Устройство для определения параметров уравнения состояния вещества, изоэнтропически сжатого до сверхвысоких давлений

Изобретение относится к физике высоких давлений, а именно к устройству для определения параметров уравнения состояния вещества, изоэнтропически сжатого до сверхвысоких давлений, и может быть использовано для исследований свойств веществ с малым атомным номером. Устройство содержит цилиндрическую камеру сжатия, представляющую собой сборку коаксиальных цилиндрических образцов, включающую образец исследуемого вещества и внешний цилиндрический образец, представляющий собой наружную проводящую оболочку, выполненную однослойной и изготовленную из материала с высокой электрической проводимостью, имеющую толщину больше толщины скин-слоя токов, протекающих по оболочке при ее обжатии давлением магнитного поля, внутри которой расположена пара эталонных образцов, выполненных из вещества с известным уравнением состояния, с толщинами, по крайней мере, на порядок большими, чем погрешность определения радиусов эталонных образцов, слои из высокоплотного рентгеноконтрастного материала, состоящего из химических элементов с большим атомным номером, имеющие толщину, на порядок меньшую толщин цилиндрических образцов сборки, размещенные между границами цилиндрических образцов, и осесимметричный импульсный источник внешнего давления, коаксиально охватывающий цилиндрическую камеру сжатия, расположенный относительно камеры сжатия на расстоянии, обеспечивающем возможность сжатия исследуемого образца за счет действия на внешнюю поверхность наружной оболочки камеры созданного им внешнего давления магнитного поля. Изобретение обеспечивает возможность проведения измерений с высокой точностью параметров уравнения состояния вещества. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к физике высоких давлений и может быть использовано для исследований свойств веществ с малым атомным номером (состоящих из химических элементов первых трех периодов таблицы Менделеева), изоэнтропически сжатых до давлений в несколько мегабар.

Целью изобретения является повышение точности и получение более достоверных параметров уравнения состояния (УРС) веществ, изоэнтропически сжатых до сверхвысоких давлений.

Одним из аналогов предложенного устройства сжатия является описанное в патенте №2471545 от 07.07.2011 Бликова А.О., Мочалова М.А., Огородникова В.А., Комракова В.А. Цилиндрическое устройство для сжатия газов до мегабарных давлений. Изобретение относится к области исследований в мегабарной области давлений квазиизоэнтропической сжимаемости газов, например водорода, дейтерия, гелия и т.д.

Устройство содержит блок цилиндрического взрывчатого вещества, охватывающий корпус с полостью для исследуемого газа, внутри которой коаксиально корпусу размещена дополнительная цилиндрическая оболочка. Таким образом, в устройстве конструктивно образуются две коаксиальные полости А и Б с исследуемым газом. Конструкция устройства предусматривает герметизацию полостей с исследуемым газом. В предложенном устройстве по оси полости закреплен металлический цилиндрический стержень, электрически изолированный от элементов корпуса.

Технический результат: снижение кумуляции энергии вблизи оси устройства и достижение практически равномерного распределения давления в области сжатого газа на момент его максимального сжатия (момент «остановки» оболочки). Введение металлического стержня, изолированного от элементов устройства, позволяет в одном эксперименте, кроме средней плотности, регистрировать электропроводность квазиизоэнтропически сжатого газа.

Измеренная в эксперименте плотность сжатого газа ρ является одним из параметров, который используется для построения полуэмпирического уравнения состояния (УРС), связывающего плотность и давление в исследуемом газе. Вторым параметром такого УРС является давление Р в сжатом газе. Ввиду трудностей прямого измерения давления в ударно-сжатой плазме газов в опыте с данным устройством сжатия давление в плазме определяется из газодинамических расчетов с учетом уравнений состояния, реальных термодинамических и прочностных свойств всех элементов экспериментального устройства.

