Система обеспечения теплового режима приборного отсека летательного аппарата

Система обеспечения теплового режима приборного отсека летательного аппарата (ЛА) содержит теплоизолированный корпус и двухконтурную систему охлаждения с разомкнутым внешним испарительным контуром, внутренним контуром в виде контурных тепловых труб, установленных на теплонапряженных приборах и снабженных регулятором отводимого теплового потока и испарителем и сопряженными с посадочными местами соответствующих теплонапряженных приборов, при этом конденсаторы размещены в теплообменнике внешнего испарительного контура. Обеспечивается повышение эффективности охлаждения и термостабилизации бортовой аппаратуры ЛА. 1 з.п. ф-лы, 1 ил.

 

Техническое решение относится к авиационной и ракетной технике и может быть использовано для обеспечения теплового режима приборных отсеков высокоскоростных летательных аппаратов (ЛА).

На современном этапе развития сверзвуковых ЛА, совершающих длительный полет в атмосфере, актуальной задачей становится разработка новых активных систем обеспечения теплового режима аппаратуры герметичных отсеков. При этом агрегаты систем охлаждения должны обладать улучшенными параметрами, такими как низкие энергопотребление, масса, объем, повышенная надежность.

Известна система обеспечения теплового режима герметичного приборного контейнера космического летательного аппарата (см. В.В Малоземов и другие. Выбор проектных параметров перспективных систем обеспечения теплового режима летательных аппаратов. - М.: изд. МАИ, 1989 г., с. 14-37).

Система охлаждения двухконтурная, включает внутренний газовый вентиляционный контур и внешний разомкнутый жидкостной контур. Система содержит размещенный в герметичном приборном контейнере газожидкостный испарительный теплообменник, жидкостная полость которого с одной стороны связана с емкостью, заполненной запасом хладагента, а с другой стороны - сообщена с окружающей космический летательный аппарат внешней средой.

Емкость с запасом хладагента разделена на две полости (жидкостную и газовую) подвижной эластичной диафрагмой. Жидкостная полость (большая по объему) заполнена хладагентом (обычно водно-спиртовые растворы различной концентрации), а газовая полость емкости заправлена азотом с определенным давлением, который предназначен для подачи хладагента в жидкостную полость газожидкостного испарительного теплообменника путем вытеснения его из жидкостной полости емкости. В состав испарительного теплообменника входит также вентилятор, обеспечивающий циркуляцию газа, заполняющего приборный контейнер, через теплообменную часть агрегата.

Принцип действия системы в полете состоит в охлаждении циркулирующего через газожидкостной испарительный теплообменник газа за счет затраты тепла на испарение хладагента.

Недостатки такой системы заключаются в повышенном объеме, массе и энергопотреблении вентиляторов, обладающих низкой надежностью.

Известно также устройство для осуществления способа обеспечения теплового режима приборного отсека летательного аппарата (см. патент РФ 2622173, 2016, В64С 30/00, B64G 1/50), содержащее теплоизолированный корпус и двухконтурную систему охлаждения с разомкнутым внешним испарительным контуром.

Внутри корпуса приборного отсека установлены одна или несколько вертикальных силовых панелей, встроенные вертикальные тепловые трубы которых образуют внутренний контур охлаждения, при этом приборы размещены на боковых поверхностях силовых сотопанелей в зонах расположения тепловых труб в порядке уменьшения интенсивности адиабатического нагрева приборов снизу вверх, а в верхней части на каждой панели в зонах конденсаторов тепловых труб смонтирован трубный теплообменник внешнего испарительного контура.

Известная система обеспечения теплового режима обладает следующими недостатками:

- силовые сотопанели имеют повышенный объем и массу;

- используемые в системе аксиальные тепловые трубы, расположенные в сотопанелях вертикально и работающие в режиме термосифона, не обеспечивают устойчивую и эффективную термостабилизацию аппаратуры на участках полета ЛА со значительно меняющимися по величине и знакопеременными внешними нагрузками. Такие тепловые трубы эффективно функционируют только при отсутствии гравитации (например, в космосе) или при вертикальной ориентации без воздействия внешней нагрузки.

