Широкополосный резонансный сейсмоакустический приемник

Изобретение относится к приборостроению и может быть использовано как в области геофизики для регистрации высокочастотных сейсмических шумов и акустического каротажа скважин, так и для инженерного контроля над крупными сооружениями, а также узлами и агрегатами машин и механизмов. Предлагаемый сейсмоакустический приемник содержит корпус и установленные в нем две упругие пластины консольного типа с биморфными преобразователями, на свободных концах которых укреплены инерционные массы в виде двух катушек переменной массы из прочного легкого материала, например углепластика. На катушки намотана одна общая проволока из тяжелого материала, например вольфрама, с возможностью ее перематывания между катушками. Перематывание проволоки между катушками приводит к изменению их инерционных масс и, как следствие, к изменению резонансных частот упругих пластин. Это позволит сканировать рабочую полосу частот, для чего в корпусе установлены два реверсивных мотор-генератора, каждый из которых соединен гибким приводом соответственно с первой и второй катушками. Они включены в общую электрическую цепь с возможностью согласованного попеременного переключения их из режима двигателя в режим генератора и обратно. Материал и геометрические размеры упругих пластин подобраны так, чтобы при перематывании проволоки между катушками их собственные частоты изменялись в смежных диапазонах частот. Вблизи опоры на каждой упругой пластине расположен плоский чувствительный элемент в виде биморфного пьезоэлектрического преобразователя прямоугольной формы. Для обеспечения линейной зависимости выходного сигнала преобразователя от амплитуды механических колебаний пластины, упругая пластина в месте расположения биморфа выполнена в форме равнобедренной трапеции, большее основание которой зажато в опору, а геометрические размеры пластины подобраны так, чтобы выполнялось соотношение (а+b)d=ас, где а - расстояние от места крепления инерционной массы до меньшего основания трапеции d, b - высота трапеции, с - большее основание трапеции. Технический результат – многократное увеличение эффективности сканирования, позволяющее существенно увеличить частотный диапазон сканирования при одновременном уменьшении массы и габаритов устройства. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к приборостроению, например, в области геофизики и может быть использовано для регистрации механических колебаний, в частности высокочастотных сейсмических шумов (ВСШ), резонансным методом в широкой полосе частот.

Известен резонансный сейсмоприемник, содержащий корпус, на основании которого расположен упругий элемент в виде металлической горизонтальной пластины (консоли), один конец которой зажат в опору, а на другом укреплена неподвижная инерционная масса. Вблизи опоры на упругой пластине расположен плоский чувствительный элемент в виде пьезоэлектрического преобразователя. Резонансная частота регулируется в нем за счет перемещения подвижной части инерционной массы вдоль упругого элемента [1].

Недостатком этого преобразователя является малая ширина исследуемой полосы частот и нелинейная зависимость амплитуды выходного сигнала пьезопреобразователя от амплитуды регистрируемых механических колебаний, обусловленная неравномерностью его изгиба вблизи основания упругой пластины.

Наиболее близким к заявляемому является преобразователь механических колебаний с регулируемой резонансной частотой, содержащий упругую систему с изменяемой жесткостью из двух скрепленных между собой металлических пластин с изгибными пьезокерамическими элементами [2].

Недостатком этого преобразователя является отсутствие возможности тонкой настройки резонансной частоты в исследуемой полосе частот и нелинейная зависимость амплитуды выходного сигнала пьезопреобразователя от амплитуды регистрируемых механических колебаний, обусловленная неравномерностью его изгиба вблизи основания упругой пластины.

Предлагаемый широкополосный резонансный сейсмоакустический приемник (далее «Сейсмоакустический приемник») содержит корпус и установленные в нем две упругие пластины консольного типа с биморфными преобразователями, на свободных концах которых укреплены инерционные массы в виде двух катушек переменной массы из прочного легкого материала, например углепластика. На катушки намотана одна общая проволока из тяжелого материала, например вольфрама, с возможностью ее перематывания между катушками. Перематывание проволоки между катушками приводит к изменению их инерционных масс и, как следствие, к изменению резонансных частот упругих пластин. Это позволит сканировать рабочую полосу частот, для чего в корпусе установлены два реверсивных мотор-генератора, каждый из которых соединен гибким приводом соответственно с первой и второй катушками. Они включены в общую электрическую цепь с возможностью согласованного попеременного переключения их из режима двигателя в режим генератора и обратно. При этом, когда первый из них находится в режиме двигателя (режим перематывания проволоки со второй катушки на первую), второй находится в режиме генератора, и наоборот. Это предотвращает провисание проволоки при смене направления ее перематывания. Материал и геометрические размеры упругих пластин подобраны так, чтобы при перематывании проволоки между катушками их собственные частоты изменялись в смежных диапазонах. Это расширяет сканируемую полосу частот.