Известное выбранное в качестве прототипа устройство для определения параметров уравнения состояния вещества, изоэнтропически сжатого до сверхвысоких давлений (А.И. Павловский, М.И. Долотенко, А.И. Быков, А.А. Карпиков. Устройство для сжатия вещества. Патент №1588243, опубл. 09.02.1995), содержит взрывомагнитный генератор сверхсильных магнитных полей, состоящий из соленоида с изолирующим слоем и обратным выводом и кольца взрывчатого вещества (ВВ) с системой его инициирования (осесимметричный импульсный источник внешнего давления, коаксиально охватывающий цилиндрическую камеру сжатия). По оси генератора расположена камера сжатия, внутри которой находится цилиндрический образец исследуемого вещества. Цилиндрическая камера сжатия представляет собой сборку коаксиальных цилиндрических образцов, включая образец исследуемого вещества. Внешний цилиндрический образец сборки представляет собой наружную оболочку. Наружная проводящая оболочка камеры выполнена двухслойной, причем внутренний слой выполнен из материала с большей плотностью и меньшей проводимостью, чем материал внешнего слоя, изготовленного из материала с высокой электрической проводимостью, имеющего толщину больше толщины скин-слоя токов, протекающих по оболочке при ее обжатии давлением магнитного поля. При работе устройства наружная проводящая оболочка камеры сжатия экранирует исследуемое вещество от быстрорастущего магнитного поля, в результате чего оболочки сжимаются давлением магнитного поля, при этом более плотный внутренний слой наружной оболочки обеспечивает прирост давления по сравнению с использованием одинарной наружной оболочки.

Недостаток устройства, выбранного в качестве прототипа, заключается в низкой надежности определения давления в сжатом исследуемом веществе, являющегося одним из основных параметров уравнения состояния вещества. Проблема заключается в том, что в эксперименте непосредственно измеряется лишь плотность вещества, а давление определяется из теоретического расчета многократным моделированием процесса сжатия. Таким образом, давление в веществе определяется с некоторой долей вероятности и не может служить в качестве надежного параметра УРС вещества. Кроме того, сжатие вещества в устройстве, выбранном в качестве аналога, не является в полной мере изоэнтропическим, так как сжатие происходит серией следующими друг за другом ударными волнами с возрастающей амплитудой, что приводит к разогреву исследуемого вещества (так называемое квазиизоэнтропическое сжатие). Таким образом, возможности прототипа обусловлены его конструктивными особенностями.

Задача, на решение которой направлено изобретение, состоит в разработке устройства, позволяющего получить более достоверные параметры УРС вещества (а именно, одновременно измерить оба основных параметра УРС вещества - давление и плотность - в одном эксперименте), изоэнтропически сжатого до сверхвысоких давлений.

Технический результат, достигаемый при осуществлении заявленного изобретения, заключается в обеспечении возможности проведения измерений с высокой точностью параметров УРС вещества за счет конструктивного усовершенствования камеры сжатия.

Данный технический результат достигается тем, что в отличие от известного устройства для определения параметров уравнения состояния вещества, изоэнтропически сжатого до сверхвысоких давлений, содержащего цилиндрическую камеру сжатия, представляющую собой сборку коаксиальных цилиндрических образцов, включая образец исследуемого вещества с общей осью камеры, при этом внешний цилиндрический образец сборки представляет собой наружную проводящую оболочку, изготовленную из материала с высокой электрической проводимостью, имеющую толщину больше толщины скин-слоя токов, протекающих по оболочке при ее обжатии давлением магнитного поля, а также осесимметричный импульсный источник внешнего давления, коаксиально охватывающий цилиндрическую камеру сжатия, причем источник внешнего давления расположен относительно камеры сжатия на расстоянии, обеспечивающем возможность сжатия исследуемого образца за счет действия на внешнюю поверхность наружной оболочки камеры созданного им внешнего давления магнитного поля, в предлагаемом устройстве наружная проводящая оболочка выполнена однослойной, в сборке цилиндрических образцов камеры сжатия внутри наружной проводящей оболочки расположена пара эталонных образцов, выполненных из вещества с известным уравнением состояния, с толщинами, по крайней мере, на порядок большими, чем погрешность определения радиусов эталонных образцов, при этом эталонные образцы и образец исследуемого вещества внутри наружной проводящей оболочки чередуются в различных комбинациях в направлении от наружной проводящей оболочки камеры сжатия к оси камеры, между границами цилиндрических образцов размещены слои из высокоплотного рентгеноконтрастного материала, состоящего из химических элементов с большим атомным номером, имеющие толщину, на порядок меньшую толщин цилиндрических образцов сборки.

Торцы камеры сжатия могут быть закрыты двумя массивными металлическими заглушками, препятствующими вытеканию вещества, расположенного вблизи торцов трубки, что может быть важным для обеспечения контроля процесса сжатия вещества.