Задачей настоящего технического решения является обеспечение устойчивой и эффективной термостабилизации бортовой аппаратуры ЛА, совершающего полет в условиях знакопеременных и меняющихся по величине внешних нагрузках (перегрузках, вибрации), а также уменьшение объема и массы агрегатов системы охлаждения.

Поставленная задача решается тем, что в системе обеспечения теплового режима приборного отсека ЛА, содержащей теплоизолированный корпус и двухконтурную систему охлаждения с разомкнутым внешним испарительным контуром, внутренний контур системы охлаждения выполнен в виде контурных тепловых труб, установленных на теплонапряженных приборах, для которых без активного охлаждения максимальная температура к концу полета ЛА превышает допустимое значение и определена по соотношению:

где N - тепловыделение прибора в полете, Вт;

τ - продолжительность полета, с;

С - теплоемкость прибора, Дж/°С;

Тнач - начальная температура прибора, °С;

при этом каждая из контурных тепловых труб снабжена регулятором отводимого теплового потока и испарителем, сопряженным с посадочным местом соответствующего теплонапряженного прибора, а конденсаторы контурных тепловых труб размещены в теплообменнике внешнего испарительного контура.

Дополнительно, аппаратура приборного отсека может быть снабжена теплозащитными кожухами или терморегулирующими покрытиями для защиты от воздействия конвекции и излучения окружающей среды внутри приборного отсека.

Контурные тепловые трубы (КТТ) относятся к двухфазным теплопередающим устройствам, работающим по испарительно-конденсационному циклу. Для прокачки теплоносителя в этих устройствах используются капиллярные силы. Контурные тепловые трубы обладают всеми основными достоинствами обычных тепловых труб. Дополнительно они способны эффективно передавать тепло на расстояние до нескольких метров при любой ориентации в гравитационном поле и до нескольких десятков метров в горизонтальном положении или в невесомости. Концепция КТТ допускает большое разнообразие различных конструктивных воплощений, которые существенно расширяют сферу функциональных возможностей и практического использования этих устройств.

Конструктивно КТТ состоит из испарителя, паропровода, конденсатора и конденсатопровода. Основным элементом устройства является испаритель, который состоит из компенсационной полости и фитиля.

Испаритель КТТ может иметь цилиндрическую, плоскую дискообразную, прямоугольную форму. Как правило, для снятия тепловой нагрузки с плоской поверхности приборного блока используется тепловой интерфейс.

Масса КТТ для передачи теплового потока до 1 кВт составляет не более 1 кг (в заправленном состоянии).

Эффективная передача контурной тепловой трубой теплового потока при любой ориентации в гравитационном поле достигается за счет использования мелкопористых фитилей из специальных капиллярно-пористых материалов, минимизации расстояния для движения жидкости в капиллярной структуре (достигается за счет конструкции фитиля), а также путем организации эффективного теплообмена при испарении и конденсации теплоносителя.

Для предотвращения захолаживания приборов при работе КТТ применяют регуляторы давления (РД). Такие РД позволяют использовать КТТ для обеспечения уровня температур на тепловыделяющем приборном блоке не ниже заданной величины. В этом случае РД устанавливается непосредственно на выходе пара из испарителя и перенаправляет расход рабочего тела либо в конденсатор КТТ для сброса избыточной тепловой нагрузки оборудования во внешний контур охлаждения, либо возвращает рабочее тело, минуя конденсатор в компенсационную полость испарителя.

Таким образом, выполнение КТТ регулируемыми также обуславливает улучшение термостабилизации аппаратуры вследствие того, что на посадочных местах приборов обеспечивается более узкий диапазон температур, который может быть не более ±5°С.

Надежное функционирование внутреннего контура охлаждения аппаратуры в значительной степени определяется передачей тепловой нагрузки с конденсаторов КТТ по внешний контур. Для повышения эффективности процесса теплопередачи конденсаторы КТТ размещены в теплообменнике внешнего испарительного контура в отличие от аналога (патент №2622173), в котором теплопередача осуществляется через стенки трубного теплообменника внешнего испарительного контура.

Уменьшение объема и массы агрегатов системы охлаждения сопряжено с определением оптимального (минимального) количества аппаратурных блоков, охлаждаемых с помощью КТТ.

