Контейнер для пищевых продуктов или напитков, содержащий полиэтилентерефталатный полимер на основе биосырья

Изобретение относится к контейнеру для пищевых продуктов или напитков, содержащему полиэтилентерефталатный полимер, где указанный полимер содержит терефталатный компонент и диольный компонент, причем терефталатный компонент представляет собой терефталевую кислоту, которая полностью получена из нефти, а диольный компонент представляет собой этиленгликоль, который частично или полностью получен из по меньшей мере одного материала на основе биосырья. Технический результат – получение контейнера из полиэтилентерефталатного полимера, получаемого из возобновляемых ресурсов. 2 н. и 7 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

 

Настоящая заявка испрашивает приоритет согласно §119 (е) раздела 35 Свода законов США на основании предварительной заявки на патент США 61/040349, озаглавленной «Полиэтилентерефталатный полимер на основе биосырья и изделия, полученные из полиэтилентерефталата на основе биосырья», поданной 28 марта 2008 года.

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится в целом к полиэтилентерефталатному полимеру на основе биосырья, который содержит терефталатный и/или диольный компонент, частично или полностью полученный из биологического сырья.

УРОВЕНЬ ТЕХНИКИ

Полиэтилентерефталат и его сополиэфиры (здесь и далее в совокупности называемые «PET» или «Полиэтилентерефталат») представляют собой широко используемое сырье для изготовления упаковочных изделий, отчасти вследствие отличного сочетания прозрачности, механических и газонепроницаемых свойств. Примеры продуктов, изготовленных из PET, включают, но не ограничиваются ими, бутылки и контейнеры для упаковки пищевых продуктов, безалкогольных напитков, алкогольных напитков, моющих средств, косметики, фармацевтических продуктов и пищевых масел.

В большинстве промышленных способов PET получают с использованием сырья, получаемого из нефти. Поэтому стоимость получения сильно зависит от стоимости нефти. Получаемый из нефти PET вносит вклад в парниковый эффект вследствие высокого содержания в нем углерода, образующегося из углеводородов. Кроме того, требуются сотни тысяч лет для того, чтобы нефтепродукты образовались естественным образом, поэтому нефтепродукты являются невозобновляемыми, что означает, что данные продукты не могут быть получены, выращены или регенерированы заново со скоростью, сопоставимой со скоростью их потребления.

Одним из подходов к замещению получаемого из нефти PET было получение биопластика на основе полимолочной кислоты (PLA) из биологического сырья, такого как кукуруза, рис и другие сахаро- и крахмалсодержащие растения (см., например, патент США №6569989). Как указано в патенте США 5409751 и заявке на патент США №20070187876, предпринимались попытки использования PLA-смол в способах литья с формованием и вытяжкой для получения контейнеров. Тем не менее, часто бывает трудным адаптировать PLA в существующие линии по производству PET или заменить PET на PLA с удовлетворительным результатом во многих областях применения вследствие значительных различий в свойствах PLA и PET. Например, PLA, как правило, обладает более низкой газопроницаемостью по сравнению с PET, что делает PLA-контейнеры менее подходящими для хранения таких продуктов, как газированные напитки или напитки, чувствительные к кислороду. К тому же, большинство используемых в настоящее время систем переработки отходов разработаны для PET, который мог бы содержать примеси при введении PLA. Данную проблему можно преодолеть посредством дорогостоящих решений, таких как использование разных типов бутылок из PLA и PET, или вложений в разработку подходящей технологии сортировки или новых линий для переработки отходов.

Таким образом, существует необходимость в получении PET, производимого из возобновляемых ресурсов, обладающего теми же свойствами, что и PET, получаемый из нефти. В некоторых применениях желательно, чтобы PET, получаемый из возобновляемых ресурсов, мог обрабатываться на существующем производственном оборудовании для PET и/или мог быть легко переработан в системах, разработанных для переработки PET, получаемого из нефти.

