Способ получения поликристаллических ферритов-гранатов



Способ получения поликристаллических ферритов-гранатов
Способ получения поликристаллических ферритов-гранатов
Способ получения поликристаллических ферритов-гранатов
Способ получения поликристаллических ферритов-гранатов

Владельцы патента RU 2660493:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" (RU)

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим пучком быстрых электронов с выдержкой при температуре спекания в течение 30-90 минут под непрерывным электронным пучком. Обеспечивается улучшение качества феррита-граната и повышение его эксплуатационных характеристик. 4 ил., 2 табл., 4 пр.

 

Изобретение относится к порошковой металлургии (в частности, к технологии поликристаллических ферритов), а также к радиоэлектронике, а именно - к области технологии материалов радиоэлектроники.

Существует способ получения поликристаллических ферритов-гранатов методом классической керамической (стандартной) технологии, включающий термическое спекание на воздухе при температуре 1500°С в течение 8,0-10,0 часов (см.: А.Г. Налогин, М.Г. Семенов, В.Г. Костишин, В.В. Иванов, А.С. Семенов, А.В. Бакланов. Феррогранаты для подложек микрополосковых ферритовых приборов Х-диапазона. Электронная техника, сер. 1, СВЧ-техника, вып. 4(531), 2016. - С. 56-64).

Недостаток данного способа - использование высокой температуры, длительность процесса спекания. Данные факторы приводят к высокой энергоемкости технологии, быстрому износу оборудования. Еще один недостаток - невысокое качество изделий, получаемых данным способом.

Наиболее близким аналогом (прототипом) является способ получения поликристаллических ферритов-гранатов методом радиационно-термического спекания (РТС), включающий спекание на воздухе в проникающем пучке быстрых электронов при температуре 1300°С в течение времени 1,0 час (см.: А.Г. Налогин, М.Г. Семенов, В.Г. Костишин, В.В. Иванов, А.С. Семенов, А.В. Бакланов. Феррогранаты для подложек микрополосковых ферритовых приборов Х-диапазона. Электронная техника, сер. 1, СВЧ-техника, вып. 4(531), 2016. - С. 56-64).

Недостаток настоящего способа - низкий уровень качества поликристаллических ферритов-гранатов.

Техническим результатом представленного изобретения является снижение энергоемкости процесса получения поликристаллических ферритов-гранатов, а также повышение качества получаемых ферритов-гранатов.

Технический результат достигается тем, что в предложенном изобретении спекание заготовок проводится путем их нагрева до температуры спекания 1350-1450°С облучением проникающим пучком быстрых электронов с выдержкой при температуре спекания в течение 30-90 минут под непрерывным электронным пучком.

Изображения поясняются фигурами. На фигуре 1 представлена характерная петля гистерезиса поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1350°С и времени спекания t=60 мин. На фигуре 2 представлена характерная петля гистерезиса поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1400°С и времени спекания t=45 мин. На фигуре 3 представлена характерная петля гистерезиса поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1450°С и времени спекания t=30 мин. На фигуре 4 представлен характерный вид поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1500°С и времени спекания t=8 мин. Где Н - напряженность магнитного поля [А/м], В - магнитная индукция [Тл].

Способ реализуется следующим образом. Производят навеску исходных компонентов, далее их смешивание в процессе мокрого помола в шаровой мельнице при соотношении шихты : шаров : деионизованной воды =1:2:1 в течение 24 ч, сушку при комнатной температуре до полного высыхания. Высушенную шихту просеивают через сито, брикетируют, после чего закладывают в печь, где происходит процесс ферритизации. Выдерживается шихта в печи в течение 5 часов при температуре 1200°С-1250°С.

Цель брикетирования - придать шихте более компактную форму и обеспечить более полное, качественное протекание реакций, которые происходят на последующей стадии технологического процесса - стадии предварительного обжига (ферритизации).

