с помощью электрического испытательного устройства.

Точечные повреждения фиксируют соответствующим реле со счетчиком. Счетчик должен срабатывать при сопротивлении изоляции провода менее 10 кОм в течение не менее 0,04 с. Счетчик не должен срабатывать при сопротивлении 15 кОм и более. Цепь для определения повреждений должна работать со скоростью срабатывания 5±1 мс, обеспечивая регистрацию с частотой (500±25) повреждений в минуту при протягивании провода без изоляции.

Недостаток указанного датчика заключается в том, что, во-первых, электролитический состав в течение работы может изменять свою концентрацию, а его электропроводимость зависит от температуры контроля, что влечет за собой изменение сопротивления в контакте между датчиком точечных повреждений и влияет на точность и информативность контроля. Кроме того, чувствительность датчика низка, поэтому его используют только для контроля изоляции тонких проводов, диаметр которых не превышает 0,5 мм.

Наиболее близким к заявляемому является датчик для непрерывного контроля изоляции проводов, описанный в [2].

Датчик-прототип содержит расширительный элемент, формирующую обойму, нагреватель, проводящий эластичный обжим, источник света, фотоэлектрический преобразователь, контролируемый провод, преобразователь ток - напряжение, управляемый источник тока, причем расширительный элемент расположен внутри расточки обоймы, обжим находится внутри отверстия в расширительном элементе, источник и преобразователь расположены внутри обоймы по разные стороны от обжима, при этом выход преобразователя соединен с входом преобразователя, выход которого соединен с входом источника, выход которого соединен с входом нагревателя.

Недостатком датчика является сложность его конструкции, низкая надежность и долговечность, низкая точность и чувствительность.

Техническая задача, на решение которой направлено настоящее изобретение, состоит в упрощении конструкции, в повышении надежности, долговечности чувствительности и точности контроля.

Наиболее близким к заявляемому является датчик, опубликованный в [3].

Датчик-прототип для непрерывного контроля изоляции проводов, содержит корпус, внутри которого расположен проводящий рабочий элемент, колпак, греющий источник с плавно изменяющейся мощностью, термодатчик, трубы кожуха, схему регулирования мощностью греющего источника, стойку с платформой и подвижную стойку, причем в качестве рабочего элемента взят галлий, а корпус и колпак выполнены из теплопроводящего материала (меди) в виде перевернутых в вертикальной плоскости на 180° по отношению друг к другу прямоугольных сосудов, по периметру которых в верхней торцевой части корпуса и в нижней части колпака выполнены одинаковые по конфигурации фланцы, причем внешние размеры фланцев одинаковы, внутренний же размер фланца колпака меньше внутреннего размера фланца корпуса, во фланце корпуса выточена проточка, в которую вставлен уплотнитель, корпус и колпак идентичны по конфигурации, но объем внутренней полости колпака V1 больше объема V2 внутренней полости корпуса. При этом объем V1 полностью заполнен галлием, фланцы корпуса и колпака присоединены друг к другу крепежными деталями, в стенках корпуса просверлены сквозные соосные отверстия, вокруг которых с внешней стороны корпуса выполнены проточки, в которые вставлены уплотняющие манжеты, с противоположных внешних сторон корпуса датчика прикреплены две трубчатые оси, имеющие с одних торцов крепежные фланцы, а с других торцов фланцы-ограничители. Крепежные фланцы трубчатых осей прикреплены крепежными деталями к корпусу, уплотняющие манжеты находятся между корпусом и фланцами трубчатых осей. Внутренний диаметр трубчатых осей соответствует диаметру просверленных в корпусе отверстий, а наружный диаметр этих осей соответствует отверстиям в стойке с платформой и в подвижной стойке, одна трубчатая ось входит в отверстие стойки с платформой, а другая трубчатая ось входит в отверстие подвижной стойки. Отверстие в стойке с основанием соосно отверстию в подвижной стойке, фланцы-ограничители трубчатых осей расположены за отверстиями упомянутых стоек. Нижний конец подвижной стойки расположен в пазу платформы стойки с платформой и может перемещаться в продольном направлении по расположенным внутри паза направляющим, к верхней части стойки платформы закреплена труба, выполненная из меди. Внутри трубы по ее центральной оси прикреплен к стойки с платформой патрон, в который вкручен греющий источник с плавно изменяющейся мощностью. К внешней стороне колпака одним из торцов прикреплена труба кожуха, внутренний диаметр которой соответствуют внешнему диаметру трубы, прикрепленной к верхней части стойки с платформой, а оси вращения упомянутых туб совпадают, труба кожуха снабжена резьбовым фиксатором. С противоположной стороны корпуса от трубы кожуха расположено гнездо, в которое вставлен термодатчик, выход которого соединен с входом схемы регулирования мощностью греющего источника, выход которой соединен с входом греющего источника с плавно изменяющейся мощностью.