Другие задачи, признаки и преимущества настоящего изобретения станут очевидны из приведенных далее подробного описания, чертежей и формулы изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фигуре 1 представлена блок-схема способа получения полиэтилентерефталатного продукта на основе биосырья, который частично или полностью получают из биологического сырья.

ПОДРОБНОЕ ОПИСАНИЕ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Термин «на основе биосырья», используемый в данной заявке, указывает на включение некоторого компонента, полученного из по меньшей мере одного вида биологического сырья. Например, «PET полимер на основе биосырья» представляет собой PET полимер, который содержит по меньшей мере один компонент, частично или полностью полученный из по меньшей мере одного вида биологического сырья.

PET полимер на основе биосырья

Один из вариантов реализации настоящего изобретения включает PET полимер на основе биосырья, который содержит от примерно 25 до примерно 75 массовых процентов терефталатного компонента и от примерно 20 до примерно 50 массовых процентов диольного компонента, при этом по меньшей мере один массовый процент по меньшей мере одного из терефталатного и/или диольного компонента получен из по меньшей мере одного вида биологического сырья. В более конкретном варианте реализации по меньшей мере примерно 20 массовых процентов по меньшей мере одного из терефталатного и/или диольного компонента получено из по меньшей мере одного вида биологического сырья.

В одном из вариантов реализации PET полимер на основе биосырья содержит от примерно 30 до примерно 70 массовых процентов терефталатного компонента. В более конкретном варианте реализации PET полимер на основе биосырья содержит от примерно 40 до примерно 65 массовых процентов терефталатного компонента. В другом варианте реализации PET полимер на основе биосырья содержит от примерно 25 до примерно 45 массовых процентов диольного компонента. В более конкретном варианте реализации PET полимер на основе биосырья содержит от примерно 25 до примерно 35 массовых процентов диольного компонента.

В соответствии с конкретным вариантом реализации изобретения, терефталатный компонент выбран из терефталевой кислоты, диметилтерефталата, изофталевой кислоты и их комбинации. В более конкретном варианте реализации по меньшей мере примерно десять массовых процентов терефталатного компонента получено из по меньшей мере одного вида биологического сырья. В одном из вариантов реализации терефталатный компонент содержит по меньшей мере примерно 70 массовых процентов терефталевой кислоты. В более конкретном варианте реализации по меньшей мере примерно один массовый процент, предпочтительно по меньшей мере примерно десять массовых процентов терефталевой кислоты получено из по меньшей мере одного вида биологического сырья.

В другом варианте реализации диольный компонент выбран из этиленгликоля, циклогександиметанола и их комбинации. В более конкретном варианте реализации диольный компонент содержит по меньшей мере примерно один массовый процент циклогександиметанола. В другом варианте реализации по меньшей мере примерно десять массовых процентов диольного компонента получено из по меньшей мере одного вида биологического сырья.

К PET полимеру на основе биосырья могут быть добавлены другие ингредиенты. Специалисты в данной области техники способны без труда выбрать подходящий(-ие) ингредиент(-ы) для добавления в PET полимер на основе биосырья для улучшения целевых свойств, которые могут изменяться в зависимости от вида предполагаемого применения. В конкретном варианте реализации PET полимер на основе биосырья может дополнительно содержать дополнительный компонент, выбранный из по меньшей мере одного красителя, по меньшей мере одной добавки для повышения скорости нагрева, по меньшей мере одной газонепроницаемой добавки, по меньшей мере одной добавки, блокирующей УФ-излучение, и их комбинации.

PET полимеры на основе биосырья могут быть использованы для получения смол на основе биосырья, которые далее могут быть переработаны в контейнеры на основе биосырья с использованием способов, включающих, но не ограничивающихся ими, литье под давлением и ориентированное формование раздувом. Варианты реализации настоящего изобретения включают контейнеры на основе биосырья, содержащие PET полимеры на основе биосырья согласно описанным выше вариантам реализации. Для соответствия некоторым применениям контейнеры должны обладать определенной характеристической вязкостью для того, чтобы выдерживать транспортировку, хранение на стеллажах, а также удовлетворять другим требованиям. В более конкретном варианте реализации настоящего изобретения контейнер на основе биосырья обладает характеристической вязкостью от примерно 0,45 дл/г до примерно 1,0 дл/г.

