Способ изготовления светопоглощающих элементов оптических систем на титановых подложках

Использование: получение светопоглощающих многослойных изделий для изготовления светопоглощающих элементов оптических - электронных приборов и оптических систем (зеркал) космических аппаратов. Техническим результатом изобретения является разработка способа получения светопоглощающих элементов оптических систем, обеспечивающего получение оптических элементов с заданной степенью светопоглощающих свойств формируемого покрытая, а также получение покрытия, при эксплуатации которого минимален объем газовыделения. Сущность изобретения: в способе изготовления светопоглощающих элементов оптических систем на титановых подложках, включающем предварительную подготовку титановых подложек, обезжиривание и промывку, последующее травление в растворе минеральных соединений, нанесение слоя целевого покрытия, согласно изобретению, обезжиривание проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л и кальцинированной соды концентрации 35-40 г/л, при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек, затем ведут активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, затем проводят обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе определенного состава, затем полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле и цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование, а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования, при этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде и окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре. 1 ил.

 

Предлагаемое изобретение относится к области технологий получения светопоглощающих многослойных изделий и может быть использовано для изготовления светопоглощающих элементов оптико-электронных приборов и оптических систем (зеркал, телескопов).

Актуальность решаемой проблемы основана на необходимости устранения помех, вызванных наличием светоотражающих конструкционных элементов, выполненных из титановых сплавов - держателей, опор оптических систем, негативно влияющих на точность регистрации световых сигналов, получаемых с исследуемых объектов. Это диктует необходимость применения светопоглощающих покрытий для подобного типа элементов оптических систем.

Известен в качестве прототипа заявляемого способ формирования светопоглощающего покрытия методом гальванического осаждения никель-фосфорных пленок (патент РФ №2566905, МПК В44С 1/22, опубл. 27.10.2015 г.), включающий предварительную химическую обработку исходной поверхности детали, гальваническое осаждение никель-фосфорной пленки и последующее ее оксидирование в кислотных растворах.

Однако известные способы достаточно сложны и в них не предусматривается получение оптических элементов с заданной степенью светопоглощения формируемого покрытия на титановых деталях, а также не предусмотрено получение покрытия, при эксплуатации которого минимален объем газовыделения.

Задачей авторов изобретения является разработка способа получения светопоглощающих элементов оптических систем с заданной степенью светопоглощающих свойств формируемого покрытия на деталях из титановых сплавов, а также получение покрытия, при эксплуатации которого минимален объем газовыделения.

Новый технический результат заключается в обеспечении повышения адгезии покрытия к титановой подложке за счет получения заданного рельефа шероховатости поверхностной обработки, в обеспечении заданных оптических показателей светопоглощения, а также получение покрытия, при эксплуатации которого минимален объем газовыделения.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа, включающего предварительную подготовку титановых подложек обезжиривание и промывку, последующее травление в растворе минеральных соединений, нанесение слоя целевого покрытия, согласно изобретению, обезжиривание проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л, и кальцинированной соды концентрации 35-40 г/л, при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек, затем проводят активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, затем проводят обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе состава:

цинк окись 20-35 г/л
кислота плавиковая 60-90 г/л
тилен гликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин, затем полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле и цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование в растворе состава:

никельсернокислый 30-35 г/л
натрия гипофосфит 20-25 г/л
натрий уксуснокислый 10-15 г/л
кислота уксусная 12 мл/л,

а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования в электролите следующего состава, г/л:

хромовый ангидрид 250-280
кислота борная 10-15
натрий уксуснокислый 3,0-5,0

при температуре 15-30°C в течение 5-15 мин, при этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде, и окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре.

Предлагаемый способ поясняется следующим образом.

Первоначально осуществляют традиционную предварительную подготовку поверхности титановых подложек, обезжиривание, промывку в проточной воде. Процесс обезжиривания поверхности титановых подложек проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л и кальцинированной соды концентрации 35-40 г/л при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек.

Критично в условиях данного способа проводить травление именно в смеси указанных ингредиентов и в рамках заявленных концентраций, поскольку именно такой процесс травления приводит к получению заданного рельефа шероховатости поверхности в обрабатываемых титановых деталях, что в конечном итоге приводит к улучшению адгезии получаемого впоследствии слоя покрытия и получению заданной степени светопоглощения. При травлении в условиях, выходящих за рамки заявленных значений концентраций и времени травления, указанный результат в эксперименте не наблюдался.

Затем проводят активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, что необходимо для удаления нежелательных для покрытия продуктов травления, существенно снижающих адгезию покрытия к титановой подложке.

После этого ведут обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе состава:

цинк окись 20-35 г/л
кислота плавиковая 60-90 г/л
этиленгликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин.

Полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле и цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование в растворе состава:

никельсернокислый 30-35 г/л
натрия гипофосфит 20-25 г/л
натрий уксуснокислый 10-15 г/л
кислота уксусная 12 мл/л

при температуре 70-90°C в течение 15-20 мин.

Необходимость получения промежуточного слоя вызвана требованием повышения прочности сцепления с титановой подложкой целевого комплексного хромосодержащего светопоглощающего покрытия.

Целевое комплексное хромосодержащее светоотражающее покрытие получают путем гальванического хромирования в электролите следующего состава, г/л:

хромовый ангидрид 250-280
кислота борная 10-15
натрий азотнокислый 3,0-5,0

при температуре 15-30°C в течение 5-15 мин.

Оптимальное время проведения процесса гальванического хромирования и условий его осуществления подобраны экспериментально, исходя из условия проявления улучшенных оптических и механических свойств покрытия. Проведение процесса гальваническою хромирования в течение более продолжительного времени приводит к значительному увеличению рыхлости и нестойкости формируемого покрытия.

Изменение электрических параметров процесса хромирования ведет к браку неравномерности слоя покрытия.

Все условия и режимы процесса получения целевого комплексного светоотражающего хромосодержащего покрытия отработаны в ходе проведения экспериментальных исследований и подтверждены контрольными данными, полученными на опытных образцах.

Таким образом, при использовании предлагаемого способа изготовления светопоглощающих элементов оптических систем достигается новый технический результат, заключающийся в обеспечении улучшения адгезии слоя покрытия к титановой подложке за счет получения заданного рельефа шероховатости поверхностной обработки, в обеспечении заданных оптических показателей светопоглощения и возможности получения покрытия, при эксплуатации которого минимален объем газовыделения.

Возможность промышленной реализации предлагаемого способа подтверждена следующим примером конкретной реализации.

Пример 1. Предлагаемый способ был реализован в лабораторных условиях на заготовках из титанового сплава. Способ включает в себя следующие операции:

- обезжиривание в растворе состава, г/л:

тринатрийфосфата 35-40
кальцинированной соды 35-40

при комнатной температуре в течение 10-15 мин;

- промывка в горячей воде;

- промывка в холодной проточной воде:

- травление в растворе состава, г/л:

кислота соляная 15-25
кислота плавиковая 10-15

при комнатной температуре в течение 1-2 мин

- промывка в холодной проточной воде;

- осветление в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек;

- активирование в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек;

- обработка в этиленгликоле в течение 10-15 сек;

- промывка в холодной проточной воде;

- цинкатная обработка в растворе состава:

цинк окись 20-35 г/л
кислота плавиковая 60-90 г/л
этиленгликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин;

- удаление цинкатной пленки в растворе азотной кислоты - 400-900 г/л;

- вторая обработка в этиленгликоле;

- вторая цинкатная обработка в растворе состава:

цинк окись 20-35 г/л
кислота плавиковая 60-90 г/л
этиленгликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин;

- промывка в холодной проточной воде;

- химическое никелирование в растворе состава:

никельсернокислый 30-35 г/л
натрия гипофосфит 20-25 г/л
натрий уксуснокислый 10-15 г/л
кислота уксусная 12 мл/л

при температуре 70-90°C в течение 15-20 мин;

- хромирование в электролите состава (г/л):

- хромовый ангидридл 250-280
- кислота борная 10-15
- натрий азотнокислый 3,0-5,0

при температуре 15-30°C в течение 5-15 мин.

На фиг. 1 показан срез образца из титана с полученными слоями покрытий. Испытания опытных образцов по соответствию показателей газовыделения полученного целевого покрытия проводились в лабораторных условиях, максимально приближенных к условиям эксплуатации (вакуум, повышенная температура, механическое воздействие при вращении в центрифуге, в двигающихся с переменными скоростями модулях).

Полученное указанным образом целевое комплексное хромосодержащее светоотражающее покрытие характеризуется улучшенными показателями адгезии покрытия к титановым подложкам, заданной степенью светопоглощения, минимальным уровнем газовыделения.

Как это показали эксперименты, при реализации предлагаемого способа обеспечена возможность улучшения показателей адгезии слоя покрытия к титановым подложкам за счет получения заданного рельефа шероховатости поверхностной обработки, обеспечены заданные оптические показатели и минимизирован объем газовыделений.

