Адаптивный режекторный фильтр

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами. Адаптивный режекторный фильтр содержит измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель, блок задержки, измеритель коэффициента корреляции помехи, вычислитель весовых коэффициентов, блок переключения, блок коммутации, двухканальный коммутатор и синхрогенератор, определенным образом соединенные между собой и осуществляющие когерентную обработку исходных отсчетов. 9 ил.

 

Изобретение относится к радиолокационной технике и может быть использовано в когерентно-импульсных радиолокационных системах для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов.

Известно радиолокационное устройство для обнаружения движущейся цели [1], содержащее последовательно включенные блоки задержки, умножитель комплексных чисел и вычитатель. Однако это устройство обладает низкой эффективностью выделения сигнала движущейся цели.

Другим известным устройством является корреляционный автокомпенсатор [2], который содержит ряд блоков задержки, два перемножителя, сумматор и блок оценки параметров коррелированной помехи. Недостатком этого устройства является плохое подавление кромок протяженной помехи из-за большой постоянной времени цепи адаптивной обратной связи.

Наиболее близкое к данному изобретению цифровое устройство для подавления пассивных помех [3], выбранное в качестве прототипа, содержит измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель и блок задержки. Однако данное устройство из-за переходного процесса при поступлении кромки пассивной помехи имеет низкую эффективность выделения сигналов движущихся целей.

Задачей, решаемой в изобретении, является повышение эффективности режектирования пассивной помехи и выделения сигналов движущихся целей при обработке группы импульсов на фоне пассивных помех с априорно неизвестными корреляционными свойствами.

Для решения поставленной задачи в адаптивный режекторный фильтр, содержащий измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель и блок задержки, введены измеритель коэффициента корреляции помехи, вычислитель весовых коэффициентов, блок переключения, блок коммутации, двухканальный коммутатор и синхрогенератор, соединенные между собой определенным образом.

Сущность изобретения как технического решения характеризуется совокупностью существенных признаков, изложенных в формуле изобретения и обеспечивающих решение поставленной задачи путем оптимальной и согласованной обработки группы импульсов.

Технический результат изобретения состоит в повышении эффективности режектирования пассивной помехи с априорно неизвестными корреляционными свойствами и выделения сигналов движущихся целей при групповой перестройке несущей частоты зондирующих импульсов.

На фиг. 1 представлена структурная электрическая схема адаптивного режекторного фильтра; на фиг. 2 - измерителя доплеровской фазы помехи; на фиг. 3 - весового блока; на фиг. 4 - комплексного сумматора; на фиг. 5 - комплексного перемножителя; на фиг. 6 - блока задержки; на фиг. 7 - накопителя; на фиг. 8 - измерителя коэффициента корреляции помехи; на фиг. 9 - блока переключения.

Адаптивный режекторный фильтр (фиг. 1) содержит измеритель 1 доплеровской фазы помехи, весовой блок 2, комплексный сумматор 3, комплексный перемножитель 4, блок 5 задержки, измеритель 6 коэффициента корреляции помехи, вычислитель 7 весовых коэффициентов, блок 8 переключения, блок 9 коммутации, двухканальный коммутатор 10 и синхрогенератор 11.

Измеритель 1 доплеровской фазы помехи (фиг. 2) содержит блок 12 задержки, блок 13 комплексного сопряжения, комплексный перемножитель 14, два накопителя 15, блок 16 вычисления модуля и два делителя 17; весовой блок 2 (фиг. 3) содержит два перемножителя 18; комплексный сумматор 3 (фиг. 4) содержит два сумматора 19; комплексный перемножитель 4 (фиг. 5) содержит два канала (I, II), каждый из которых содержит перемножители 20, 21 и сумматор 22; блоки 5, 12 задержки (фиг. 6) содержат два оперативных запоминающих устройства 23; накопители 15, 28 (фиг. 7) содержат n элементов 24 задержки на интервал tд и n сумматоров 25; измеритель 6 коэффициента корреляции помехи (фиг. 8) содержит два перемножителя 26, сумматор 27, накопитель 28 и делитель 29; блок 8 переключения (фиг. 9) содержит счетчик 30, дешифратор 31, блоки 32 совпадений и сумматор 33.

