Преобразователь угол - код



Преобразователь угол - код
Преобразователь угол - код
Преобразователь угол - код
Преобразователь угол - код
Преобразователь угол - код
Преобразователь угол - код
Преобразователь угол - код
Преобразователь угол - код
H03M1/26 - Кодирование, декодирование или преобразование кода вообще (с использованием гидравлических или пневматических средств F15C 4/00; оптические аналого-цифровые преобразователи G02F 7/00; кодирование, декодирование или преобразование кода, специально предназначенное для особых случаев применения, см. в соответствующих подклассах, например G01D,G01R,G06F,G06T, G09G,G10L,G11B,G11C;H04B, H04L,H04M, H04N; шифрование или дешифрование для тайнописи или других целей, связанных с секретной перепиской, G09C)

Владельцы патента RU 2661752:

федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" (RU)

Группа изобретений относится к области аналого-цифрового преобразования и может быть использована в системе контроля энергонасыщенных объектов. Техническим результатом является упрощение конструкции и уменьшение габаритов преобразователя. Устройство содержит излучатель, передающий световод, волоконно-оптический разветвитель 1×n (n - число разрядов маски кодового диска), первую группу световодов, группу передающих микрооптических согласующих элементов (МОСЭ), вал, кодовый диск с маской кода Грея, призму Порро, группу приемных МОСЭ, вторую группу световодов, оптический мультиплексор n×1 с коэффициентами передачи по каждому каналу суммирования равными 20, 2-1,…2-i,…2n-1, приемный световод, фотоприемник, усилитель, аналого-цифровой преобразователь (АЦП), преобразователь кода Грея в двоичный код. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к системе контроля энергонасыщенных объектов.

Наиболее близким по технической сущности к изобретению является оптоэлектронный преобразователь угол - код, содержащий источник оптического излучения, кодовый оптомеханический элемент, оптический цифроаналоговый преобразователь, элементы считывания промодулированных оптических сигналов, преобразователь кода Грея, мультиплексор [патент 2029428, МПК H03M 1/26, опубл. 20.02.1995].

Недостатком данного преобразователя является то, что элементы излучающего и приемного каналов расположены по разные стороны относительно кодового диска, что приводит к увеличению габаритов устройства и уменьшению функциональных возможностей его применения.

В изобретении решается задача повышения технологичности и удобства эксплуатации преобразователя вследствие одностороннего расположения относительно кодового диска элементов излучающего и приемного каналов, которые могут быть выполнены с использованием оптических интегральных технологий, что существенно упрощает конструкцию и уменьшает габариты преобразователя.

Для решения поставленной задачи по первому варианту в преобразователь угол - код, содержащий излучатель, передающий световод, первую группу световодов, вал, кодовый диск, вторую группу световодов, приемный световод, фотоприемник, усилитель, АЦП, преобразователь кода Грея в двоичный код, причем излучатель соединен с передающим световодом, вал жестко соединен с кодовым диском, приемный световод связан с последовательно соединенными фотоприемником, усилителем, АЦП, преобразователем кода Грея в двоичный код, введены волоконно-оптический разветвитель 1×n, где n - число разрядов маски кодового диска, группа передающих МОСЭ, призма Порро, группа приемных МОСЭ, оптический мультиплексор n×1 с коэффициентами передачи по каждому каналу суммирования равными 20, 2-1,…2-i,…2n-1, причем передающий световод соединен с волоконно-оптическим разветвителем, выходы которого с помощью первой группы световодов соединены с соответствующими передающими МОСЭ, выходы передающих МОСЭ через кодовый диск оптически связаны с нижней половиной гипотенузной грани призмы Порро, симметрично им относительно высоты АВ призмы Порро располагаются приемные МОСЭ, выходы соответствующих приемных МОСЭ с помощью световодов второй группы связаны с соответствующими входами оптического мультиплексора n×1, выход мультиплексора с помощью приемного световода связан с последовательно соединенными фотоприемником, усилителем, АЦП, и преобразователем кода Грея в двоичный код.