В данной области техники известно, что углерод-14 (С-14), который обладает периодом полураспада, равным примерно 5700 лет, содержится в биологическом сырье, но не в ископаемом топливе. Таким образом, термин «биологическое сырье» относится к органическим веществам, в которых углерод происходит из неископаемых биологических ресурсов. Примеры биологического сырья включают, но не ограничиваются только ими, сахара, крахмал, кукурузу, натуральные волокна, сахарный тростник, свеклу, цитрусовые плоды, древесные растения, целлюлозные полимеры, лигноцеллюлозные полимеры, гемицеллюлозу, картофель, растительные масла, другие полисахариды, такие как пектин, хитин, леван, пуллулан и их комбинации. В соответствии с конкретным вариантом реализации, по меньшей мере один вид биологического сырья выбран из кукурузы, сахарного тростника, свеклы, картофеля, крахмала, цитрусовых плодов, древесных растений, лигноцеллюлозы, растительных масел, натуральных волокон, смолистого древесного сырья и их комбинации.

Как указано ранее, обнаружение С-14 является отличительной особенностью биологического сырья. Уровень содержания С-14 может быть определен посредством количественной оценки процесса распада С-14 (количество распадов в минуту на грамм углерода или dpm/gC) с помощью жидкостно-сцинтилляционного подсчета. В одном из вариантов реализации настоящего изобретения PET полимер на основе биосырья содержит по меньшей мере 0,1 распадов в минуту на грамм углерода С-14.

Изобретение далее проиллюстрировано следующим примером, который не следует рассматривать в качестве ограничивающего каким-либо образом настоящее изобретение. С другой стороны, необходимо четко понимать, что возможно множество других вариантов реализации изобретения и их модификаций и эквивалентов, которые могут стать очевидны для специалиста в данной области техники после ознакомления с настоящим описанием, которые также находятся в рамках настоящего изобретения и/или пунктов прилагаемой формулы изобретения.

Пример 1

Следующие образцы были проанализированы в режиме слепого исследования для определения содержания С-14 посредством жидкостно-сцинтилляционного подсчета. Обнаруженные уровни содержания были нормированы по существующим данным, доступным в Университете штата Джорджия, которые связывают содержание С-14 с процентным содержанием биологического сырья. Результаты представлены в Таблице 1.

Таблица 1
№ образца Описание образца С-14, распадов в минуту на грамм углерода % содержание биологического сырья
1 Этиленгликоль (полностью получен из этанола, полученного из сахара) 15±0,13 100±1
2 Этиленгликоль (полностью получен из 2 кукурузы) 15±0,13 98±1
3 Этиленгликоль (полностью получен из нефти) 0,04±0,13 0±1
4 Этиленгликоль (полностью получен из 4 нефти) 0,04±0,13 0±1
5 PET (полностью получен из нефти) 0,07±0,13 0±1
6 PET (содержит примерно 30% масс. этиленгликоля из образца 1 и 6 примерно 70% масс. терефталевой кислоты, полученной из нефти) 3,01±0,13 21±1

Как показано в Таблице 1, образцы, полностью полученные из нефти (образцы 3, 4 и 5), содержат пренебрежительно низкое количество С-14, что означает, что примерно ноль процентов образца получено из биологического сырья. Напротив, в образцах, которые содержат вещества, про которые известно, что они частично или полностью получены из биологического сырья (кукуруза или сахар), обнаружено значительно большее содержание С-14. В соответствии с данными, примерно 0,14 распадов в минуту на грамм углерода соответствуют примерно одному проценту биологического сырья в образце.

