Устройство для управления положением модели в аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики и предназначено для определения аэродинамических характеристик модели самолетов, ракет и др. в трансзвуковых аэродинамических трубах. Устройство содержит державку, серповидную стойку, привод и станину, привод выполнен в виде трех линейных цилиндров, одни концы которых закреплены шарнирно в трех точках на станине, а другие - в двух точках стойки. При этом цилиндры ориентированы так, чтобы обеспечить максимальную жесткость механизма и наименьшие усилия в приводе при эксплуатационных нагрузках и перемещениях модели. Кроме того, два линейных цилиндра расположены по направлению потока воздуха, а третий - перпендикулярно направлению потока воздуха. Устройство дополнительно содержит ограничители перемещения стойки в направлении, перпендикулярном ее плоскости. Технический результат заключается в расширении экспериментальных возможностей аэродинамической установки, снижении трудоемкости. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области экспериментальной аэродинамики и предназначено для определения аэродинамических характеристик моделей самолетов, ракет и др. в трансзвуковых аэродинамических трубах.

В современных аэродинамических трубах (АДТ) модели летательных аппаратов (ЛА) испытывают значительные нагрузки. При этом поддерживающие устройства, державки, стойки, механизмы привода должны обладать необходимой прочностью и жесткостью, минимально затеняя пространство потока.

Для управления положением исследуемых моделей в АДТ создаются сложные многозвенные стержневые кинематические устройства, например, АС №1336689 G01M 9/06, G01M 9/08 и №254835 МПК G 0m. Данные устройства для изменения угловых положений модели в аэродинамической трубе содержат два шарнирно соединенных между собой параллелограммных механизма, первый из которых шарнирно закреплен на платформе и посредством зубчатого сектора соединен с приводом для задания угла атаки модели, а второй, включающий силовую стойку и шарнирно связанное с ней поперечное звено, соединен с державкой для закрепления модели.

Однако такие устройства обладают недостаточной жесткостью и, как следствие, ограничением по воспринимаемым нагрузкам.

Известно устройство для изменения угла атаки модели в АДТ, принятое за прототип (А.К. Мартынов «Прикладная аэродинамика», издательство «Машиностроение», 1972 г., стр. 120, рис. 4.29), содержащее державку модели, двухопорную дугообразную стойку, привод, перемещающий стойку по круговым направляющим.

Данное устройство имеет фиксированные значения максимальных положительных и отрицательных углов атаки модели и при необходимости изменить это соотношение приходится изготавливать специальные «ломаные» державки. Наличие разнесенных круговых направляющих требует высокой точности их изготовления и установки, что для больших АДТ представляет значительные трудности, а несоблюдение этих требований приводит к подклиниванию стойки и ее неравномерному движению при непрерывном изменении угла атаки модели.

Данное устройство исключает возможность перемещения модели вдоль или поперек потока (оси X и Y), что для специальных исследований (например, для испытаний с разделяющимися объектами) требует создания дополнительных механизмов.

Задачей изобретения и техническим результатом является создание устройства, расширяющего экспериментальные возможности аэродинамической установки, менее трудоемкое для изготовления и монтажа, что в итоге приводит к экономии времени и средств.

Решение поставленной задачи и технический результат достигаются тем, что в устройстве для управления положением модели в аэродинамической трубе, содержащем державку, серповидную стойку, привод и станину, привод выполнен в виде трех линейных цилиндров, одни концы которых закреплены шарнирно в трех точках на станине, а другие - в двух точках стойки, при этом цилиндры ориентированы так, чтобы обеспечить максимальную жесткость механизма и наименьшие усилия в приводе при эксплуатационных нагрузках и перемещениях модели. Кроме того, два линейных цилиндра расположены по направлению потока воздуха, а третий - перпендикулярно направлению потока воздуха. Устройство дополнительно содержит ограничители перемещения стойки в направлении, перпендикулярном ее плоскости.

На фигуре 1 приведена схема предлагаемого устройства.

Устройство (фиг. 1) содержит державку 3, серповидную стойку 2, привод 1 и станину 4. Привод состоит из трех линейных цилиндров (электроцилиндров или гидроцилиндров) 1, одни концы которых закреплены шарнирно в трех точках на станине 4, а другие - в двух точках серповидной стойки 2. При этом цилиндры ориентированы так, чтобы обеспечить максимальную жесткость механизма и наименьшие усилия в приводе при эксплуатационных нагрузках и перемещениях модели. Положение модели однозначно определяется положением точек крепления цилиндров 1 к серповидной стойке 2. Два линейных цилиндра расположены по направлению потока, а третий расположен перпендикулярно оси потока. Для предотвращения перемещения модели в плоскости перпендикулярной плоскости движения механизма, предусмотрены ограничители. Серповидная стойка 2 расположена между двумя ограничивающими плоскостями 5. При этом серповидная стойка может совершать любые перемещения в своей плоскости между двумя плоскостями в некоторых конструктивных пределах, ограниченных допустимыми ходами линейных приводов. Следует отметить, что в этих же пределах принципиально исключено заклинивание механизма.

Устройство работает следующим образом. Перед экспериментом рассчитывают необходимый угол альфа для модели, а также ее оптимальное положение относительно потока. Это положение модели задают в системе управления. Система управления высчитывает необходимое перемещение и оптимальную скорость линейных цилиндров 1 для обеспечения требуемого положения, заданного оператором. После этого линейные цилиндры 1 переводят модель в расчетное положение. При этом, модель перемещается вращательно относительно постоянной оси или же линейно по осям X и Y.