Вблизи опоры на упругой пластине расположен плоский чувствительный элемент в виде биморфного пьезоэлектрического преобразователя прямоугольной формы. Выходной сигнал от преобразователя подается как в регистратор, так и на вход устройства сканирования, обеспечивая возможность регулирования скорости сканирования. Для обеспечения линейной зависимости выходного сигнала преобразователя от амплитуды механических колебаний пластины упругая пластина в месте расположения биморфа выполнена в форме равнобедренной трапеции, большее основание которой зажато в опору, а геометрические размеры пластины подобраны так, чтобы выполнялось соотношение (а+b)d=ас, где а - расстояние от места крепления инерционной массы до меньшего основания трапеции d, b - высота трапеции, с - большее основание трапеции.

Принцип сканирования для каждой из упругих консольных пластин основан на известном соотношении

где ƒ - собственная частота поперечных колебаний консоли, m - инерционная масса (массой пластины пренебрегаем), С - гибкость консольной пластины, определяемая, в свою очередь, по формуле [3]

где - расстояние от места защемления консоли до точки закрепления инерционной массы (масса самой консоли мала), Е - модуль упругости материала консоли на изгиб, J - момент инерции сечения консоли. После подстановки, получим

При этом для консоли постоянной ширины и прямоугольного сечения [3]

где с - ширина консоли, h - ее толщина. Для консольной пластины переменной ширины сx и постоянной толщины h эта формула имеет вид

где Jx и сx - локальные значения соответственно момента инерции сечения и ширины пластины.

Выбор материалов катушки и проволоки соответственно из легкого и тяжелого материалов обусловлен необходимостью расширения диапазона изменения инерционной массы и тем самым расширения сканируемой полосы частот, а также уменьшения массы и габаритов сейсмоакустического приемника.

Вблизи опоры на упругой пластине расположен плоский чувствительный элемент в виде биморфного пьезоэлектрического преобразователя прямоугольной формы. Выходной сигнал от преобразователя подается как на регистратор, так и на вход устройства сканирования, обеспечивая возможность автоматического регулирования направления и скорости сканирования. Так, при приближении собственной частоты колебательной системы к частотам, присутствующим в спектре исследуемого объекта (о чем можно судить по возрастанию амплитуды сигнала на выходе преобразователя), предусмотрено уменьшение скорости сканирования (для повышения точности определения амплитуд регистрируемых пиков и соответствующих им частот), а в промежутках между пиками предусмотрено увеличение скорости сканирования (для уменьшения общего времени сканирования).

Для обеспечения линейной зависимости выходного сигнала преобразователя от амплитуды механических колебаний пластины ее геометрические размеры подобраны так, чтобы радиус кривизны ρx (или кривизна 1/ρx) пластины при изгибных колебаниях был одинаков по всей длине биморфного элемента. Возможность выполнения этих требований вытекает из известного соотношения [3]

где - изгибающий момент на расстоянии (вдоль оси консоли x) от точки приложения изгибающей силы F, ρx и Jx - соответствующие Мx радиус кривизны пластины и момент инерции сечения. Подставляя значение Jx из (5), получаем соотношение

из которого следует, что для постоянства ρx необходимо, чтобы при колебаниях инерционной массы изгибающий момент, приходящийся на единицу ширины пластины , был постоянен. Поскольку F также постоянна по всей длине консоли [3], то условие постоянства ρx сводится к геометрическому соотношению

которое выполняется, если консольная пластина имеет форму равнобедренного треугольника с вершиной в точке крепления инерционной массы.

На фиг. 1 представлен вертикальный разрез предлагаемого сейсмоакустического приемника.

В опору корпуса 1 зажаты упругие элементы в виде консольных пластин 2 и 2', на свободных концах которых установлены инерционные массы в виде катушек из углепластика 3 и 3', на которых намотана одна общая вольфрамовая проволока 4 с возможностью ее перематывания между ними. Вращение на катушки передается от установленных в корпусе мотор-генераторов 5 и 5', соединенных с катушками гибкими приводами-пассиками (показаны штриховыми линиями). Вблизи опор на упругие пластины наклеены плоские биморфные пьезоэлектрические элементы прямоугольной формы 6 и 6'. Упругие пластины в месте расположения биморфа выполнены в форме равнобедренных трапеций с геометрическими размерами, указанными на фиг. 2. Для выполнения условия (6) продолжения боковых сторон трапеций должны пересекаться в точках крепления инерционных масс 3 и 3'. При этом справедлива пропорция

откуда вытекает условие постоянства изгибающего момента в виде

где а - расстояние от места крепления инерционной массы до меньшего основания трапеции d, b - высота трапеции, с - большее основание трапеции.