Способ получения полиэтилентерефталатного полимера

В соответствии с Фигурой 1 варианты реализации настоящего изобретения включают также способ получения PET полимера 16 на основе биосырья, включающий получение диольного компонента 12, содержащего этиленгликоль 12а (стадия 20), получение терефталатного компонента 14, содержащего терефталевую кислоту (стадия 22), в котором по меньшей мере примерно один массовый процент диольного и/или терефталатного компонента (12, 14) получен из по меньшей мере одного вида биологического сырья 10, взаимодействие диольного компонента 12 и терефталатного компонента 14 с образованием PET полимера 16 на основе биосырья (стадия 24), где PET полимер 16 на основе биосырья содержит от примерно 25 до примерно 75 массовых процентов терефталатного компонента 14 и от примерно 20 до примерно 50 массовых процентов диольного компонента 12. В более конкретном варианте реализации, как показано в Реакции I, стадия 24 далее включает взаимодействие диольного компонента 12 с терефталатным компонентом 14 по реакции этерификации с образованием полученных из биологического сырья мономеров PET 16a, которые впоследствии подвергаются полимеризации и образуют PET полимер 16 на основе биосырья.

В конкретном варианте реализации по меньшей мере один массовый процент диольного компонента 12 получен из по меньшей мере одного вида биологического сырья 10. В более конкретном варианте реализации по меньшей мере десять массовых процентов диольного компонента 12 получено из по меньшей мере одного вида биологического сырья 10. В еще более конкретном варианте реализации по меньшей мере 30 массовых процентов диольного компонента 12 получено из по меньшей мере одного вида биологического сырья 10.

Диольный компонент 12 может быть получен частично или полностью из по меньшей мере одного вида биологического сырья с применением любого способа. В одном из вариантов реализации стадия 20 включает получение сахара или производных сахара из по меньшей мере одного вида биологического сырья и ферментирование сахара или производных сахара в этанол. В другом варианте реализации стадия 20 включает газификацию по меньшей мере одного вида биологического сырья 10 с получением синтез-газа, который превращают в этанол. В более конкретном варианте реализации, как показано в Реакции II, стадия 20 дополнительно включает дегидратацию этанола в этилен, окисление этилена до этиленоксида и превращение этиленоксида в этиленгликоль.

В другом варианте реализации стадия 20 включает получение сахара или производных сахара из по меньшей мере одного вида биологического сырья и превращение сахара или производных сахара в смесь, содержащую этиленгликоль и по меньшей мере один гликоль помимо этиленгликоля. Стадия 20 также включает выделение этиленгликоля из смеси. Смесь может быть повторно подвергнута взаимодействию для получения более высокого выхода этиленгликоля. В более конкретном варианте реализации по меньшей мере один гликоль выбран из бутандиолов, пропандиолов и глицеринов.

В соответствии с другим вариантом реализации, по меньшей мере один массовый процент терефталатного компонента 14 получен из по меньшей мере одного вида биологического сырья 10. В более конкретном варианте реализации по меньшей мере десять массовых процентов терефталатного компонента 14 получено из по меньшей мере одного биологического сырья 10. В еще более конкретном варианте реализации по меньшей мере 30 массовых процентов терефталатного компонента 14 получено из по меньшей мере одного вида биологического сырья 10.

Терефталатный компонент 14 может быть частично или полностью получен из по меньшей мере одного вида биологического сырья с использованием любого способа. В одном из вариантов реализации, как показано в Реакции III, стадия 22 включает экстрагирование карена из смолистого древесного сырья, превращение карена в п-цимол и м-цимол посредством дегидрирования и ароматизации и окисление п-цимола и м-цимола в терефталевую кислоту и изофталевую кислоту.

В другом варианте реализации, как показано в Реакции IV, стадия 22 включает экстрагирование лимонена из по меньшей мере одного вида биологического сырья, превращение лимонена в по меньшей мере один терпен, превращение терпена в п-цимол и окисление п-цимола в терефталевую кислоту. В более конкретном варианте реализации по меньшей мере один терпен выбран из терпинена, дипентена, терпинолена и комбинации указанных терпенов. В еще более конкретном варианте реализации по меньшей мере одно биологическое сырье выбрано из цитрусовых плодов, древесных растений или их комбинации.