По предложенному соотношению (1) предварительно рассчитывается максимальная температура тепловыделяющих приборов (без использования охлаждения) и те приборы, для которых к концу полета ЛА максимальная температура превышает допустимое значение Тмахдоп, снабжаются контурными тепловыми трубами.

Дополнительный признак, касающийся снабжения приборов теплозащитными кожухами или терморегулирующими покрытиями, актуален для случая, когда теплоизолированный корпус ЛА не обеспечивает необходимую тепловую защиту от внешнего аэродинамического потока, вследствие чего температура газовой среды и внутренней поверхности теплоизолированного корпуса превышает допустимые значения для приборов.

Сущность предложенного технического решения поясняется чертежом, на котором схематически изображена система обеспечения теплового режима приборного отсека ЛА.

На чертеже введены следующие обозначения:

1 - теплоизолированный корпус приборного отсека;

2 - испаритель каждой КТТ;

3 - посадочное место каждого теплонапряженного прибора;

4 - регулятор давления каждой КТТ;

5 - теплозащитный кожух;

6 - теплонапряженные приборы;

7 - конденсатор каждой КТТ;

8 - теплообменник внешнего испарительного контура;

9 - пусковой пироклапан;

10 - емкость с хладагентом;

11 - нетеплонапряженные приборы.

Система обеспечения теплового режима приборного отсека ЛА, размещенная в теплоизолированном корпусе 1, включает два контура - внутренний контур охлаждения и разомкнутый внешний испарительный контур.

Внутренний контур охлаждения образуют КТТ, установленные на теплонапряженных приборах 6. Испаритель 2 каждой КТТ сопряжен с посадочным местом 3 соответствующего теплонапряженного прибора. При этом каждая КТТ содержит регулятор давления 4, а ее конденсатор 7 размещен в теплообменнике 8 внешнего испарительного контура, основными элементами которого являются трубопроводы, пусковой пироклапан 9 и емкость с хладагентом 10.

Теплонапряженные приборы 6, а также отдельные нетеплонапряженные приборы 11 (блок 5) могут быть снабжены теплозащитными кожухами или терморегулирующими покрытиями 5.

Предложенная система обеспечения теплового режима приборного отсека ЛА работает следующим образом.

Предварительно определяют приборы, которые являются теплонапряженными по соотношению (1). Эти теплонапряженные приборы 6 снабжают контурными тепловыми трубами.

В полете ЛА при функционировании теплонапряженных приборов 6 повышается их температура и, соответственно, происходит нагрев посадочных мест 3 приборов и испарителей 2 контурных тепловых труб, рабочее тело которых, испаряясь, охлаждает посадочные места 3 теплонапряженных приборных блоков 6.

Пары хладагента КТТ в районе конденсаторов 7 охлаждаются в теплообменнике 8 внешнего испарительного контура.

Внешний испарительный контур начинает работать с задействованием пускового пироклапана 9, после чего жидкий хладагент из емкости 10 поступает в теплообменник 8, где происходит охлаждение конденсаторов КТТ.

Поддержание температур испарителей 2 КТТ и, соответственно, температур посадочных мест 3 теплонапряженных приборов 6 в заданном диапазоне происходит с помощью регуляторов давления 4, которые осуществляют распределение расходов рабочего тела КТТ между конденсатором КТТ (для сброса избыточной тепловой нагрузки оборудования во внешний контур охлаждения) и входом в компенсационную полость испарителя КТТ.

Совокупность новых признаков предложенного технического решения - охлаждение посадочных мест теплонапряженных приборов, для которых определенная по предложенному соотношению максимальная температура к концу полета ЛА без активного охлаждения превышает допустимое значение, регулируемыми контурными тепловыми трубами, конденсаторы которых размещены в теплообменнике внешнего испарительного контура - позволяет получить новый, обусловленный взаимосвязью признаков, технический результат: обеспечение охлаждения и эффективную термостабилизацию бортовой аппаратуры ЛА, совершающего полет в условиях знакопеременных и меняющихся по величине внешних нагрузках.