Способ изготовления светопоглощаюших элементов оптических систем на титановых подложках, включающий предварительную подготовку титановых подложек, обезжиривание и промывку, последующее травление в растворе минеральных соединений, нанесение слоя целевого покрытия, отличающийся тем, что обезжиривание проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л и кальцинированной соды концентрации 35-40 г/л при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек, затем проводят активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, затем проводят обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе состава:

цинк окись 20-35 г/л
кислота плавиковая 60-90 г/л
этиленгликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин, затем полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование в растворе состава:

никельсернокислый 30-35 г/л
натрия гипофосфит 20-25 г/л
натрий уксуснокислый 10-15 г/л
кислота уксусная 12 мл/л

при температуре 70-90°C в течение 15-20 мин; а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования в электролите следующего состава, г/л:

хромовый ангидрид 250-280
кислота борная 10-15
натрий уксуснокислый 3,0-5,0

при температуре 15-30°С в течение 5-15 мин, при этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде, и окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре.



 

Похожие патенты:

Изобретение относится к технологии выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3, которые широко используются в оптике, фотонике, физике высоких энергий.

Использование: для использования при создании твердотельных лазеров, включая волоконные лазеры, и люминесцентных оптических материалов. Сущность изобретения заключается в том, что оптическая наностеклокерамика с ионами хрома относится к литий-калий-алюмоборатной системе с ионами трехвалентного хрома и имеет следующий состав (мол.%): Li2O 0-15,0; Al2O3 20,0-30,0; K2O 10,0-20,0; B2O3 40,0-60,0; Sb2O3 0-6,0; Cr2O3 0,05-0,2.

Изобретение относится к области композиционных материалов, а именно к материалам, применяемых в медицине, в частности в офтальмологии, для изготовления интраокулярных линз, предназначенных для коррекции зрения после удаления катаракты.

Изобретение относится к получению терморегулирующих покрытий и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов.

Изобретение относится к области создания интегральных оптических волноводных микроструктур для прикладного использования в системах получения, обработки и передачи информации по оптическим каналам связи и другим областям науки и техники.

Изобретение относится к оптическим композициям и способу их получения для светоизлучающих устройств. Оптическая композиция содержит прозрачную матрицу, содержащую органические анионные фрагменты и катионы металла, распределенные в матрице.

Использование: для нанесения покрытий на вакуумной установке с линейным источником ионов. Сущность изобретения заключается в том, что осуществляют распыление мишени на неподвижную тестовую подложку, получают распределение толщины покрытия по поверхности этой подложки и выполняют контроль толщины во время нанесения покрытия на рабочую подложку, при этом перемещением платформы, на которую устанавливают линейный ионный источник и мишень, совмещают середину линии перегиба поверхностного распределения толщины покрытия с центром вращающейся рабочей подложки, наносят покрытие на подложку и одновременно проводят сквозной контроль оптической толщины покрытия как вдоль оси вращения, проходящей через центр подложки, так и на расстоянии от центра подложки, и по разности сигналов, получаемых от контрольных устройств в центре и на расстоянии от центра подложки, корректируют положение линии перегиба распределения толщины относительно оси вращения подложки перемещением платформы с линейным ионным источником и мишенью в процессе нанесения.

Изобретение относится к устройствам отображения и может быть использовано в устройствах типа шлем-дисплей (HMD). Устройство содержит первое устройство отображения изображения, содержащее световодную пластину, затемнитель и устройство управления светом.

Представленное изобретение относится к изменяемым линзам, заполненным жидкостью, в частности к приспособлениям для них. Исполнительный элемент для линзы, заполненной жидкостью, содержит корпус, который имеет первый и второй торец; резервуар, расположенный внутри корпуса.

Группа изобретений относится к медицине. Офтальмологическое устройство содержит устройство вставки, в котором часть поверхности на устройстве вставки имеет на себе металлические элементы, формирующие метаповерхность.

Использование: получение светопоглощающих многослойных изделий для изготовления светопоглощающих элементов оптических - электронных приборов и оптических систем космических аппаратов. Техническим результатом изобретения является разработка способа получения светопоглощающих элементов оптических систем, обеспечивающего получение оптических элементов с заданной степенью светопоглощающих свойств формируемого покрытая, а также получение покрытия, при эксплуатации которого минимален объем газовыделения. Сущность изобретения: в способе изготовления светопоглощающих элементов оптических систем на титановых подложках, включающем предварительную подготовку титановых подложек, обезжиривание и промывку, последующее травление в растворе минеральных соединений, нанесение слоя целевого покрытия, согласно изобретению, обезжиривание проводят в растворе смеси тринатрийфосфата концентрации 35-40 гл и кальцинированной соды концентрации 35-40 гл, при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 гл и плавиковой 10-15 гл минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 гл при комнатной температуре в течение 25-30 сек, затем ведут активирование поверхности титановой подложки в растворе соляной кислоты 380-400 гл при комнатной температуре в течение 5-10 сек, затем проводят обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе определенного состава, затем полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 гл; после проведения повторной обработки в этиленгликоле и цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование, а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования, при этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде и окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре. 1 ил.

Наверх