Недостатком датчика-прототипа является его сложность, обусловленная высокой температурой плавления галлия и связанная с этим необходимость использования в датчике схемы автоматического разогрева галлия.

Техническая задача, на решение которой направлено настоящее изобретение, состоит в упрощении конструкции.

Задача решается тем, что в датчик для непрерывного контроля изоляции проводов, содержащий корпус, внутри которого расположен проводящий рабочий элемент, и стойку, корпус изготовлен в виде тройника, выполненного в виде двух взаимно перпендикулярных горизонтального и вертикального полых цилиндров, в горизонтальном цилиндре выполнено сквозное отверстие, а вертикальный цилиндр выполнен в виде стакана, объем внутренней полости которого превышает объем внутренней полости горизонтального цилиндра, внутренняя полость вертикального цилиндра сообщается с внутренней полостью горизонтального цилиндра, стойка выполнена в виде двух параллельных опор, закрепленных на горизонтальной платформе, в верхней части опор выполнены соосные отверстия, диаметр которых соответствует внешнему диаметру горизонтального цилиндра, в торцах горизонтального цилиндра выточены цилиндрические проточки, в которые вставлены уплотняющие манжеты, к торцам горизонтального цилиндра крепежными деталями крепятся фланцы, сжимающие манжеты, по оси вращения фланцев выполнены сквозные отверстия, соответствующие диаметру контролируемого провода, горизонтальный цилиндр размещен в сквозных отверстиях опор стойки, рабочий элемент, размещенный в полостях цилиндров, представляет собой низкотемпературный сплав галлия с индием.

На фиг. 1А и 1Б приведена конструкция заявляемого датчика, служащая для пояснения принципа работы датчика.

Датчик (фиг. 1) состоит из корпуса, выполненного в виде в виде двух взаимно перпендикулярных вертикального 1 и горизонтального 2 полых цилиндров, в полости которых введен рабочий элемент 3, представляющий собой сплав галлия с индием. В торцах горизонтального цилиндра 2 выточены цилиндрические проточки, в которые вставлены уплотняющие манжеты 4. К торцам горизонтального цилиндра 2 крепежными деталями 5 крепятся фланцы 6. Горизонтальный цилиндр 2 размещен в сквозных отверстиях 7 опор стойки 8. Позицией 9 обозначен фиксатор. Позицией 10 обозначено отверстие во фланце 6 и цилиндре 2 для фиксатора. Позицией 11 обозначено разреженное пространство в полости вертикального цилиндра 1. Позицией 12 обозначена платформа стойки. Позицией 13 обозначен контролируемый провод.

Датчик работает следующим. В исходном состоянии датчик фиг. 1 находится в положении А с рабочим веществом 3, представляющим из себя сплав галлия с индием Полость цилиндра 1 заполнена рабочим веществом 3, представляющим из себя сплав галлия с индием. Контролируемый провод 13 вводят через уплотняющие манжеты 4 в отверстие горизонтального цилиндра 2. После этого крепежными деталями 5 закрепляют фланцы 6 к горизонтальному цилиндру 2. При скручивании крепежных деталей 5 (винт и гайка) уплотняющие манжеты 4 сжимаются и обжимают провод 13. Степень обжатия провода уплотняющими манжетами 4 зависит от толщины манжет и усилия, прикладываемого к ним фланцами 6. Это усилие может изменяться путем степени скручивания крепежных деталей 5. Добившись того, чтобы полости цилиндров 1 и 2 были герметично изолированными от окружающей среды, датчик поворачивают на 180° вокруг горизонтальной оси вращения, роль которой выполняет цилиндр 2, и переводят его в положение Б.

Фиксирование датчика в положении Б осуществляется фиксатором 9, вставляемым в отверстие 10. Рабочий элемент 3, находящийся в расплавленном состоянии под действием гравитационных сил, перетекает из полости вертикального цилиндра 1 в полость горизонтального цилиндра 1, заполняя пространство между внутренней образующей полости цилиндра 2 и проводом 13. Поскольку полость объема цилиндра 1 выполнена таким образом, чтобы ее объем V1 превышал объем полости V2 в цилиндре 2, то в полости цилиндра 1 вверху над рабочим веществом 3 возникает разреженное пространство 11, поскольку полости цилиндров 1 и 2 герметичны относительно внешней среды.