Изобретение характеризуется следующими чертежами: фиг. 1 - функциональная схема преобразователя угол - код по первому варианту, фиг. 2 - функциональная схема преобразователя угол - код по второму варианту, фиг. 3а функциональная схема передающего ВОЦАП, фиг. 3б - функциональная схема приемного ВОЦАП.

Для решения поставленной задачи по второму варианту в преобразователь угол - код (по первому варианту), содержащий излучатель, передающий световод, вал, кодовый диск с маской кода Грея, призму Порро, приемный световод, АЦП, преобразователь кода Грея в двоичный код, причем излучатель соединен с передающим световодом, вал жестко соединен с кодовым диском, введены волоконно-оптический разветвитель 1×m, третья группа световодов, группа передающих волоконно-оптических цифроаналоговых преобразователей (ВОЦАП), группа приемных ВОЦАП, коммутатор, генератор тактовых сигналов, регистр памяти, сумматор, счетчик, причем (см. фиг. 2) передающий световод соединен с входом волоконно-оптического разветвителя 1×m, выходы волоконно-оптического разветвителя соединены с входами группы передающих ВОЦАП, каждый передающий ВОЦАП (см. фиг. 3а) состоит из соединенных последовательно волоконно-оптического разветвителя 1×n, первой группы световодов, группы передающих МОСЭ, выходы предающих ВОЦАП через кодовый диск оптически связаны с нижней половиной гипотенузной стороны призмы Порро, симметрично группе передающих ВОЦАП относительно оси симметрии АВ расположена группа приемных ВОЦАП, причем каждый приемный ВОЦАП (см. фиг. 3б) состоит из группы приемных МОСЭ, второй группы световодов, оптического мультиплексора n×1 с коэффициентами передачи по каждому каналу суммирования равными 20, 2-1,…2-i,…2n-1, фотоприемника и усилителя, выходы соответствующих приемных ВОЦАП соединены с соответствующими информационными входами коммутатора, управляющий вход которого соединен с первым выходом генератора тактовых сигналов, выход коммутатора соединен с входом АЦП, вход АЦП соединен с информационным входом регистра памяти, управляющий вход которого соединен со вторым выходом генератора тактовых сигналов, выход регистра памяти соединен с информационным входом сумматора, управляющий вход которого через счетчик связан с третьим выходом генератора тактовых сигналов, выход сумматора соединен с входом преобразователя кода Грея в двоичный код.

В состав преобразователя угол - код по первому варианту входит излучатель 1, соединенный передающим световодом 2 с волоконно-оптическим разветвителем 1×n 3 (фиг. 1). Выходы оптического разветвителя с помощью первой группы световодов 4, соединены с соответствующими передающими МОСЭ 5, (выполненных например, в виде градиентных или цилиндрических линз),. Элементы 3, 4, 5 могут быть выполнены в виде единого элемента с использованием оптических интегральных технологий. Вал 6 жестко соединен с кодовым диском 7. Выходы передающих МОСЭ 5 через кодовый диск 7 оптически связаны с нижней половиной гипотенузной стороны призмы Порро 8, ее особенность заключается в том, что все лучи, нормально падающие на гипотенузную грань, в результате отражений от внутренних боковых граней проходят до выхода из призмы одинаковые оптические пути, это позволяет сохранить равномерность мощностей оптических сигналов, выходящих с верхней части гипотенузной грани призмы и поступающих на входы приемных МОСЭ 9. Выходы соответствующих приемных МОСЭ с помощью второй группы световодов 10 связаны с соответствующими входами оптического мультиплексора n×1 11, с коэффициентами передачи по каждому каналу суммирования равными 20, 2-1,…2-i,…2n-1. Элементы 9, 10, 11 могут быть выполнены в виде единого элемента с использованием оптических интегральных технологий. Выход оптического мультиплексора с помощью приемного световода 12 связан с последовательно соединенными фотоприемником 13, усилителем 14, АЦП 15, преобразователем кода Грея в двоичный код 16.