Адаптивный режекторный фильтр может быть осуществлен следующим образом.

Группа когерентных радиоимпульсов, первоначально излученных с одинаковой несущей частотой и состоящих из сигнала от движущейся цели и пассивной помехи, значительно превышающей сигнал, поступает на вход радиоприемного устройства, в котором усиливается, в квадратурных фазовых детекторах переносится на видеочастоту, а затем подвергается аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны).

Цифровые коды (, ) обеих квадратурных проекций, следующие через период повторения Т, в каждом элементе разрешения по дальности (кольце дальности) каждого периода повторения образуют последовательность комплексных чисел

где k - номер текущего периода, - номер текущего кольца дальности, - доплеровский сдвиг за период повторения фазы (обычно помехи, ввиду ее значительного превышения над сигналом), равный , здесь - доплеровская частота помехи.

Цифровые отсчеты в заявляемом устройстве (фиг. 1) поступают на соединенные входы измерителя 1 доплеровской фазы помехи (фиг. 2), весового блока 2 (фиг. 3) и измерителя 6 коэффициента корреляции помехи (фиг. 8). В измерителе 1 блок 12 задержки (фиг. 6) состоит из параллельно включенных оперативных запоминающих устройств (ОЗУ) 23. Причем каждое ОЗУ 23 служит для хранения значений отсчетов с колец дальности каждого квадратурного канала в течение одного периода.

В блоке 13 комплексного сопряжения происходит инвертирование знака мнимых проекций задержанных отсчетов. В комплексном перемножителе 14 происходит перемножение соответствующих комплексных чисел, реализуемое путем операций с проекциями этих чисел в соответствии с фиг. 5 и приводящее к образованию величин

.

В накопителях 15 (фиг. 7) с помощью элементов 24 задержки и сумматоров 25 осуществляется скользящее вдоль дальности в каждом периоде повторения суммирование проекций и с n+1 смежных элементов разрешения по дальности строба, кроме элемента с номером n/2+1, для чего выходные величины элемента 24 задержки с номером n/2 поступают только на последующий элемент 24 задержки (фиг. 7). В результате накопления образуются величины

где - оценка сдвига фазы помехи за период повторения, усредненная по n смежным элементам разрешения по дальности.

В блоке 16 вычисления модуля определяются величины , а затем на выходах делителей 17 (фиг. 2) - величины , поступающие на первые входы комплексного перемножителя 4. Точность определения величины определяется числом накапливаемых отсчетов n.

В измерителе 6 коэффициента корреляции помехи в соответствии с его структурной схемой (фиг. 8) и поступающими входными отсчетами и величиной |Yk| от измерителя 1 доплеровской фазы помехи определяется оценка коэффициента корреляции помехи

Оценка поступает в вычислитель 7 весовых коэффициентов. Количество вычисляемых по оценке весовых коэффициентов определяется реализуемым порядком адаптивного режекторного фильтра m, связанным с числом импульсов в группе, равным m+1. В частности, при m=1 весовые коэффициенты ,; при , ; при , ).

В весовом блоке 2 (фиг. 3) происходит взвешивание поступающих отсчетов весовыми коэффициентами . Весовые коэффициенты переключаются в каждом периоде повторения блоком 8 переключения (фиг. 9), который обеспечивает обработку группы импульсов (отсчетов) с одинаковой исходной несущей частотой.

Импульс от синхронизатора радиолокатора (на фиг. 1 не показан), соответствующий излучению зондирующего импульса в каждом периоде, поступает на первый управляющий вход (1) адаптивного режекторного фильтра, являющийся первым управляющим входом (1) блока 8 переключения, а затем на счетный вход счетчика 30 (фиг. 9). Показания счетчика, соответствующие номеру импульса в группе, в дешифраторе 31 преобразуются в единичный сигнал на соответствующем номеру импульса выходе дешифратора 31. Этот сигнал открывает подключенный к нему каскад совпадений 32, через который проходит соответствующий весовой коэффициент, поступающий через сумматор 33 на выход блока 8 переключения. Таким образом, каждому периоду и, следовательно, каждому импульсу в группе соответствует свой весовой коэффициент.