После ферритизации шихта подвергается мокрому помолу в шаровой мельнице при соотношении шихты : шаров : деионизованной воды =1:2:1 в течение 96 ч. Такая продолжительность помола должна обеспечивать получение порошка со средним размером частиц порядка 0,3÷0,5 мкм. Шихта в фарфоровом барабане промывается деионизованной водой и выливается в свободную емкость. Полученная суспензия порошка феррита-граната отстаивается в течение суток при комнатной температуре, после чего удаляется излишек воды. Далее проводится сушка порошка, после чего в него вводится пластификатор (например, поливиниловый спирт). Влажность суспензии при прессовке должна составлять 30÷35%. Далее происходит прессование (формование) феррит-гранатовых заготовок под давлением 200 МПа. Таким образом получают сырые заготовки. Далее проводят спекание сырых заготовок методом РТС путем их нагрева до температуры спекания 1350-1450°С проникающим пучком быстрых электронов в ускорителе электронов и дальнейшую выдержку при температуре спекания в течение 30-90 минут.

Сущность изобретения состоит в следующем. При спекании ферритов в пучке быстрых электронов действуют два фактора: поток быстрых электронов и температура, обусловленная процессами соударений быстрых электронов с ионным остовом кристаллической решетки, каскадами смещений и соударений ионов. Оба эти фактора порождают интенсивную радиационно-стимулированную диффузию, ускоряющую процесс спекания.

К факторам, ускоряющим процесс спекания, следует также отнести следующие:

1. Диффузия кислорода. РТС ускоряет процесс диффузии кислорода из атмосферы в феррит, при этом увеличиваются коэффициенты зернограничной и объемной диффузии кислорода. Увеличение диффузионной подвижности кислорода происходит как за счет взаимодействия излучения с ферритом, так и за счет ионизации атмосферы излучением.

2. Неравновесность дефектности частиц порошка. Существенным фактором, обеспечивающим эффективность РТС ферритовой керамики, является сохранение исходной неравновесной дефектности порошинок вследствие высоких скоростей нагрева материалов электронным пучком.

Ферриты, полученные методом РТС, характеризуются повышенной степенью химической гомогенности, пониженным уровнем упругих микронапряжений и интегральной дефектности, что обеспечивает получение более высокого уровня механических и электромагнитных параметров.

Границы температурного диапазона в предложенном техническом решении выбраны из следующих соображений. При температуре РТС<1350°С ферриты-гранаты обладают пониженными значениями магнитной индукции и магнитной проницаемости, а также повышенным значением коэрцитивной силы и не пригодны для эксплуатации. При температуре РТС>1450°С уже после нескольких минут спекания имеет место разложение фазы граната, а после 5-7 минут спекания заготовка плавится.

Границы временного диапазона в предложенном техническом решении выбраны из следующих соображений. При РТС ферритов-гранатов при температуре 1350°С в течение времени <90 мин магнитные свойства образцов ферритов-гранатов обладают низкими значениями магнитных характеристик и не пригодны для эксплуатации в качестве рабочих сред приборов. При РТС ферритов-гранатов при температуре 1450°С в течение времени <30 мин магнитные свойства образцов ферритов-гранатов обладают заниженными значениями магнитных характеристик, их использование в качестве рабочих сред приборов является нецелесообразным.

Таким образом, отличительными признаками предложенного технического решения является:

1. РТС сырых заготовок осуществляется путем их нагрева до температуры спекания (1350-1450)°С облучением проникающим пучком быстрых электронов.

2. Выдержка при температуре спекания (1350-1450)°С составляет 30-90 минут.

Использование совокупности указанных признаков для достижения поставленной цели (энергоэффективного получения поликристаллических ферритов-гранатов с улучшенными характеристиками) авторам неизвестно.

Пример 1. Сырые заготовки образцов ферритов-гранатов изготавливались по классической керамической (стандартной) технологии. Процесс изготовления более детально указан в описании изобретения. Далее сырые заготовки подвергали радиационно-термическому спеканию на воздухе пучком быстрых электронов с энергией 2,5 МэВ в электронном ускорителе ИЛУ-6. Температура спекания составляла 1350°С, время выдержки - 60 минут. На фигуре 1 изображена характерная петля гистерезиса для одного из образцов, полученных при данных условиях. Можем наблюдать, что образец при данной температуре и времени выдержки обладает высокой коэрцитивной силой и низкой магнитной проницаемостью.