Призма Порро 8 тип отражательной оптической призмы, представляет собой изделие из стекла в форме прямой призмы с равнобедренным прямоугольным треугольником в основании. Световые потоки входят со стороны гипотенузной грани призмы, дважды испытывают полное внутреннее отражение от катетных граней и выходят через гипотенузную грань. Поскольку свет входит в призму и выходит из нее приблизительно перпендикулярно поверхности, призма не является дисперсионной.

Соответствие сигналов, поступающих с выходов передающих МОСЭ на входы приемных МОСЭ, для каждого канала достигается тем, что передающие и приемные МОСЭ расположены симметрично относительно оси симметрии АВ (см. фиг. 1).

Преобразователь по первому варианту работает следующим образом.

Излучатель 1 создает направленное оптическое излучение, которое с помощью передающего световода 2 подводится к волоконно-оптическому разветвителю 1×n 3 (n - число разрядов маски кодового диска). В оптическом разветвителе происходит деление мощности этого излучения на n равных потоков. Каждый поток с помощью одного из световодов 4 первой группы поступает на вход соответствующего передающего МОСЭ 5., МОСЭ формируют коллимированные лучи, которые падают перпендикулярно к нижней части гипотенузной грани призмы Порро 8. При вращении вала 6 происходит модуляция по амплитуде оптических сигналов в соответствии с рисунком маски кода Грея кодового диска 7. Промодулированные оптические сигналы проходят через призму Порро 8 и воспринимаются приемными МОСЭ 9. Выходные сигналы приемных МОСЭ с помощью световодов второй группы 10 поступают на соответствующие входы оптического мультиплексора n×1 11, в котором происходит суммирование сигналов с весовыми коэффициентами 20, 2-1,…2-i,…2n-1. С выхода мультиплексора 11 результирующий оптический сигнал с помощью приемного световода 12 воспринимается фотоприемником 13. В фотоприемнике 13 оптическое излучение преобразуется в пропорциональный ему электрический сигнал, который усиливается в усилителе 14. Сформированный таким образом электрический сигнал обрабатывается в АЦП 15, на выходе которого генерируется электрический двоичный код Грея. После преобразования кода Грея в преобразователе кода Грея 16 на выходе устройства формируется цифровой эквивалент угла поворота α в натуральном двоичном коде.

В состав преобразователя угол - код по второму варианту входит излучатель 1, соединенный передающим световодом 2 с волоконно-оптический разветвителем 1×m 18 (фиг. 2). Выходы волоконно-оптического разветвителя с помощью третей группы световодов 19, соединены с соответствующими передающими ВОЦАП 20. Каждый передающий ВОЦАП (фиг. 3а) состоит из волоконно-оптического разветвителя 3, первой группы световодов 4, МОСЭ 5, (выполненных например, в виде градиентных или цилиндрических линз) и может быть выполнен в виде единого элемента с использованием интегральных оптических технологий. Вал 6 жестко соединен с кодовым диском 7. Выходы передающих ВОЦАП 20 через кодовый диск 7 оптически связаны с нижней половиной гипотенузной стороны призмы Порро 8, ее особенность заключается в том, что все лучи, нормально падающие на гипотенузную грань, в результате отражений от боковых граней проходят до выхода из призмы одинаковые оптические пути, это позволяет сохранить равномерность мощностей оптических сигналов, выходящих с верхней части призмы и поступающих на входы соответствующих приемных ВОЦАП 21. Каждый приемный ВОЦАП (фиг. 3а) состоит из приемных МОСЭ 9, которые с помощью второй группы световодов 10 связаны с соответствующими входами оптического мультиплексора n×1 11, с коэффициентами передачи по каждому каналу суммирования равными 20, 2-1,…2-i,…2n-1, выход которого с помощью приемного световода 12 связан с последовательно соединенными фотоприемником 13 и усилителем 14. Элементы 9, 10, 11 каждого приемного ВОЦАП 21 могут быть выполнены в виде единого элемента с использованием оптических интегральных технологий. Выходы приемных ВОЦАП соединены с информационными входами коммутатора 22, управляющий вход которого соединен с первым выходом генератора тактовых сигналов 23. Выход коммутатора соединен с входом АЦП 15, Выход АЦП 15 соединен с информационным входом регистра памяти 24, управляющий вход которого соединен со вторым выходом генератора тактовых сигналов 23. Выход регистра памяти соединен с информационным входом сумматора 25, управляющий вход которого соединен с выходом счетчика 26, вход которого соединен с третьим выходом генератора тактовых сигналов. Выход сумматора соединен с входом преобразвателя кода Грея в двоичный код 16.