1. Система обеспечения теплового режима приборного отсека летательного аппарата, содержащая теплоизолированный корпус и двухконтурную систему охлаждения с разомкнутым внешним испарительным контуром, отличающаяся тем, что внутренний контур системы охлаждения выполнен в виде контурных тепловых труб, установленных на теплонапряженных приборах, для которых без активного охлаждения максимальная температура к концу полета ЛА превышает допустимое значение и определена по соотношению:

,

где Тмах - максимальная температура прибора к концу полета ЛА, °С;

N - тепловыделение прибора в полете, Вт;

τ - продолжительность полета, с;

С - теплоемкость прибора, Дж/°С;

Тнач - начальная температура прибора, °С;

при этом каждая из контурных тепловых труб снабжена регулятором отводимого теплового потока и испарителем, сопряженным с посадочным местом соответствующего теплонапряженного прибора, а конденсаторы контурных тепловых труб размещены в теплообменнике внешнего испарительного контура.

2. Система обеспечения теплового режима приборного отсека летательного аппарата по п. 1, отличающаяся тем, что приборы снабжены теплозащитными кожухами или терморегулирующими покрытиями для защиты от воздействия конвекции и излучения окружающей среды внутри приборного отсека.



 

Похожие патенты:

Изобретение относится к способу определения оптимальной периодичности контроля состояния технических средств и систем при минимальном времени получения результата.

Группа изобретений относится к способу и устройству контроля пилотажно-навигационного комплекса. Для контроля пилотажно-навигационного комплекса непрерывно вычисляют на борту объекта его местоположение, текущие значения горизонтальных проекций вектора скорости ветра в условной прямоугольной системе координат, сравнивают их с предварительно вычисленными оценками по метеопрогнозу на маршруте полета объекта, фиксируют отказ пилотажно-навигационной системы при появлении существенных отличий при сравнении значений.

Автоматизированная контрольно-проверочная аппаратура (АКПА) интегрированной информационно-управляющей системы беспилотного летательного аппарата содержит ПЭВМ, универсальный решающий модуль и модуль ввода-вывода.

Группа изобретений относится к контролю систем управления. Система коммутации исполнительных органов содержит блок электропитания, исполнительные органы, положительную и единую отрицательную цепи электропитания, силовые ключи с управляющими входами, соединенные последовательно с исполнительными органами, блок управления и контроля, электрический выключатель положительной цепи электропитания, контрольное устройство, два одинаковых по сопротивлению токозадающих резистора и имитатор нагрузки.

Изобретение относится к испытанию и контролю систем управления. Способ отслеживания автономной переменной для MPU электропоезда заключается в том, что применяют систему отслеживанию автономной для MPU электропоезда.

Устройство оценки параметров с использованием априорной информации в форме интеграла действия содержит блок хранения констант, пять блоков инверсии, пятнадцать блоков произведения, семь блоков вычитания, блок вычисления синуса угла, два блока возведения в степень (-1), четыре блока формирования модуля, два блока деления, соединенные определенным образом.

Изобретение относится к диагностике систем автоматического управления. В способе поиска неисправностей в непрерывной динамической системе на основе введения пробных отклонений фиксируют неисправности, определяют время контроля и параметр преобразования сигналов.

Изобретение относится к общей области аэронавтики, в частности оно относится к контролю ракетного двигателя. Способ содержит: этап (Е10) получения измерения контролируемого параметра, измеряемого датчиком и соответствующего рабочей точке двигателя, причем эту рабочую точку определяют по меньшей мере по одному параметру регулирования двигателя; этап (Е20) оценки значения контролируемого параметра для этой рабочей точки на основании регулируемого значения или фильтрованного заданного значения указанного по меньшей мере одного параметра регулирования двигателя, определяющего рабочую точку; этап (Е40) сравнения ошибки между измерением контролируемого параметра и его оценкой относительно по меньшей мере одного порога, определенного на основании погрешности на указанной ошибке, оцененной для рабочей точки; и этап (Е60) передачи уведомления в случае перехода указанного по меньшей мере одного порога.

Изобретение относится к испытанию и контролю систем управления. Устройство оценки состояния и идентификации параметров моделей динамических систем содержит следующие блоки: первый, второй, третий, четвертый, пятый блоки хранения констант; первый, второй, третий, четвертый, пятый блоки сложения; первый, второй, третий, четвертый, пятый, шестой, седьмой, восьмой, девятый, десятый, одиннадцатый, двенадцатый, тринадцатый, четырнадцатый, пятнадцатый, шестнадцатый блоки произведения; первый, второй, третий, четвертый, пятый блоки возведения в степень (-1); первый, второй, третий, четвертый, пятый, шестой, седьмой, восьмой, девятый, десятый, одиннадцатый блоки вычитания; первый, второй, третий, четвертый блоки возведения в квадрат; первый, второй, третий, четвертый, пятый блоки деления; блок вычисления синуса числа.