Взвешенные в весовом блоке 2 отсчеты суммируются в комплексном сумматоре 3 с задержанными в блоке 5 задержки на период повторения T, прошедшими через двухканальный коммутатор 10 и умноженными в комплексном перемножителе 4 на величину весовыми суммами отсчетов всех предыдущих импульсов группы. В конечном счете, в результате адаптивной весовой обработки отсчетов m+1 периодов образуется величина

Двумерный поворот задержанных отсчетов на угол обеспечивает необходимую для подавления помехи синфазность суммируемых отсчетов, а их взвешивание коэффициентами - наилучшее режектирование (компенсацию) отсчетов помехи с коэффициентом корреляции . Отсчеты сигнала от движущейся цели из-за сохранения доплеровских сдвигов фазы не подавляются.

Адаптивная обработка осуществляется для среднего элемента обучающей выборки, исключенного в накопителях 15 и 28 (фиг. 7) в соответствии с выражениями (1) и (2) и не влияющего на получаемые оценки и .

После завершения обработки данных m+1 периодов и очередной перестройки несущей частоты на вторые управляющие входы (2) устройства (фиг. 1) и блока 8 переключения (фиг. 9) и управляющий вход блока 9 коммутации поступает импульс, который обнуляет счетчик 30, а в блоке 9 коммутации переключает релаксационный генератор (мультивибратор). По команде блока 9 коммутации двухканальный коммутатор 10 переключает блок 5 задержки к выходу фильтра, и в течение периода повторения Т происходит считывание результатов режектирования V. На вход устройства поступают и начинают обрабатываться данные первого периода следующей группы.

Синхронизация адаптивного режекторного фильтра осуществляется подачей на все блоки заявляемого устройства последовательности синхронизирующих импульсов от синхрогенератора 11 (фиг. 1), управляемого совместно с блоком 8 переключения импульсами (1) синхронизатора радиолокатора (на фиг. 1 не показан), следующими с интервалом Т. Период повторения синхронизирующих импульсов равен интервалу временной дискретизации tд, выбираемому из условия требуемой разрешающей способности по дальности.

Достигаемый технический результат состоит в следующем. На выход устройства не поступают нескомпенсированные остатки помехи в переходном режиме, традиционно маскирующие сигнал от цели. В предлагаемом устройстве на выход поступают только скомпенсированные остатки помехи в установившемся режиме, что исключает эффект «кромки» помехи и повышает эффективность выделения сигналов движущихся целей.

Таким образом, адаптивный режекторный фильтр повышает эффективность компенсации пассивной помехи и выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами.

Библиография

1. Патент №63-49193 (Япония), МПК G01S 13/52. Радиолокационное устройство для обнаружения движущейся цели / К.К. Тосиба. Опубл. 03.10.1988. - Изобретения стран мира. - 1989. - Выпуск 109. - №15. - С. 52.

2. Радиоэлектронные системы: основы построения и теория. Справочник / Я.Д. Ширман, С.Т. Багдасарян, А.С. Маляренко, Д.И. Леховицкий [и др.]; под ред Я.Д. Ширмана. - 2-е изд., перераб. и доп. - М.: Радиотехника, 2007; с. 439, рис. 25.22.

3. А.с. 743208 СССР, МПК G01S 7/36. Цифровое устройство для подавления пассивных помех / Д.И. Попов. - №2540079/09; заявл. 03.11.1977; опубл. 25.06.1980, Бюл. №23. - 4 с.