Из той же партии исходного сырья были изготовлены сырые заготовки для получения образцов по классической керамической технологии (спекание на воздухе, температура спекания - 1500°С, выдержка составляла 10 ч.)

В таблице 1 представлена сравнительная характеристика свойств образцов, выполненных по двум технологиям.

Как видно из таблицы, характеристики поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1350°С и времени спекания t=60 мин, являются существенно ниже характеристик образцов Y3Fe5O12, полученных по классической керамической технологии при температуре спекания Т=1500°С и времени спекания t=10 час.

Пример 2. Сырые заготовки образцов ферритов-гранатов изготавливались по классической керамической (стандартной) технологии. Процесс изготовления более детально указан в описании изобретения. Далее сырые заготовки подвергали радиационно-термическому спеканию на воздухе пучком быстрых электронов с энергией 2,5 МэВ в электронном ускорителе ИЛУ-6. Температура спекания составляла 1400°С, время выдержки - 45 минут. На фигуре 2 представлена петля гистерезиса при данных условиях. Значения магнитных характеристик соответствует стандартным значениям для данного материала.

Пример 3. Сырые заготовки образцов ферритов-гранатов изготавливались по классической керамической (стандартной) технологии. Процесс изготовления более детально указан в описании изобретения. Далее сырые заготовки подвергали радиационно-термическому спеканию на воздухе пучком быстрых электронов с энергией 2,5 МэВ в электронном ускорителе ИЛУ-6. Температура спекания составляла 1450°С, время выдержки - 30 минут. На фигуре 3 представлена петля гистерезиса при данных условиях. Исходя из полученных данных можно сделать вывод, что предложенный режим позволяет получить образцы с высокими значениями магнитных характеристик.

Пример 4. Сырые заготовки образцов ферритов-гранатов изготавливались по классической керамической (стандартной) технологии. Процесс изготовления более детально указан в описании изобретения. Далее сырые заготовки подвергали радиационно-термическому спеканию на воздухе пучком быстрых электронов с энергией 2,5 МэВ в электронном ускорителе ИЛУ-6. Температура спекания составляла 1500°С, время выдержки - 8 минут. На фигуре 4 показано, что при данных условиях образец подвергается разрушению. Температура 1500°С и время выдержки в течение 5 минут не подходят для спекания ферритов-гранатов методом РТС.

Из той же партии исходного сырья были изготовлены сырые заготовки для получения образцов по классической керамической технологии (спекание на воздухе, температура спекания - 1500°С, выдержка составляла 10 ч).

В таблице 2 представлена сравнительная характеристика свойств образцов, полученных по двум технологиям.

Значения свойств образцов незначительно отличаются друг от друга, что нам позволяет сделать вывод о пригодности технологии РТС для производства поликристаллов Y3Fe5O12.

Способ получения поликристаллических ферритов-гранатов, включающий синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания проникающим пучком быстрых электронов с выдержкой при температуре спекания, отличающийся тем, что температура спекания составляет 1350-1450°С, а время спекания - 30-90 минут.



 

Похожие патенты:

Настоящее изобретение относится к магнитно-мягкому порошку и способу нанесения покрытия на магнитно-мягкий порошок. Порошок содержит по меньшей мере одну из следующих фторсодержащих композиций: а) фторсодержащую композицию формулы , где а находится в диапазоне от 0.015 до 0.52, b находится в диапазоне от 0.015 до 0.52, М1 представляет собой Н, K, Rb, Cs или NR14, где каждый R1 независимо выбран из группы, состоящей из Н, C1-6 алкила, фенила и бензила; или b) фторсодержащую композицию формулы , где с находится в диапазоне от 0.005 до 0.17, d находится в диапазоне от 0.015 до 0.52, М2 представляет собой В или Al; или с) фторсодержащую композицию формулы , где e находится в диапазоне от 0.003 до 0.10, f находится в диапазоне от 0.015 до 0.52.