В одном из вариантов реализации настоящего изобретения, как показано в Реакции V, стадия 22 включает экстрагирование гидроксиметилфурфурола из биологического сырья, превращение гидроксиметилфурфурола в первое промежуточное соединение, взаимодействие первого промежуточного соединения с этиленом с образованием второго промежуточного соединения, обработку второго промежуточного соединения кислотой в присутствии катализатора с образованием гидроксиметилбензальдегида и окисление гидроксиметилбензальдегида в терефталевую кислоту. В более конкретном варианте реализации гидроксиметилфурфурол экстрагируют из биологического сырья, включающего кукурузный сироп, сахара, целлюлозу и их комбинации. В еще более конкретном варианте реализации этилен получен из по меньшей мере одного вида биологического сырья.

В другом варианте реализации стадия 22 включает газификацию по меньшей мере одного биологического сырья 10 с получением синтез-газа, превращение синтез-газа в п-ксилол и окисление п-ксилола в кислоту с образованием терефталевой кислоты.

В одном из вариантов реализации по меньшей мере примерно один массовый процент терефталатного компонента 14 получен из по меньшей мере одного вида биологического сырья 10 и по меньшей мере один массовый процент диольного компонента 12 получен из по меньшей мере одного вида биологического сырья 10. В более конкретном варианте реализации по меньшей мере 25 массовых процентов терефталатного компонента 14 получено из по меньшей мере одного вида биологического сырья 10. В еще более конкретном варианте реализации по меньшей мере 70 массовых процентов диольного компонента 12 получено из по меньшей мере одного вида биологического сырья 10. В соответствии с конкретным вариантом реализации, биологическое сырье выбрано из кукурузы, сахарного тростника, свеклы, картофеля, крахмала, цитрусовых плодов, древесных растений, лигноцеллюлозы, растительных масел, натуральных волокон, смолистого древесного сырья и их комбинации.

В другом варианте реализации способ дополнительно включает получение PET продукта 18 на основе биосырья из PET полимера 16 на основе биосырья. PET продукт 18 на основе биосырья может быть использован в различных областях применения, включая, но не ограничиваясь ими, контейнер для напитков. В другом варианте реализации PET продукт 18 на основе биосырья может быть переработан или повторно использован в системах переработки отходов (стадия 26), разработанных для PET продуктов, полученных нефти.

Следует понимать, что все вышесказанное относится к конкретным вариантам реализации настоящего изобретения, и возможны многочисленные изменения в рамках настоящего изобретения, охарактеризованного в пунктах следующей формулы изобретения.

1. Контейнер для пищевых продуктов или напитков, содержащий полиэтилентерефталатный полимер, где указанный полимер содержит терефталатный компонент и диольный компонент, причем терефталатный компонент представляет собой терефталевую кислоту, которая полностью получена из нефти, а диольный компонент представляет собой этиленгликоль, который частично или полностью получен из по меньшей мере одного материала на основе биосырья.

2. Контейнер по п.1, где этиленгликоль частично или полностью получен из сахарного тростника.

3. Контейнер по п.1, где по меньшей мере один материал на основе биосырья выбран из группы, включающей кукурузу, сахарный тростник, свеклу, картофель, крахмал, цитрусовые плоды, древесные растения, лигноцеллюлозу, растительные масла, натуральные волокна, смолистое древесное сырье, сахара, целлюлозные полимеры, лигноцеллюлозные полимеры, гемицеллюлозу, полисахариды, пектин, хитин, леван и пуллулан.

4. Контейнер по п.1, где полимер содержит 70 массовых процентов терефталатного компонента и 30 массовых процентов диольного компонента.

5. Контейнер по п.1, где диольный компонент частично получен из по меньшей мере одного материала на основе биосырья.