Предлагаемый сейсмоакустический приемник работает следующим образом. Колебания от исследуемого источника (земная кора, техногенный объект или узлы и агрегаты машин и механизмов) передаются через корпус 1 на упругие пластины 2 и 2' с биморфными преобразователями 6 и 6'. Выходные сигналы от преобразователей, пропорциональные амплитудам колебаний пластин, подаются на регистратор (не показан) и на вход устройства (не показано), управляющего системой сканирования 3, 3', 4, 5, 5'. Управление сканированием заключается в регулировании скорости сканирования в зависимости от величины выходного сигнала с преобразователя - при возрастании величины сигнала на выходе преобразователя, свидетельствующем о приближении собственной частоты колебательной системы к частотам, присутствующим в спектре исследуемого объекта, скорость сканирования уменьшается. Благодаря этому повышается точность определения амплитуд регистрируемых пиков и соответствующих им частот. В промежутках между пиками скорость сканирования увеличивается, уменьшая тем самым общее время сканирования.

Для количественной оценки разных вариантов реализации предлагаемого сейсмоакустического приемника введем коэффициент эффективности системы сканирования η, определяемый как отношение ширины сканируемой полосы частот Δƒ к диапазону изменения массы перематываемой проволоки Δm, т.е. η=Δƒ/Δm. Если, к примеру, начальная инерционная масса колебательной системы в датчике с одной консольной пластиной составляет 5 граммов (масса катушки из углепластика + эквивалентная масса упругой пластины), а требуемый сканируемый диапазон частот составляет от 5 Гц до 100 Гц, то рассчитанный по формуле (3) диапазон изменения инерционной массы (масса перематываемой проволоки) составляет 2000 г, а коэффициент эффективности сканирования составит η=Δƒ/Δm=95/2000≈0,05 Гц/г.

В предлагаемом сейсмоакустическом приемнике с двумя консольными пластинами при тех же пороговых значениях инерционной массы (5 г) и диапазоне частот 5÷100 Гц диапазон сканирования делится на 2 поддиапазона - от 5 до ~22 Гц и от 22 до 100 Гц. При этом необходимая масса проволоки Δm составляет ~100 г, т.е. в 20 раз меньше, чем в первом варианте. Для обеспечения диапазона сканирования 5÷200 Гц вес проволоки Δm должен составлять ~250 г, что для вольфрамовой проволоки соответствует объему в ~13 см3. При этом собственные частоты консолей будут изменяться в пределах частично перекрывающихся поддиапазонов 5÷35 Гц (на фиг. 1 - правая консоль) и 30÷210 Гц (левая консоль). Для этого, как следует из формулы (3), при одинаковых прочих геометрических размерах упругих пластин, толщина левой консольной пластины на фиг. 1 должна быть в ~3,7 раза больше, чем правой. Коэффициент эффективности сканирования при этом составит η=210/250=0,84 Гц/г, что в ~17 раз больше, чем в первом варианте. В этом варианте исполнения предлагаемое устройство может быть использовано как для наблюдения за ВСШ, так и для инженерного контроля над крупными сооружениями: зданиями, ГЭС, АЭС и т.д.

Сканируемый частотный диапазон в предлагаемом сейсмоакустическом приемнике может быть расширен практически неограниченно путем установления в корпусе дополнительных пар сейсмоакустических приемников, аналогичных описанным выше, с примыкающими друг к другу частотными диапазонами, включая и звуковой диапазон. Так, при двух парах сейсмоакустических приемников общий частотный диапазон, согласно расчетам по вышеприведенным формулам, может, к примеру, составить 1÷1020 Гц и состоять из 4-х частично перекрывающихся поддиапазонов: 1÷6 Гц; 5,5÷33 Гц; 30÷180 Гц; 170÷1020 Гц. При этом для настройки каждого поддиапазона путем изменения жесткости упругой пластины может быть изменена не только ее толщина, но и ширина и длина. Общая масса проволоки в этом варианте составит 2×180 г=360 г, что для вольфрамовой проволоки соответствует объему в ~20 см3. Сравнивая эти данные с таковыми для одной пары упругих консольных пластин, констатируем увеличение в 5 раз частотного диапазона сканирования без существенного увеличения массы и габаритов устройства. При этом коэффициент эффективности сканирования составит η=1020/360=2,83 Гц/г и более чем в 3 раза больше, чем в случае одной пары консольных пластин. Расширяется также область использования приемника. Помимо перечисленных ранее назначений (наблюдения ВСШ, инженерный контроль над крупными сооружениями: зданиями, ГЭС, АЭС), он может быть использован также для акустического контроля узлов и агрегатов машин, для акустического каротажа скважин, для детектирования сверхслабых (до 10-12 м по смещению) сейсмоакустических сигналов в твердых и жидких средах.