Изобретение относится к области металлургии, а именно к способам улучшения магнитных свойств, и может быть использовано в электронике и приборостроении. Способ изготовления изделий из магнитно-мягкого сплава 27КХ включает интенсивную пластическую деформацию исходного магнитно-мягкого сплава с последующим получением заготовки заданной формы и отжиг полученной заготовки в интервале температур 730-850°С в течение 1-3 часов.

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитных жидкостей на полиметилсилоксановой основе, применяемых в магнитожидкостных герметизирующих устройствах.

Изобретение относится к электротехнике. Технический результат состоит в упрощении монтажа ротора, в частности, посредством посадки с натягом, причем должна быть придана достаточная устойчивость.

Изобретение относится к производству аморфных и нанокристаллических металлических сплавов путем сверхбыстрой закалки расплавов. Способ получения нанокристаллического магнитотвердого материала из сплава системы (Nd, Ho)-(Fe, Со)-В включает плавление сплава в тигле и выдавливание расплава через отверстие в тигле на поверхность вращающегося охлаждающего барабана с пропусканием постоянного электрического тока через струю жидкого металла и охлаждающий барабан.

Изобретение относится к области металлургии, а именно к листу из нетекстурированной электротехнической стали, используемому для изготовления сердечников высокочастотных двигателей.

Изобретение относится к электротехническим компонентам силовой частотной электроники для общепромышленного, специального оборудования и технологий аэрокосмической отрасли и может быть использовано преимущественно в модульных частотных низкопрофильных генераторах с программно-регулируемыми характеристиками на мощности от 20 кВт до 2 мВт и более для систем с точным, мощным, контролируемым и компьютерно-управляемым процессом.

Изобретение относится к порошковой металлургии и может быть использовано при получении магнитов с полимерной связкой и спеченных магнитов. Для получения магнитотвердого материала на основе нитридов интерметаллических соединений самария с железом и переходными металлами, выбранными из группы Ti, Nb, Mo, смешивают порошки железа и одного, двух или трех переходных металлов Ti, Nb, Mo таким образом, чтобы легирующие элементы замещали не более 10 масс.

Изобретение относится к электротехнике. Техническим результатом является уменьшение индуктивности рассеяния, снижение сопротивления провода, увеличение импульсного тока, улучшение теплоотвода от внутренних витков обмотки, повышение механической прочности конструкции трансформатора.

Изобретение относится к радиоэлектронной технике и касается создания гексаферритовых магнитомягких материалов для индуктивных элементов дециметрового и сантиметрового частотного диапазонов.

Изобретение относится к области разработки новых керамических редкоземельных оксидных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти.

Изобретение относится к радиоэлектронной технике и касается создания ферритовых материалов с большими величинами ширины линии спиновых волн, предназначенных для использования в СВЧ диапазоне, в том числе при изготовлении ферритов для приборов высокого уровня мощности сантиметрового диапазона длин волн.

Изобретение относится к разработке новых магнитных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти.

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах.

Изобретение относится к области изготовления материалов с магнитным состоянием спинового стекла, которые могут быть полезны для развития магнитных информационных технологий и химической промышленности.

Изобретение относится к разработке новых магнитных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти.

Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, и может быть использовано, в частности, для получения кислорода или водорода.

Изобретение относится к разработке новых материалов с магнитным состоянием спинового стекла - системы с вырожденным основным магнитным состоянием, которые могут быть полезны для химической, атомной промышленностей и развития магнитных информационных технологий.

Изобретение относится к устройствам со стимулированным излучением, а именно к устройствам для генерации излучения в диапазоне длин волн 1900-2100 нм в непрерывном, импульсном или импульсно-периодическом режимах.

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м за счёт снижения температуры синтеза и обжига.

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим пучком быстрых электронов с выдержкой при температуре спекания в течение 30-90 минут под непрерывным электронным пучком. Обеспечивается улучшение качества феррита-граната и повышение его эксплуатационных характеристик. 4 ил., 2 табл., 4 пр.

Наверх