Предложен вариант конкретной реализации заявляемого устройства согласно п. 2 формулы изобретения.

В качестве источника внешнего давления могут использоваться взрывомагнитный генератор сверхсильных магнитных полей или, возможно, газогидродинамическое устройство.

Заявляемое устройство так конструктивно организовано за счет заложенности в него составляющих с заведомо известными характеристиками, что это позволяет получить необходимые параметры, базируясь на экспериментальных данных прямых измерений давления и плотности, основных параметров УРС исследуемого вещества, а не на результатах расчетов (косвенное измерение), что значительно повышает точность измерений параметров УРС, обеспечивая достоверность результатов.

На фиг. 1 схематично изображен общий вид устройства - взрывомагнитного генератора (ВМГ) сверхсильных магнитных полей, где позициями обозначены 1 - соленоид генератора, 2 - кольцо ВВ с системой инициирования, 3 - камера сжатия.

На фиг. 2 схематично изображена предлагаемая камера сжатия вещества, где 4 - наружная проводящая оболочка камеры сжатия в виде обжимающей толстостенной металлической трубки, 5 и 6 - верхняя и нижняя массивные металлические заглушки, 7 - образец исследуемого вещества, 8 и 9 - пара образцов, выполненных из эталонного вещества (эталонных образцов), 10, 11 и 12 - тонкостенные слои из высокоплотного рентгеноконтрастного материала.

Внешняя оболочка камеры сжатия (наружная проводящая оболочка камеры сжатия) выполнена однослойной (что технологически оправдано) из обжимающей толстостенной металлической трубки 4, торцы которой закрыты верхней 5 и нижней 6 массивными металлическими заглушками, препятствующими вытеканию вещества, расположенного вблизи торцов трубки, вдоль оси камеры сжатия. В камере размещен цилиндрический образец 7 исследуемого вещества, состоящего из химических элементов с малым атомным номером, а также пара цилиндрических эталонных образцов 8 и 9, выполненных из эталонного вещества, уравнение состояния которого достаточно хорошо изучено. Исследуемый и эталонные образцы отделены друг от друга и от обжимающей трубки тонкостенными слоями 10, 11 и 12, выполненными из высокоплотного рентгеноконтрастного материала, состоящего из химических элементов с большим атомным номером. Образцы - исследуемый поз. 7 и эталонные поз. 8 и поз. 9 - могут чередоваться в различных комбинациях в направлении от обжимающей трубки камеры к ее оси. (На фиг. 2 показана одна из трех возможных комбинаций).

Трубка изготовлена из меди марки M1, имеющей высокую удельную электрическую проводимость. Внешний диаметр трубки лежит в пределах 20-25 мм, а ее толщина - 1,5-2 мм выбрана из условия, что эта толщина больше толщины скин-слоя токов, протекающих по оболочке при ее обжатии давлением магнитного поля. Торцевые заглушки изготовлены из сплава марок ВНМ либо ВНЖ. Высота каждой из заглушек - 10 мм, а расстояние между торцевыми заглушками в камере сжатия составляет 100 мм. В качестве эталонного вещества выбран алюминий (используется алюминий технической чистоты марок А7 либо А5), для которого накоплены достаточно представительные данные по его уравнению состояния в широком диапазоне температур и давлений, охватывающем в том числе и область сверхвысоких (мегабарных) давлений.

Толщина эталонных образцов выбрана в соответствии с условием, что их толщина, по крайней мере, на порядок больше, чем погрешность определения радиусов эталонных образцов, и варьируется от 1 до 2,5 мм. Контрастирующие слои (тонкостенные слои из высокоплотного рентгеноконтрастного материала, состоящего из химических элементов с большим атомным номером) изготовлены из сплава марок ВНМ либо ВНЖ. содержащих не менее 95% вольфрама, и имеют толщину 0,1-0,2 мм (на порядок меньше толщин цилиндрических образцов сборки).