Соответствие сигналов, поступающих с выходов передающих каналов на входы приемных каналов достигается тем, что передающие и приемные каналы расположены симметрично относительно оси симметрии АВ (см. фиг. 2).

Преобразователь по второму варианту работает следующим образом. Излучатель 1 создает направленное оптическое излучение, которое с помощью передающего световода 2 подводится к волоконно-оптическому разветвителю 1×m 18. В оптическом разветвителе происходит деление мощности этого излучения на m равных потоков. Каждый поток с помощью одного из световодов третьей группы световодов 19 поступает на вход соответствующего передающего ВОЦАП 20. В каждом передающем ВОЦАП световой поток подводится к волоконно-оптическому разветвителю 1×n 3. В оптическом разветвителе происходит деление мощности этого излучения на n равных потоков. Каждый поток с помощью одного из световодов 4 первой группы поступает на вход в соответствующего передающего МОСЭ 5. МОСЭ формируют коллимированные лучи, которые падают перпендикулярно к нижней части гипотенузной грани призмы Порро 8. При вращении вала 6 происходит модуляция по амплитуде оптических сигналов в соответствии с рисунком маски кода Грея. Промоделированные оптические сигналы проходят через призму Порро и воспринимаются приемными ВОЦАП 21. В каждом приемном ВОЦАП сигналы поступают на вход соответствующих приемных МОСЭ 9. Выходные сигналы приемных МОСЭ с помощью световодов второй группы 10 поступают на соответствующие входы оптического мультиплексора n×1 11, в котором происходит суммирование сигналов с весовыми коэффициентами 20, 2-1,…2-i,…2n-1. С выхода мультиплексора 11 результирующий оптический сигнал с помощью приемного световода 12 воспринимается фотоприемником 13. В фотоприемнике 13 оптическое излучение преобразуется в пропорциональный ему электрический сигнал, который усиливается в усилителе 14. Сформированные таким образом электрические сигналы с выходов соответствующих приемных ВОЦАП 21 поступают на информационные входы коммутатора 22. На управляющий вход коммутатора поступает сигнал с генератора тактовых сигналов 23. Сигналы с выхода коммутатора по очереди в течение n тактов последовательно оцифровываются в АЦП 15. Сигнал на входе АЦП можно представить в виде отдельных значений, соответствующих дискретным моментам времени:

где ; ti=t0+iΔt, i=1, 2, 3.

Эти сигналы поступают в регистр памяти 24 в виде n×m - разрядного кодового вектора, где хранятся в течение n тактов. По завершении n тактов в сумматоре 26, управляемом счетчиком 25, происходит сложение поступивших сигналов:

Тогда обобщенную математическую модель преобразователя можно представить в виде суммы выходных кодов АЦП, расположенных либо в произвольном порядке, либо в порядке возрастания весовых коэффициентов входного кодового вектора, если это имеет принципиальное значение.

Например, для 12-разрядного входного кода:

После суммирования кодов получим 12-разрядный код Грея, который поступает в преобразователь кода Грея в двоичный код 16, на выходе которого формируется цифровой эквивалент угла поворота α в натуральном двоичном коде, значения разрядных цифр ai которого однозначно соответствуют значениям разрядных цифр входной кодовой комбинации бинарных сигналов x0, x1…x11:

.