Адаптивный режекторный фильтр, содержащий измеритель доплеровской фазы помехи, весовой блок, комплексный сумматор, комплексный перемножитель и блок задержки, при этом входы измерителя доплеровской фазы помехи соединены с первыми входами весового блока, выходы которого соединены с первыми входами комплексного сумматора, вторые входы которого соединены с выходами комплексного перемножителя, первые выходы измерителя доплеровской фазы помехи соединены с первыми входами комплексного перемножителя, отличающийся тем, что введены измеритель коэффициента корреляции помехи, вычислитель весовых коэффициентов, блок переключения, блок коммутации, двухканальный коммутатор и синхрогенератор, при этом первые входы измерителя коэффициента корреляции помехи соединены с входами измерителя доплеровской фазы помехи и с первыми входами весового блока, второй вход измерителя коэффициента корреляции помехи соединен со вторым выходом измерителя доплеровской фазы помехи, выход измерителя коэффициента корреляции помехи соединен с входом вычислителя весовых коэффициентов, выходы которого соединены с основными входами блока переключения, выход которого соединен со вторым входом весового блока, первый управляющий вход блока переключения соединен с первым управляющим входом адаптивного режекторного фильтра, выходы комплексного сумматора соединены с входами блока задержки, выходы которого соединены с основными входами двухканального коммутатора, первые выходы которого соединены со вторыми входами комплексного перемножителя, а управляющий вход - с выходом блока коммутации, второй управляющий вход блока переключения и управляющий вход блока коммутации соединены со вторым управляющим входом адаптивного режекторного фильтра, управляющий вход синхрогенератора соединен с первым управляющим входом адаптивного режекторного фильтра, а выход синхрогенератора - с синхровходами измерителя доплеровской фазы помехи, весового блока, комплексного сумматора, комплексного перемножителя, блока задержки, измерителя коэффициента корреляции помехи, вычислителя весовых коэффициентов, блока переключения, блока коммутации и двухканального коммутатора, причем основными входами адаптивного режекторного фильтра являются соединенные входы измерителя доплеровской фазы помехи, первые входы весового блока и первые входы измерителя коэффициента корреляции помехи, а выходами - вторые выходы двухканального коммутатора.



 

Похожие патенты:

Полосно-пропускающий СВЧ фильтр относится к технике сверхвысоких частот и может быть использован в селективных трактах приемных и передающих систем. Фильтр содержит диэлектрическую подложку (1), на одну сторону которой нанесено заземляемое основание (2), а на вторую - нанесены полосковые проводники (2-19) трех электромагнитно связанных резонаторов.

Изобретение относится к области радиотехники и может быть использовано в фильтрах гармоник усилителей мощности диапазонных радиопередатчиков. Технический результат - снижение уровня гармонических составляющих передаваемого сигнала при одновременном обеспечении согласования фильтра гармоник во всем рабочем диапазоне частот радиопередатчика.

Изобретение относится к области радиотехники и может быть использовано для создания генераторов сверхвысокочастотного (СВЧ) диапазона. Технический результат заключается в повышении добротности резонаторов на ПАВ на высоких частотах более 1 ГГц.

Изобретение относится к средствам передачи информации от забоя скважины на поверхность с использованием импульсной телеметрии. Техническим результатом является обеспечение более высокой производительности передачи данных, увеличение срока эксплуатации элементов телеметрической системы.

Изобретение относится к области радиотехники, в частности к пьезотехнике и акустоэлектронике. Резонатор на поверхностных акустических волнах содержит подложку из пьезоэлектрического материала с высоким коэффициентом электромеханической связи, на поверхности которой сформированы встречно-штыревой преобразователь и не менее двух отражающих структур, состоящих из массивов отражателей, выполненных с шириной и периодом следования, кратным определенной доле длины волны.

Изобретение относится к устройствам акустоэлектроники, в частности к отражательным линиям задержки, функционирующим на поверхностных акустических волнах. Техническим результатом предлагаемой конструкции ОЛЗ является увеличение амплитуды информационного сигнала и расширение ее функциональных возможностей.

Изобретение относится к СВЧ электроакустике и является основой для создания стабилизированных генераторов сетки частот, узкополосных фильтров, высокочувствительных сенсоров и других СВЧ частотозадающих элементов для средств связи, автоматики и радиолокации.

Изобретение относится к области радиотехники и может быть использовано в усилителях мощности широкодиапазонных радиопередатчиков. Технический результат - обеспечение согласования во всем рабочем диапазоне частот радиопередатчика при одновременном упрощении процессов настройки.

Изобретение относится к области радиотехники и может быть использовано в фильтрах гармоник усилителей мощности широкодиапазонных радиопередатчиков. Технический результат - обеспечение согласования фильтра гармоник во всем рабочем диапазоне частот радиопередатчика и повышение коэффициента передачи при одновременном снижении уровня гармонических составляющих передаваемого сигнала.

Изобретение относится к испытательной технике и может быть использовано для обработки предварительно зарегистрированных однократных или редко повторяющихся нестационарных сигналов, сопровождаемых широкополосным стационарным процессом, например вибрационным.
Наверх