Устройство работает следующим образом. На внешнюю поверхность обжимающей трубки 4 камеры сжатия 3 действует плавно нарастающее давление сверхсильного (мультимегагауссного) магнитного поля или газогидродинамическое давление, созданные внешними источниками давления, в частности ВМГ (поз. 1, 2 фиг. 1). Начальная толщина стенки обжимающей трубки подбирается с таким расчетом, что в течение всего процесса сжатия оказывается больше толщины прилегающего к внешней поверхности камеры слоя, в котором вещество обжимающей трубки может быть нагрето до температуры, превышающей его температуру плавления или даже испарения.

Разогрев происходит под действием текущего по этому слою (т.н. скин-слою) индуцированного электрического тока (в случае сжатия камеры давлением внешнего магнитного поля) или под действием импульса давления со стороны окружающей камеру газовой или жидкостной среды (в случае газогидродинамического обжатия). Под действием давления, созданного внешним источником, обжимающая трубка камеры сжатия схлопывается и сжимает находящиеся внутри нее образцы 7, 8, 9 до мегабарных давлений. Изоэнтропичность сжатия обеспечивается за счет плавности (без образования ударных волн) нарастания внешнего давления, а также выполнением вышеуказанного требования к толщине наружной оболочки камеры сжатия. При этом в камере имеется достаточно протяженная вдоль оси область (длиной ~ 80 мм), где вещества сжаты однородно вдоль оси устройства и отсутствует их перемещение в осевом направлении.

Для нахождения величины сжатия веществ в этой области достаточно знать поперечные размеры сжимаемых образцов. В один из моментов процесса, когда в камере достигаются мегабарные давления, производится рентгенографирование устройства. Диаметр исследуемого образца при этом составляет от 2 до 6 мм (в зависимости от исследуемого вещества и от выбора момента рентгенографирования), толщина эталонных образцов - 1-2 мм, а толщина контрастирующих слоев не превышает 0,3 мм. Наличие в камере сжатия рентгеноконтрастных слоев 10, 11 и 12 позволяет по полученному рентгеновскому снимку путем математической обработки имеющегося на снимке изображения камеры сжатия определить внутренний радиус каждого из контрастирующих слоев.

Данный радиус, как это видно на фиг. 2. совпадает с внешним радиусом прилегающего к нему (со стороны оси устройства) исследуемого либо эталонного образца и определяется с точностью в несколько сотых долей миллиметра. Внутренний радиус каждого из эталонных образцов находится из условия равенства давлений в рассматриваемых эталонном образце и контрастирующем слое. При этом используются известные выражения для изоэнтроп эталонного и контрастирующего вещества. Точность нахождения внутреннего радиуса эталонных образцов указанным способом оказывается не хуже точности измерения его внешнего радиуса по рентгеновскому снимку.

По найденным поперечным размерам эталонов и исследуемого образца определяются их сжатия. Для уменьшения относительной погрешности измерения сжатия эталонного образца его начальная толщина должна быть намного больше величины погрешности, с которой измеряются радиусы эталона (последняя составляет несколько сотых долей миллиметра). По сжатию эталонных образцов с использованием хорошо известной изоэнтропы алюминия определяется давление в эталонных образцах. Знание давления в эталонах и их радиусов позволяет найти радиальное распределение давления в камере сжатия и тем самым определить давление и в исследуемом образце. При этом последовательность, в которой чередуются в радиальном направлении образец исследуемого вещества и эталонные образцы, может быть различной в зависимости от типа исследуемого вещества. Плотность исследуемого образца определяется путем умножения его начальной (предварительно измеренной до начала сжатия) плотности на найденную по снимку величину сжатия. По полученным таким образом значениям плотности и давления сжатого исследуемого вещества на его изоэнтропе, соответствующей начальному давлению и начальной плотности, строится точка с учетом измерительных погрешностей. На следующем этапе по построенным точкам восстанавливаются изоэнтропы исследуемого вещества и тем самым определяются и/или уточняются параметры его уравнения состояния в исследуемой области давлений и температур.

Главное преимущество предлагаемой конструкции камеры сжатия состоит в том, что по сравнению с прототипом заявляемое устройство так конструктивно организовано, что позволяет получить необходимые параметры, базируясь на экспериментальных данных прямых измерений давления и плотности, основных параметров УРС исследуемого вещества, а не на результатах расчетов (косвенное измерение), что значительно повышает достоверность результатов.