Второй вариант преобразователя угол - код помимо вышеуказанных задач позволяет также увеличить число входных сигналов при сохранении невысоких требований к точности изготовления элементов назначения веса за счет применения нескольких одинаковых малоразрядных волоконно-оптических цифроаналоговых секций, которые могут быть выполнены с использованием оптических интегральных технологий, что существенно упрощает конструкцию и уменьшает габариты преобразователя.

1. Преобразователь угол - код, содержащий излучатель, передающий световод, первую группу световодов, вал, кодовый диск, вторую группу световодов, приемный световод, фотоприемник, усилитель, преобразователь кода Грея в двоичный код, причем излучатель соединен с передающим световодом, вал жестко соединен с кодовым диском, приемный световод связан с последовательно соединенными фотоприемником и усилителем, отличающийся тем, что в него введены дополнительно волоконно-оптический разветвитель 1×n, где n - число разрядов маски кодового диска, группа передающих микрооптических согласующих элементов (МОСЭ), призма Порро, группа приемных МОСЭ, оптический мультиплексор n×1 с коэффициентами передачи по каждому каналу суммирования равными 20, 2-1, … 2-i, … 2n-1, преобразователь тока в напряжение, преобразователь напряжения в код, причем передающий световод соединен с волоконно-оптическим разветвителем, выходы которого с помощью первой группы световодов соединены с соответствующими передающими МОСЭ, выходы передающих МОСЭ через кодовый диск оптически связаны с нижней половиной гипотенузной грани призмы Порро, симметрично им относительно высоты призмы Порро приемные МОСЭ, выходы соответствующих приемных МОСЭ с помощью световодов второй группы связаны с соответствующими входами оптического мультиплексора n×1, установленного с возможностью суммирования входных оптических сигналов с весовыми коэффициентами 20, 2-1, … 2-i, … 2n-1, выход мультиплексора с помощью приемного световода связан с последовательно соединенными фотоприемником, усилителем, преобразователем тока в напряжение, преобразователем напряжения в код и преобразователем кода Грея в двоичный код.

2. Преобразователь угол - код, содержащий излучатель, передающий световод, вал, кодовый диск с маской кода Грея, призму Порро, приемный световод, АЦП, преобразователь кода Грея в двоичный код, причем излучатель соединен с передающим световодом, вал жестко соединен с кодовым диском, отличающийся тем, что в него дополнительно введены волоконно-оптический разветвитель 1×m, где m - число волоконно-оптических цифроаналоговых преобразователей (ВОЦАП), третья группа световодов, группа передающих ВОЦАП, группа приемных ВОЦАП, коммутатор, генератор тактовых сигналов, регистр памяти, сумматор, причем передающий световод соединен с входом волоконно-оптического разветвителя 1×m, выходы волоконно-оптического разветвителя соединены с группой передающих ВОЦАП, каждый передающий ВОЦАП состоит из соединенных последовательно волоконно-оптического разветвителя 1хп, где n - число каналов каждого ВОЦАП, первой группы световодов, группы передающих микрооптических согласующих элементов (МОСЭ), выходы предающих ВОЦАП через кодовый диск оптически связаны с нижней половиной гипотенузной стороны призмы Порро, симметрично группе передающих ВОЦАП относительно оси симметрии АВ расположена группа приемных ВОЦАП, причем каждый приемный ВОЦАП состоит из группы приемных МОСЭ, второй группы световодов, оптического мультиплексора пх1 с коэффициентами передачи по каждому каналу суммирования равными 20, 2-1, … 2-i, … 2n-1, фотоприемника и усилителя, выходы соответствующих приемных ВОЦАП соединены с соответствующими информационными входами коммутатора, управляющий вход которого соединен с первым выходом генератора тактовых сигналов, выход коммутатора соединен с входом АЦП, выход АЦП соединен с информационным входом регистра памяти, управляющий вход которого соединен со вторым выходом генератора тактовых сигналов, выход регистра памяти соединен с информационным входом сумматора, управляющий вход которого через счетчик связан с третьим выходом генератора тактовых сигналов, выход сумматора соединен с входом преобразователя кода Грея в двоичный код.