Таким образом, ожидаемым техническим результатом использования предлагаемого сейсмоакустического приемника является многократное увеличение эффективности сканирования, позволяющее существенно увеличить частотный диапазон сканирования при одновременном уменьшении массы и габаритов устройства.

Источники информации

1. Хаврошкин О.Б., Башилов И.П. А.с. СССР №1679440 (SU 1679440). Резонансный сейсмоприемник // БИ, 1991. №35.

2. Голицын В.Ю., Медведев А.Б., Чаплыгин А.А. Патент РФ №2309435 (RU 2309435). Пьезометрический изгибный преобразователь с регулируемой резонансной частотой // БИ, 2007. №30.

3. Феодосьев В.И. Сопротивление материалов. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. - 592 с.

1. Широкополосный резонансный сейсмоакустический приемник, содержащий корпус и установленные в нем две упругие пластины с наклеенными на них биморфными пьезоэлектрическими преобразователями, отличающийся тем, что одни концы упругих пластинок закреплены на установленной в корпусе опоре, а на их свободных концах укреплены инерционные массы в виде первой и второй катушек из прочного легкого материала, на которые намотана одна общая проволока из тяжелого материала с возможностью ее перематывания между катушками, при этом материал и геометрические размеры упругих пластин подобраны так, чтобы при перематывании проволоки между катушками их собственные частоты изменялись в смежных диапазонах частот.

2. Широкополосный резонансный сейсмоакустический приемник по п. 1, отличающийся тем, что первая и вторая катушки соединены сервоприводами соответственно с первым и вторым реверсивными мотор-генераторами, установленными на опоре и соединенными в общую электрическую цепь с возможностью согласованного переключения их из режима двигателя в режим генератора и обратно, при этом, когда первый из них находится в режиме двигателя, второй находится в режиме генератора, и наоборот.

3. Широкополосный резонансный сейсмоакустический приемник по п. 1, отличающийся тем, что биморфные пьезоэлектрические преобразователи имеют прямоугольные формы, а каждая упругая пластина в месте расположения биморфа выполнена в форме равнобедренной трапеции, большее основание которой закреплено на опоре, причем ее геометрические размеры находятся в соотношении (а+b)d=ас, где а - расстояние от места крепления инерционной массы до меньшего основания трапеции d, b - высота трапеции, с - большее основание трапеции.

4. Широкополосный резонансный сейсмоакустический приемник по п. 1, отличающийся тем, что катушки выполнены из углепластика, а проволока - из вольфрама.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности и может быть использовано для определения величины максимального горизонтального напряжения в продуктивных пластах нефтегазовых месторождений для выбора оптимальной технологии бурения и эксплуатации скважин.

Изобретение относится к области сейсмологии и может быть использовано для оценки погрешности при определении координат эпицентров землетрясений. Сущность: строят карту распределения эпицентров землетрясений на территории исследуемого региона.
Изобретение относится к области гидроакустики и может быть использовано для измерения структуры ГАП, зависимостей ГАП от угла в пространстве и от расстояния до подводных объектов.

Изобретение относится к области геофизического моделирования и может быть использовано для выделения ловушек углеводородов в сложно построенных средах, содержащих акустически контрастные геологические объекты.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Согласно заявленному решению морские сейсмические вибраторы активируются, образуя источник градиента волнового поля для исследования целевой структуры.

Изобретение относится к области сейсмологии и может быть использовано для реконструкции динамических процессов в земной коре. Сущность: задают пространственные границы исследуемой области и временной интервал.

Изобретение относится к области сейсмологии и может быть использовано для определения цепочек землетрясений в эпицентральном поле сейсмичности. Сущность: по экспериментальным материалам разнесенных на поверхности сейсмических станций строят карту эпицентров землетрясений исследуемой территории.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяной малоразведанной залежи. Технический результат – повышение эффективности разработки залежи.

Изобретение относится к области геофизики и может быть использовано для оценки подземных углеводородных пластов. Заявлен сейсмоприемник с системой гашения собственных колебаний, который в некоторых вариантах реализации изобретения содержит корпус, содержащий проводящую катушку и одну или несколько пружин.