После проведения датчика в рабочее состояние (фиг. 1Б) начинают проводить контроль изоляции провода 13, для чего его приводят в движение. В процессе контроля рабочее вещество 3 не вытекает из полостей цилиндров 1 и 2, так как его удерживают внутри две силы: сила сцепления рабочего вещества со стенками полостей и разрежение 13 над поверхностью рабочего вещества 3 в полости вертикального цилиндра 1.

Пример конкретного выполнения.

Был изготовлен датчик, конструкция которого приведена на фиг. 1.

Цилиндры 1 и 2 датчика были выполнены из стали. По центральной оси цилиндра 1 было просверлено сквозное отверстие диаметром 1 мм. Длина рабочей части цилиндра 1 была равна 10 мм. Объем рабочей полости цилиндра 2 V2=7,85 мм2. Цилиндр 1 был выполнен в виде стакана, диаметр полости которого был равен 2 мм, а высота полости равнялась также 10 мм. Объем рабочей части полости цилиндра 1 был равен V1=15,7 мм2 и превышал объем полости цилиндра 2 в 2 раза. В полость цилиндра 1 был размещен состав смеси галлия с индием, в соотношении массовых частей 95:5 соответственно. Этот сплав приходил в расплавленное состояние при температуре 15,7°C, что позволяло осуществлять контроль эмалевой изоляции проводов при нормальных комнатных температурах, обычно превышающих 15,7°C. Манжеты 14 были выполнены из резины толщиной 5 мм. Внутренний диаметр уплотняющих манжет был равен 1 мм. Это позволяло осуществлять контроль изоляции проводов, диаметр которых не превышал 1 мм. Остальные детали были выполнены из стали.

Таким образом, заявляемый датчик по сравнению с датчиком-прототипом, существенно упрощен, так как позволяет исключить сложную схему разогрева, необходимую для приведения галлия в расплавленное состояние.

Источники информации

1. ГОСТ Р МЭК 60851-5-2008. Провода обмоточные. Методы испытаний. Часть 5. Электрические свойства.

2. Авторское свидетельство СССР №1449949. Датчик для непрерывного контроля электрической прочности изоляции проводов. // Г.В.Смирнов, Н.А.Косенчук и С.А.Щерб. Опубл. 07.01.87, Бюл. №1.

3. Патент РФ №2505830. G01R 31/14 (по заявке №2012125231). Датчик для непрерывного контроля изоляции проводов // Заявл. 18.06.2012 // Г.В. Смирнов, Смирнов Д.Г. / Опубликовано: 27.01.2014. Бюл. №3 (прототип).

Датчик для непрерывного контроля изоляции проводов, содержащий корпус, внутри которого расположен проводящий рабочий элемент, и стойку, отличающийся тем, что корпус имеет вид тройника, выполненного в виде двух взаимно перпендикулярных горизонтального и вертикального полых цилиндров, при этом в горизонтальном цилиндре выполнено сквозное отверстие, а вертикальный цилиндр выполнен в виде стакана, объем внутренней полости которого превышает объем внутренней полости горизонтального цилиндра, внутренняя полость вертикального цилиндра сообщается с внутренней полостью горизонтального цилиндра, стойка выполнена в виде двух параллельных опор, закрепленных на горизонтальной платформе, в верхней части опор выполнены соосные отверстия, диаметр которых соответствует внешнему диаметру горизонтального цилиндра, в торцах горизонтального цилиндра выточены цилиндрические проточки, в которые вставлены уплотняющие манжеты, к торцам горизонтального цилиндра крепежными деталями крепятся фланцы, сжимающие манжеты, по оси вращения фланцев выполнены сквозные отверстия, соответствующие диаметру контролируемого провода, горизонтальный цилиндр размещен в сквозных отверстиях опор стойки, рабочий элемент размещен в полостях цилиндров и представляет собой низкотемпературный сплав галлия с индием.



 

Похожие патенты:

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Заявленный датчик для непрерывного контроля изоляции проводов выполнен в виде двух роликов из нержавеющей стали, имеющих U-образную проточку по образующей, причем ролики помещают в корпус, который выполнен в виде швеллера, между параллельными стенками которого закреплена диэлектрическая основа для размещения элементов датчика, также выполненная в виде швеллера, параллельные стенки указанной основы закреплены крепежными деталями к параллельным стенкам корпуса датчика, а основание упомянутой основы расположено перпендикулярно к основанию корпуса датчика, в датчик дополнительно введены два металлических коромысла, две пружины, два скользящих контакта, два вывода для подсоединения источника питания, две направляющие втулки, диск с равномерно выполненными в нем сквозными радиальными прорезями, одна плоскость которого выполнена в виде цилиндрического стакана, ультрафиолетовый светодиод и ультрафиолетовый фотодиод, причем коромысла выполнены в виде металлических пластин, на одном конце каждой из которых жестко закреплены перпендикулярно плоскости пластины цилиндрические оси под подшипники, на другом конце каждой пластины коромысла выполнены перпендикулярно плоскости коромысел отверстия под оси, которые жестко закреплены на диэлектрической основе для размещения элементов датчика, вращающихся роликов, прижатых с помощью пружин друг к другу образующими поверхностями в точке соприкосновения, лежащей на вертикальной оси симметрии указанных роликов, к боковой поверхности одного из вращающихся роликов соосно прикреплен стакан упомянутого диска с радиальными прорезями, по образующим поверхностям роликов выполнены проточки, лежащие при соприкосновении роликов против друг друга и служащие для фиксации и ограничения движения провода в поперечном направлении.

Изобретение относится к кабельной технике. Сущность: устройство содержит термошкаф, в котором размещен испытуемый образец в виде стандартной скрутки эмалированного провода, один конец которого и термошкаф заземлены.

Изобретение относится к области электроэнергетики, а именно к компактным установкам (приборам), позволяющим проводить испытания изоляции объектов электротехнического назначения повышенным переменным напряжением 50 Гц и постоянным напряжением, максимальным выходным напряжением до 10 кВ.

Изобретение относится к контролю высоковольтной изоляции. Сущность: датчик (11) частичных разрядов для устройства (11; 13) оперативного контроля высоковольтной изоляции содержит корпус (15) и находящиеся в корпусе (15) измерительную схему (17) для измерения частичных разрядов в тестируемой высоковольтной системе (3; 5) и конденсатор (19) связи, имеющий один электрод (19В), соединенный с измерительной схемой (17), и другой электрод (19А; 41), соединенный с первым высоковольтным проводником (21; 43), соединяемым с высоковольтной линией (5) тестируемой системы.

Изобретение относится к устройству для компонентов высоковольтной импульсной системы испытания, предпочтительно для контроля качества мощных трансформаторов. Сущность: в устройстве для компонентов высоковольтной импульсной системы испытания, содержащей генератор импульсов и вспомогательные компоненты, а именно ограничительный разрядный промежуток (2), делитель (3) напряжения и компенсатор (4) перенапряжений, по меньшей мере два из вспомогательных компонентов установлены на общей основной раме с одним единственным головным электродом (11) для вспомогательных компонентов.

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Новым является то, что в датчик для непрерывного контроля изоляции проводов, содержащий корпус, внутри которого расположен проводящий рабочий элемент, дополнительно введены колпак, греющий источник с плавно изменяющейся мощностью, термодатчик, труба кожуха, схема регулирования мощностью греющего источника, стойка с платформой, и подвижная стойка.

Изобретение относится к измерительной технике. .

Изобретение относится к управляемому отсекающему беспроводному соединению для системы испытаний импульсами высокого напряжения, предпочтительно для гарантирования качества силовых трансформаторов.

Изобретение относится к контрольно-измерительной технике и предназначено для непрерывного контроля изоляции, диагностики и защиты высоковольтных вводов силовых трансформаторов, автотрансформаторов и реакторов.

Изобретение относится к области электроэнергетики, а именно к устройствам, позволяющим проводить диагностику и испытания кабелей с синтетической изоляцией повышенным напряжением без ее разрушения.

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Представленный датчик для непрерывного контроля изоляции проводов содержит корпус, внутри которого расположен проводящий рабочий элемент, и стойку. Корпус изготовлен в виде тройника, выполненного в виде двух взаимно перпендикулярных горизонтального и вертикального полых цилиндров. В горизонтальном цилиндре выполнено сквозное отверстие, а вертикальный цилиндр выполнен в виде стакана, объем внутренней полости которого превышает объем внутренней полости горизонтального цилиндра, внутренняя полость вертикального цилиндра сообщается с внутренней полостью горизонтального цилиндра, стойка выполнена в виде двух параллельных опор, закрепленных на горизонтальной платформе, в верхней части опор выполнены соосные отверстия, в торцах горизонтального цилиндра выточены цилиндрические проточки, в которые вставлены уплотняющие манжеты. Рабочий элемент, размещенный в полостях цилиндров, представляет собой низкотемпературный сплав галлия с индием. Технический результат заключается в упрощении конструкции для исключения сложной схемы разогрева, необходимой для приведения галлия в расплавленное состояние. 1 ил.

Наверх