1. Устройство для определения параметров уравнения состояния вещества, изоэнтропически сжатого до сверхвысоких давлений, содержащее цилиндрическую камеру сжатия, представляющую собой сборку коаксиальных цилиндрических образцов, включая образец исследуемого вещества, при этом внешний цилиндрический образец сборки представляет собой наружную проводящую оболочку, изготовленную из материала с высокой электрической проводимостью, имеющую толщину больше толщины скин-слоя токов, протекающих по оболочке при ее обжатии давлением магнитного поля, а также осесимметричный импульсный источник внешнего давления, коаксиально охватывающий цилиндрическую камеру сжатия, причем источник внешнего давления расположен относительно камеры сжатия на расстоянии, обеспечивающем возможность сжатия исследуемого образца за счет действия на внешнюю поверхность наружной оболочки камеры созданного им внешнего давления магнитного поля, отличающееся тем, что наружная проводящая оболочка выполнена однослойной, в сборке цилиндрических образцов камеры сжатия внутри наружной проводящей оболочки расположена пара эталонных образцов, выполненных из вещества с известным уравнением состояния, с толщинами, по крайней мере, на порядок большими, чем погрешность определения радиусов эталонных образцов, при этом эталонные образцы и образец исследуемого вещества внутри наружной проводящей оболочки чередуются в различных комбинациях в направлении от наружной проводящей оболочки камеры сжатия к оси камеры, между границами цилиндрических образцов размещены слои из высокоплотного рентгеноконтрастного материала, состоящего из химических элементов с большим атомным номером, имеющие толщину, на порядок меньшую толщин цилиндрических образцов сборки.

2. Устройство по п. 1, отличающееся тем, что камера сжатия снабжена двумя массивными металлическими заглушками из высокоплотного материала.

3. Устройство по п. 2, отличающееся тем, что наружная проводящая оболочка камеры сжатия выполнена из меди толщиной 1,5-2 мм и имеет внешний диаметр 20-25 мм, в качестве вещества с известным уравнением состояния в эталонных цилиндрических образцах сборки использован алюминий, эталонные цилиндрические образцы из алюминия имеют толщину 1-2,5 мм, исследуемое вещество состоит из химических элементов с малым атомным номером, цилиндрические образцы, разделенные между собой слоями высокоплотного рентгеноконтрастного материала, внутри камеры сжатия расположены по направлению от наружной проводящей оболочки к оси в следующем порядке чередования: пара цилиндрических эталонных образцов из алюминия и образец исследуемого вещества по оси сборки либо образец из алюминия, исследуемый образец, а по оси сборки - второй алюминиевый образец; в качестве слоя из высокоплотного рентгеноконтрастного материала выбран слой из сплава вольфрама марки ВНМ или ВНЖ толщиной 0,1-0,2 мм, металлические заглушки выполнены из сплава вольфрама марки ВНМ или ВНЖ, высота каждой заглушки составляет 10 мм, расстояние между заглушками в камере сжатия составляет 100 мм.



 

Похожие патенты:
Изобретение относится к области получения синтетических алмазов, включающих изотоп 14С, обладающих β-излучением. Алмазы выращиваются из карбида железа, образующегося непосредственно в ростовой камере из карбоната бария, являющегося продуктом переработки отработавшего ядерного топлива и содержащего в своем составе 50-70% изотопа 14С от общей массы углерода, и не менее чем 5-кратного по отношению к общей массе карбоната бария избытка железа.

Группа изобретений относится к области авиадвигателестроения. Маслоагрегат содержит сблокированные в корпусе откачивающий насос и наделенный перепускным клапаном нагнетающий насос с общими приводным и ведомым валами.

Изобретение относится к синтезу наноалмазов для использования в элементах оптической памяти для квантовых компьютеров высокой производительности. Способ включает подготовку углеродсодержащей смеси, ее размещение в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, при этом в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд.

Изобретение относится к получению монокристаллов алмазов, в частности, легированных азотом и фосфором, при высоких давлениях и температурах, которые могут быть использованы в устройствах электроники.

Изобретение относится к области синтеза неорганических материалов, а именно титаната бария, используемого в качестве сырья для изготовления сегнетоэлектрической керамики.

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения. Рабочее колесо второй ступени вала ротора КВД ТРД содержит диск и образующие лопаточный венец рабочие лопатки.

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку.

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку, выполненных с уступообразным плоским дном и цилиндрическими стенками переменной кривизны.
Наверх