Изобретение относится к области геологии и может быть использовано при поисках месторождений углеводородов на шельфе. Согласно предложенному методу поиска месторождений углеводородов в акваториях для идентификации аномалий, обнаруженных по данным сейсморазведки и электроразведки, дополнительно на профиле устанавливают донные станции с ионоселективными электродами, избирательно реагирующими на ионы тяжелых металлов (Сu, Рb и Cd), аномалии которых при отсутствии мешающих ионов (Ag и Hg) свидетельствуют о связи с залежью углеводородов и индицируют аномалии повышенного частотного поглощения сейсмических волн в сейсмических структурах и пониженной проводимости и/или поляризуемости, пространственно коррелирующиеся с аномалиями ионов тяжелых металлов и не теряющие эту корреляцию в течение определенных периодов суточного мониторинга.

Изобретение относится к области строительства и касается конструктивного выполнения прибора, обеспечивающего измерение и регистрацию ускорений колебаний почвы и объектов в широком диапазоне частот и ускорений от самых незначительных и до превышающих lg, на которых предусмотрено размещение как инженерно-сейсмометрических станций, так и станций мониторинга технического состояния несущих конструкций зданий и сооружений.

Изобретение относится к измерительной технике, в частности к многокомпонентному измерению акустических сигналов, и может найти применение в подводных сейсмологических и сейсморазведочных работах, в исследованиях морской фауны, для контроля судоходства.

Изобретение относится к измерительной технике, в частности к многокомпонентному измерению акустических сигналов, и может найти применение в подводных сейсмологических и сейсморазведочных работах, в исследованиях морской фауны, для контроля судоходства.

Изобретение относится к области охранной сигнализации, в частности к сейсмическим средствам тревожной сигнализации, предназначенным для обнаружения наземного объекта, проникающего через зону обнаружения рубежа охраны, с возможностью определения азимута на обнаруженный объект по сейсмическим сигналам.

Изобретение относится к геофизике, в частности к сейсмоакустическим исследованиям, и может быть использовано для получения прогностических характеристик при контроле трещинообразования в массиве горных пород.

Изобретение относится к геофизике, в частности к сейсмоакустическим исследованиям, и может быть использовано для получения прогностических характеристик при контроле трещинообразования в массиве горных пород.

Изобретение относится к области геофизики и может быть использовано в процессе проведения сейсморазведочных работ. Предлагается устройство сбора данных, содержащее пару входных выводов, выполненных с возможностью соединения с набором, состоящим по меньшей мере из одного аналогового сейсмического датчика, формирующего полезный сейсмический сигнал, и средство обнаружения отключения для обнаружения частичного или полного отключения набора, состоящего по меньшей мере из одного аналогового сейсмического датчика.

Изобретение относится к области геофизики и может быть использовано в процессе проведения сейсморазведочных работ. Предлагается устройство сбора данных, содержащее пару входных выводов, выполненных с возможностью соединения с набором, состоящим по меньшей мере из одного аналогового сейсмического датчика, формирующего полезный сейсмический сигнал, и средство обнаружения отключения для обнаружения частичного или полного отключения набора, состоящего по меньшей мере из одного аналогового сейсмического датчика.

Изобретение относится к области геофизики и может быть использовано для регистрации механических колебаний, в частности высокочастотных сейсмических шумов (ВСШ) резонансным методом в широкой полосе частот.

Изобретение относится к области измерительной техники и может быть использовано для калибровки сейсмографов, и в частности для определения их амплитудно-частотных характеристик и увеличения.

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: на сейсмоактивной территории проводят режимные наблюдения деформаций земной коры или тесно связанных с ними других геофизических полей, например уровня микросейсмической эмиссии. Посредством обработки данных наблюдений на ЭВМ выявляют статистически значимые аномальные составляющие, максимально приближенные к теоретическому распределению своих амплитуд вокруг предполагаемого эпицентра. Определяют эпицентр ожидаемого землетрясения и глубину залегания его очага. Определяют из наблюдений радиус зоны подготовки землетрясения как расстояние от эпицентра, на котором предвестниковые аномалии значимо превышают статистическую ошибку их обнаружения. С учетом глубины залегания очага ожидаемого землетрясения и радиуса зоны его подготовки определяют текущее значение сейсмической энергии, заключенной в формирующемся очаге, не менее чем для двух эпох. Определяют приращение за это время сейсмической энергии очага и скорость ее накопления. Определяют магнитуду ожидаемого землетрясения и время, оставшееся до прогнозируемого землетрясения. Технический результат: среднесрочное прогнозирование землетрясений.
Наверх