6. Контейнер по п.5, где по меньшей мере 1 массовый процент диольного компонента получен из по меньшей мере одного материала на основе биосырья.

7. Контейнер по п.5, где по меньшей мере 70 массовых процентов диольного компонента получено из по меньшей мере одного материала на основе биосырья.

8. Контейнер по п.1, где диольный компонент полностью получен из по меньшей мере одного материала на основе биосырья.

9. Контейнер для пищевых продуктов или напитков, содержащий полиэтилентерефталатный полимер, где указанный полимер содержит 70 массовых процентов терефталатного компонента и 30 массовых процентов этиленгликоля, причем терефталатный компонент представляет собой терефталевую кислоту, которая полностью получена из нефти, а по меньшей мере 1 массовый процент этиленгликоля получен из сахарного тростника.



 

Похожие патенты:

Изобретение относится к области создания биоразлагаемых полимерных композиционных материалов, используемых при разделении и очистке газовых и паровых смесей различной природы, для очистки поверхности воды от нефти и нефтепродуктов, для очистки сточных вод от белковых токсикантов, а также для изготовления пластмассовых изделий с регулируемыми сроками эксплуатации.

Изобретение относится к разработке способа создания биодеградируемого материала на базе первичного или вторичного полимерного сырья и может быть использовано для получения полимерных материалов, способных к ускоренному фотоокислительному старению.

Настоящее изобретение относится к способу эффективного разложения биоразлагаемой смолы. Описаны варианты способа разложения биоразлагаемой смолы.

Изобретение относится к биоразлагаемому листовому материалу со свойством газонепроницаемости. Биологически разлагаемый листовой материал в своем составе содержит наноглину и поливиниловый спирт (PVOH).

Настоящее изобретение заключается в способе получения молочной кислоты, где способ включает стадию удаления глицерина из содержащего глицерин в качестве примеси водного раствора молочной кислоты с помощью ионообменной смолы, причем на указанную ионообменную смолу адсорбируется глицерин, содержащийся в водном растворе молочной кислоты.
Изобретение относится к области биотехнологии, в частности к способу производства основы биодеградируемого покрытия на основе метилцеллюлозы и чайного гриба, и может быть использовано в косметических и медицинских целях, например, в качестве масок для кожи или медицинских повязок для восстановительной хирургии, тканевой регенерации и при изготовлении упаковочных материалов.

Настоящее изобретение относится к полукристаллическим блок-сополимерам лактида и эпсилон-капролактона для медицинского применения. Описан биорассасывающийся полукристаллический сегментированный блок-сополимер, содержащий продукт реакции: (a) аморфного форполимера, образованного посредством полимеризации мономера лактида и мономера эпсилон-капролактона в присутствии инициатора, причем молярное отношение лактида к эпсилон-капролактону в форполимере составляет от 45:55 до 30:70; и (b) мономера лактида, причем указанный биорассасывающийся полукристаллический сегментированный блок-сополимер содержит повторяющиеся звенья из полимеризованного лактида и полимеризованного эпсилон-капролактона, где молярное отношение полимеризованного лактида к полимеризованному эпсилон-капролактону составляет от 60:40 до 75:25.
Изобретение относится к получению биологически разрушаемой высоконаполненной термопластичной композиции на основе полиэтилена, применяемой в производстве пленок, потребительской тары, посуды, изделий хозяйственного назначения, эксплуатируемых как в контакте с продуктами питания, так и в технических целях.

Изобретение относится к технологии получения композитных полимерных упаковочных материалов и может быть использовано в пищевой промышленности, а также в сельском хозяйстве и в быту.

Изобретение относится к биологически разлагаемой полимерной композиции. Композиция содержит, мас.ч.: полигидроксиалканоат 5-95 и полимолочную кислоту или лактид 95-5.