Интегрированная система регистрации данных, диагностики технического и физического состояния комплекса «человек-машина» содержит блок сбора и преобразования информации, защищенный накопитель, блок съема информации, блок контроля, контроллер защищенного накопителя, блок накопления и обработки диагностической информации, блок диагностирования физического состояния пилота, блок подготовки полетной информации для передачи на наземные пункты управления, соединенные определенным образом.

Изобретение относится к автоматической системе обеспечения теплового режима космического аппарата (КА). В блоке управления нагревателями (БУН) аппаратуры КА отдельные функциональные устройства сгруппированы в унифицированные функционально законченные модули - микропроцессорный модуль управления (ММУ), модуль коммутации нагревателей (МКН) и модуль контроля температуры (МКТ), причем ММУ содержит информационное интерфейсное устройство, соединенное с разъемом для подключения к внешней бортовой ЭВМ, объединенные через внутримодульную магистраль микропроцессор, оперативное запоминающее устройство, постоянное запоминающее устройство и устройство приема дискретных данных, и введенное устройство ввода-вывода (УВВ), МКН содержит последовательно соединенные выходные формирователи и силовые ключи (СК), выходы которых соединены с разъемом для подключения к внешним электронагревателям, и введенное УВВ, МКТ содержит последовательно включенные измерительное устройство, входы которого соединены с разъемом для подключения к термодатчикам, аналоговый коммутатор и аналого-цифровой преобразователь (АЦП), и введенное УВВ, причем порты обмена информацией УВВ всех модулей соединены между собой через межмодульную магистраль.

Изобретение относится к авиационной и ракетной технике и может быть использовано для обеспечения теплового режима бортовой аппаратуры сверх- и гиперзвуковых летательных аппаратов (ЛА).

Изобретение относится к устройствам регулирования температуры термостатирующего воздуха, подаваемого на космическую головную часть (КГЧ). Устройство регулирования температуры термостатирующего воздуха содержит два дополнительных датчика температуры, один из которых установлен на входе нагревателя, а второй - непосредственно на нагревателе.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ контроля качества СТР КА включает слив требуемой дозы теплоносителя в процессе заправки СТР теплоносителем и в дальнейшем периодический контроль наличия требуемой массы теплоносителя в жидкостном контуре.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ изготовления СТР КА включает проверки суммарных негерметичностей жидкостного тракта и двухфазного контура (ДФК) перед заправкой их соответствующими теплоносителями.

Изобретение относится к электронике и может быть использовано для обеспечения требуемых тепловых режимов элементов радиоэлектронной аппаратуры, в частности электронных плат.

Изобретение относится к авиационной и ракетной технике. Способ обеспечения теплового режима приборного отсека летательного аппарата заключается в охлаждении аппаратуры (2) двухконтурной системой охлаждения.

Изобретение относится к космической технике, а именно к способу диагностики и прогнозирования срока нормального функционирования КА. В способе для КА, содержащего емкость с рабочим газом, определяют эффективную площадь выходного сечения внезапно образовавшейся течи в результате внезапного механического ударного воздействия на гермоконтейнер метеорной или техногенной частицы; момент времени образования вышеназванной течи; момент времени, когда давление газа в гермоконтейнере уменьшится до минимального допустимого значения, обеспечивающего работоспособность КА.

Изобретение относится к устройствам отвода низкопотенциального тепла от систем космических аппаратов. Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель, выполненный в виде каплеприемника.

Изобретение относится к устройствам отвода низкопотенциального тепла от систем космических аппаратов. Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель.

Гиперзвуковой летательный аппарат содержит фюзеляж, прямоточный воздушно-реактивный двигатель, интегрированный с нижней частью фюзеляжа, и стартовую двигательную установку, состыкованную с фюзеляжем последовательно посредством устройства стыковки и отделения.
Наверх