 

Похожие патенты:

Изобретение относится к системе контроля энергонасыщенных объектов. Техническим результатом является повышение достоверности устройства сбора информации за счет коррекции динамической погрешности преобразования и исключения неоднозначности преобразования.

Изобретение относится к автоматике и вычислительной технике. Технический результат заключается в повышении достоверности преобразования за счет создания возможности оперативной поверки и автокоррекции инструментальных погрешностей преобразователя.

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код.

Изобретение относится к области измерительной техники, в частности к синусно-косинусным преобразователям угла в код. Техническим результатом является повышение разрядности преобразователя при меньшем объеме ПЗУ без потери быстродействия преобразования.

Изобретение относится к измерительной технике, в частности к построению кодовой шкалы преобразователя угловых перемещений в код. Техническим результатом является уменьшение как величины шага углового перемещения (увеличение разрешающей способности датчика угла), так и числа считывающих элементов кодовой шкалы при сохранении возможности восстановления углового положения по результатам измерений, проводимых при повороте на угол, равный интервалу - j=5 шагам углового перемещения.

Изобретение относится к измерительной технике, в частности к аналого-цифровым преобразователям, и может быть использовано в цифровых системах для измерения и контроля аналоговых величин.

Группа изобретений относится к области вычислительной техники и может быть использована в устройствах, выполняющих операции суммирования сигналов, одновременно генерируемых многими источниками.

Изобретение относится к шифрованию информации и может быть применено в защищенных автоматизированных системах для криптографической защиты разнородных потоков информации с применением общего ключа, передаваемого по закрытому каналу связи.

Изобретение относится к области автоматики. Технический результат изобретения заключается в снижении потребляемой устройством электроэнергии за счет резкого снижения потребления энергии во время неподвижного состояния валов, уменьшении помех, создаваемых устройством.

Изобретение относится к измерительной технике. Технический результат направлен на расширение арсенала средств.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики.
Изобретение относится к медицине, хирургии. Хирургическое лечение ожогов выполняют в первые часы после получения ожога.

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств.

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств.

Изобретение относится к компьютерным системам, в частности к квантовым компьютерам и оптическим логическим элементам, и может быть использовано для полного определения состояния кубита.

Изобретение относится к оптическим кодирующим устройствам, выдающим логические двоичные сигналы, характеризующие приращения относительного положения двух элементов (10, 11) кодирующего устройства.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики. .

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для селекции оптических сигналов. .

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для выбора (селекции) минимального сигнала из совокупности оптических сигналов, подаваемых на его вход.

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для выбора (селекции) минимального сигнала из совокупности оптических сигналов, подаваемых на его вход.

Изобретение относится к области радиолокационной техники и может быть использовано в радиолокационных станциях, Технический результат - повышение точности преобразования углового перемещения антенны радиолокационной станции (РЛС) за счет компенсации кинематической погрешности информационной передачи датчиков и расширение функциональных возможностей. Устройство содержит датчик углового положения, редуктор, опорно-поворотное устройство, механически связанное с валом антенны, устройство опроса, датчик кода привязки к северу, постоянное запоминающее устройство, первое и второе вычислительные устройства. 4 ил.

Группа изобретений относится к области аналого-цифрового преобразования и может быть использована в системе контроля энергонасыщенных объектов. Техническим результатом является упрощение конструкции и уменьшение габаритов преобразователя. Устройство содержит излучатель, передающий световод, волоконно-оптический разветвитель 1×n, первую группу световодов, группу передающих микрооптических согласующих элементов, вал, кодовый диск с маской кода Грея, призму Порро, группу приемных МОСЭ, вторую группу световодов, оптический мультиплексор n×1 с коэффициентами передачи по каждому каналу суммирования равными 20, 2-1,…2-i,…2n-1, приемный световод, фотоприемник, усилитель, аналого-цифровой преобразователь, преобразователь кода Грея в двоичный код. 2 н.п. ф-лы, 3 ил.

Наверх