Изобретение относится к осветительному устройству, включающему источник света для генерирования излучения источника света и конвертер света. Конвертер включает матрицу из первого полимера.
Настоящее изобретение относится к ароматическим сложным полиэфирполиолам, подходящим для использования при получении пенополиуретана. Описан высокофункциональный характеризующийся умеренной вязкостью ароматический сложный полиэфирполиол, по существу свободный от простого полиэфирполиола, подходящий для использования в качестве единственного полиола при получении пенополиуретанов, которые характеризуются категорией класса один в туннельном испытании на огнестойкость Е-84, при этом упомянутый ароматический сложный полиэфирполиол характеризуется функциональностью в диапазоне от 2,8 до 3,2 и умеренной вязкостью в диапазоне 4000-10000 сПз при 25°С включительно, где упомянутый полиол получают в результате проведения переэтерификации или этерификации смеси, содержащей: 34-66% (мас./мас.) гликоля, 24-34% (мас./мас.) источника терефталата, 5,02-17% (мас./мас.) глицерина, 0-14% (мас./мас.) пентаэритрита, 0-5% (мас./мас.) метилглюкозида, 0-10% (мас./мас.) сорбита и 0-15% (мас./мас.) натурального растительного масла, модифицированного натурального растительного масла или жирнокислотных производных растительного масла.
Настоящее изобретение относится к сложным полиэфирполиолам на основе ароматических дикарбоновых кислот, а также их применению для получения жестких пенополиуретанов.

Настоящее изобретение относится к сложным полиэфирам, изготовленным полностью или частично из биомассы. Описан cложный сополиэфир, образованный из следующих мономеров: (i) 2,5-фурандикарбоновой кислоты, (ii) 1,4-бутандиола, (iii) терефталевой кислоты, (iv) этиленгликоля.

Настоящее изобретение относится к способу получения упаковки из ПЭТ. Описан способ получения изделия из полиэтилентерефталата (ПЭТ) из биологического сырья, включающий переработку ПЭТ полимера из биологического сырья в изделие из ПЭТ из биологического сырья, выбранного из преформы или упаковки из ПЭТ из биологического сырья, где ПЭТ полимер из биологического сырья содержит по меньшей мере один компонент ПЭТ, выбранный из моноэтиленгликоля (МЭГ), терефталевой кислоты (ТК) и их комбинаций, полученный из по меньшей мере одного материала, содержащего биологические вещества, выбранного из лесопромышленных отходов, сельскохозяйственных отходов и их комбинаций.
Настоящее изобретение относится к способу получения полиарилатов. Описан способ получения полиарилатов эмульсионной поликонденсацией, который включает приготовление органо-водно-соле-щелочного (ТГФ-H2O-NaCl) раствора бис-фенола, охлаждение этого раствора до (10±4)°C, и введение в него при интенсивном перемешивании расплава хлорангидрида ароматической дикарбоновой кислоты, высаждение, промывку и сушку целевого продукта, отличающийся тем, что на стадии приготовления раствора бис-фенола одновременно с бис-фенолом загружают полиарилат-матрицу в количестве от 0,75 до 1,3 мас.ч.

Настоящее изобретение относится к композициям сложного эфира, включающим полиэтилентерефталат из расплава. Описана композиция сложного эфира для изготовления упаковок, включающая: полиэтилентерефталат из фазы расплава, с включенными фрагментами терефталевой кислоты и мономера, содержащего два или несколько конденсированных ароматических циклов, в количестве приблизительно от 0,5 мольного % до 2,5 мольных %, из расчета на общее количество остатков дикарбоновых кислот в полиэтилентерефталате из фазы расплава, составляющих 100 мольных %; и алкоксид титана, где алкоксид титана присутствует в количестве от 30 ч/млн до 100 ч/млн атомов титана из расчета на суммарную массу композиции сложного эфира, где композиция сложного полиэфира находится в форме прозрачных гранул, которые не содержат TiO2, сурьму или германий, и где композиция сложного полиэфира содержит полиэтилентерефталат из фазы расплава, с характеристической вязкостью (I.V.) по меньшей мере 0,75 дл/г.