Произведенный кинематический, прочностной и конструктивный анализ математической модели устройства показал, что достигнут технический результат: механизм обладает широким диапазоном изменения положения модели, большей скоростью изменения положения, достаточной прочностью и более высокой жесткостью по сравнению с аналогичными существующими механизмами.

1. Устройство для управления положением модели в аэродинамической трубе, содержащее державку, серповидную стойку, привод и станину, отличающееся тем, что привод выполнен в виде трех линейных цилиндров, одни концы которых закреплены шарнирно в трех точках на станине, а другие - в двух точках серповидной стойки, при этом цилиндры ориентированы таким образом, чтобы обеспечить максимальную жесткость механизма и наименьшие усилия в линейном приводе при эксплуатационных нагрузках и перемещениях модели.

2. Устройство для управления положением модели в аэродинамической трубе по п. 1, отличающееся тем, что два линейных цилиндра расположены по направлению потока воздуха, а третий - перпендикулярно направлению потока воздуха.

3. Устройство для управления положением модели в аэродинамической трубе по п. 2, отличающееся тем, что дополнительно содержит ограничители перемещения серповидной стойки в направлении, перпендикулярном ее плоскости.



 

Похожие патенты:

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения компонентов векторов аэродинамической силы и момента, действующих на модели воздушных винтов самолетов, несущих винтов вертолетов и гребных винтов судов, испытываемых в аэродинамических трубах, бассейнах и в гидроканалах.

Изобретение относится к испытательной технике и может быть использовано при проверке прочности оболочек антенных обтекателей из хрупких материалов, преимущественно керамических, при статических испытаниях.

Изобретение относится к устройствам для проведения аэродинамических испытаний. В аквааэродинамической трубе испытания проводятся путем погружения испытуемого объекта в водную среду.

Изобретение относится к устройствам, предназначенным для аэродинамических испытаний, и может быть использовано в авиастроении. Стенд включает динамометрическую платформу, предназначенную для закрепления объекта, установленную посредством по меньшей мере четырех пластин переменной жесткости на неподвижную опорную платформу с возможностью перемещения динамометрической платформы по трем ортогональным осям, причем каждая пластина выполнена с гибким участком, сопряженным с жесткими участками, и снабжена элементом измерения нагрузки, и отличается тем, что содержит датчик, регистрирующий продольные перемещения динамометрической платформы и предназначенный для измерения продольной нагрузки, а элемент измерения нагрузки выполнен в виде двух пар одинаковых тензорезисторных датчиков, предназначенных для измерения вертикальных и поперечных нагрузок, установленных на хотя бы одном гибком участке каждой пластины на одном уровне относительно неподвижной опорной платформы, датчики каждой пары установлены на противоположных широких сторонах пластины, причем вертикальные оси симметрии чувствительных элементов датчиков одной пары ориентированы вдоль вертикальной оси симметрии широкой стороны пластины, а вертикальные оси симметрии чувствительных элементов датчиков другой пары параллельны ей, датчики подключены в одно плечо отдельных измерительных мостов, причем датчики каждой пары подключены последовательно.

Изобретение относится к способу управления приемниками воздушных давлений (ПВД). Для управления ПВД выявляют неисправный ПВД путем измерения полного и статического давлений основного и резервного ПВД, определяют модули разности полного и статического давлений соответственно для основного и резервного ПВД, сравнивают их с заданными пороговыми значениями и выдают сигнал оповещения летчику об отказе при превышении пороговых значений.

Изобретение относится к области стендовой доработки летательных аппаратов. Способ испытания высокоскоростного летательного аппарата на силоизмерительной платформе под заданным углом атаки в испытательной камере, где создают разряжение, продувают испытательную камеру рабочей средой с протоком через отключенный двигатель летательного аппарата.

Изобретение относится к экспериментальной аэродинамике. Устройство содержит модель объекта, установленную на хвостовой державке, закрепленной в стойке аэродинамической трубы, и измерительное весовое устройство, соединяющее державку с испытываемой моделью.

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия содержит герметично соединенные собственно пробоотборник с заостренной передней кромкой и расширяющимся внутренним каналом.

Изобретение относится к области экспериментальной аэродинамики, в частности к устройствам, предназначенным для исследования аэродинамических характеристик летательных аппаратов (ЛА).

Изобретение относится к измерительной технике и может быть использовано в аэродинамических экспериментах, в энергетике турбинных машин при исследовании структуры потока газа в жидкости.

Изобретение относится к области экспериментальной аэродинамики и предназначено для определения аэродинамических характеристик модели самолетов, ракет и др. в трансзвуковых аэродинамических трубах. Устройство содержит державку, серповидную стойку, привод и станину, привод выполнен в виде трех линейных цилиндров, одни концы которых закреплены шарнирно в трех точках на станине, а другие - в двух точках стойки. При этом цилиндры ориентированы так, чтобы обеспечить максимальную жесткость механизма и наименьшие усилия в приводе при эксплуатационных нагрузках и перемещениях модели. Кроме того, два линейных цилиндра расположены по направлению потока воздуха, а третий - перпендикулярно направлению потока воздуха. Устройство дополнительно содержит ограничители перемещения стойки в направлении, перпендикулярном ее плоскости. Технический результат заключается в расширении экспериментальных возможностей аэродинамической установки, снижении трудоемкости. 2 з.п. ф-лы, 1 ил.

Наверх