Изобретение относится к ароматическим полиэфирсульфонкетонам. Описаны ароматические полиэфирсульфонкетоны формулы где n=1-20; z=2-100; ; .

Настоящее изобретение относится к полиэфирным композиционным материалам. Описана полимерная композиция, используемая в качестве конструкционного материала, на основе полибутилентерефталат-политетраметиленоксидного блок-сополимера состава полибутилентерефталата 70% масс.

Настоящее изобретение относится к ароматическим полиэфирам. Описаны ароматические полиэфиры формулы: где , n=2-20; z=2-100.

Настоящее изобретение относится к способу получения композиции циклического сложного полиэфирного олигомера, содержащей циклический сложный полиэфирный олигомер, имеющий фурановые звенья, причем данный способ включает, стадию либо:(I) взаимодействия мономерного компонента С1 или D1 в присутствии необязательного катализатора и/или необязательного органического основания на стадии олигомеризации с замыканием цикла в условиях реакционной температуры и времени реакции, достаточных для получения циклического сложного полиэфирного олигомера, имеющего фурановые звенья структуры Y1, где мономерный компонент С1 содержит структуру: , и где каждая из групп А представляет собой необязательно замещенный линейный, разветвленный или циклический алкил, фенил, арил или алкиларил, и где I представляет собой целое число от 1 до 100, предпочтительно от 2 до 50, наиболее предпочтительно от 3 до 25, и где R1 = ОН, OR, атом галогена или О-А-ОН, R = необязательно замещенный линейный, разветвленный или циклический алкил, фенил, арил или алкиларил, R2 = H или , где мономерный компонент D1 содержит структуру: , и где А представляет собой необязательно замещенный линейный, разветвленный или циклический алкил, фенил, арил или алкиларил, и где каждая из групп Х представляет собой ОН, атом галогена или необязательно замещенную алкилокси-, фенокси- или арилокси-группу, и где группы Х не являются ОН, когда А представляет собой н-бутил, и где структура Y1 циклического сложного полиэфирного олигомера, имеющего фурановые звенья, имеет вид: , где m представляет собой целое число от 1 до 20, предпочтительно от 2 до 15, наиболее предпочтительно от 3 до 10; либо: (II) взаимодействия мономерного компонента C2 или D2 в присутствии необязательного катализатора и/или необязательного органического основания на стадии олигомеризации с замыканием цикла в условиях реакционной температуры и времени реакции, достаточных для получения циклического сложнополиэфирного олигомера, имеющего фурановые звенья структуры Y2, где мономерный компонент С2 содержит структуру: , и где каждая из групп В представляет собой необязательно замещенный линейный, разветвленный или циклический алкил, фенил, арил или алкиларил, где I представляет собой целое число, которое определено выше, и где n’ представляет собой целое число от 1 до 20, предпочтительно от 2 до 10, и где R3 = ОН, OR, атом галогена или О-(В-О)n’-Н, R = необязательно замещенный линейный, разветвленный или циклический алкил, фенил, арил или алкиларил, R4 = H или , где мономерный компонент D2 содержит структуры: , и где каждая из групп Х представляет собой ОН, атом галогена или необязательно замещенную алкилокси-, фенокси- или арилокси-группу, каждая из групп В представляет собой необязательно замещенный линейный, разветвленный или циклический алкил, фенил, арил или алкиларил, и n’ представляет собой целое число, описанное выше, и где структура Y2 циклического сложнополиэфирного олигомера, имеющего фурановые звенья, имеет вид: , где каждая из групп В представляет собой необязательно замещенный линейный, разветвленный или циклический алкил, фенил, арил или алкиларил, n’ представляет собой целое число, определенное выше, и m представляет собой целое число от 1 до 20, предпочтительно от 2 до 15, наиболее предпочтительно от 3 до 10: и последующую стадию (III), на которой линейные олигомерные сложные полиэфирные соединения, имеющие фурановые звенья, отделяют и удаляют из циклической олигомерной композиции.
Наверх