Силансодержащие полимеры с карбоксильными концевыми группами

Изобретение относится к полимерам с функционализованными концевыми группами, их получению и применению. Предложены полимеры с функционализованными концевыми группами, где полимеры являются диеновыми (со)полимерами, имеющими на конце полимерной цепи силансодержащую карбоксильную группу формулы (I), в которой R1, R2 являются одинаковыми или разными алкильными остатками, R3, R4 означают H, A означает двухвалентный органический остаток, который наряду с C и H содержит атом S, где силансодержащая карбоксильная группа связана с цепью полимера через один или несколько двухвалентных структурных элементов, производных от циклосилоксанов. Предложен также полимер, концевые группы которого имеют вид силансодержащих карбоксилатов, способ получения заявленных полимеров, использование в этом способе силолактонов, а также применение указанных полимеров для получения вулканизирующихся композиций, соответствующие композиции, их применение для получения шин и полученные шины. Технический результат – предложенные полимеры позволяют получить шины с улучшенными характеристиками в отношении заноса, имеющие при этом стойкость к истиранию. 8 н. и 9 з.п. ф-лы, 3 табл., 7 пр.

 

Изобретение относится к полимерам с функционализованными концевыми группами, их получению и применению.

Важными свойствами, желательными для протекторов шины, являются хорошая адгезия на сухой и мокрой поверхности, низкое сопротивление качению, а также высокая стойкость к истиранию. При этом очень сложно улучшить устойчивость шины против заноса без одновременного ухудшения сопротивления качению и стойкости к истиранию. Низкое сопротивление качению важно для низкого расхода топлива, а высокая стойкость к истиранию является решающим фактором для высокого пробега шины.

Сцепление с мокрой дорогой и сопротивление качению протектора шины зависит по большей части от механико-динамических свойств каучуков, которые используются в рецептуре. В целях снижения сопротивления качению для протекторов шин применяются каучуки с высокой эластичностью по отскоку при повышенных температурах (60°C-100°C). С другой стороны, для улучшения сцепления с мокрой дорогой выгодны каучуки с высоким коэффициентом затухания при низких температурах (0-23°C) или низкой эластичностью по отскоку в интервале 0°C-23°C. Чтобы удовлетворить этим комплексным спецификациям, для протектора используют смеси разных каучуков. Обычно применяются смеси одного или нескольких каучуков с относительно высокой температурой стеклования, как бутадиен-стирольный каучук, и одного или нескольких каучуков с относительно низкой температурой стеклования, такие как полибутадиен с высоким содержанием цис-1,4-звеньев или бутадиен-стирольный каучук с низким содержанием стирола и низким содержанием винильных групп или полученный в растворе полибутадиен со средним содержанием 1,4-цис-связей и низким содержанием винильных групп.

Содержащие двойные связи каучуки, полученные анионной полимеризацией в растворе, такие как растворный полибутадиен и растворные бутадиен-стирольные каучуки, облают преимуществами по сравнению с соответствующими эмульсионными каучуками при получении протекторов шин с низким сопротивлением качению. Преимущества заключаются, помимо прочего, в возможности регулирования содержания винильных групп и связанных с этим температуры стеклования и разветвления молекул. Отсюда при практическом применении возникают особые преимущества в отношении сцепления с мокрой дорогой и сопротивления шин качению. Значительный вклад в рассеяние энергии и тем самым в сопротивление качению протектора шины вносят свободные концы полимерных цепей и обратимое образование и деструкция сетки, которую образует использующийся в рецептуре для протектора шины наполнитель (чаще всего кремниевая кислота и/или сажа).

Введение функциональных групп на концы и/или в начало полимерных цепей позволяет физически или химически связать эти концы или начала полимерных цепей с поверхностью наполнителя. В результате ограничивается их подвижность и, тем самым, снижается рассеяние энергии при динамических нагрузках на протектор шины. Одновременно эти функциональные группы улучшают диспергирование наполнителя в протекторе шины, что может привести к ослаблению сетки наполнителя и тем самым может привести к дальнейшему снижению сопротивления качению.

С этой целью было разработано много способов модифицирования концевых групп. Например, в документе EP0180141A1 описано применение 4,4'-бис(диметиламино)бензофенона или N-метилкапролактама в качестве функционализирующих агентов. Из EP0864606A1 известно также применение этиленоксида и N-винилпирролидона. Ряд других возможных функционализирующих агентов приводится в патенте US 4417029. Способы введения функциональных групп в начало полимерной цепи посредством функциональных инициаторов анионной полимеризации описаны, например, в EP0513217A1 и EP0675140A1 (инициаторы с защищенными гидроксильными группами), US 2008/0308204A1 (инициаторы, содержащие тиоэфиры), а также в US5792820, EP0590490A1 и EP0594107A1 (амиды щелочных металлов из вторичных аминов в качестве инициаторов полимеризации).

Карбоксильная группа как высокополярный бидентатный лиганд может особенно хорошо взаимодействовать с поверхностью силикатного наполнителя в каучуковой смеси. Способы введения карбоксильных групп вдоль полимерной цепи растворных диеновых каучуков известны и описаны, например, в заявках DE2653144A1, EP1000971 A1, EP1050545A1, WO2009034001A1. Эти способы не лишены некоторых недостатков, так, например, требуются большие времена реакции, превращение функционализирующих агентов является неполным, и в результате побочных реакций происходят изменения полимерных цепей, такие как разветвление. Кроме того, эти способы не позволяют достичь особо эффективной функционализации концов полимерных цепей.

Описано также (смотри, например, US 3242129) введение карбоксильных групп на концы цепей диеновых каучуков путем реакции анионных концов полимерных цепей с CO2. Недостатком этого способа является то, что полимерный раствор необходимо приводить в контакт с газообразным CO2, что из-за высокой вязкости и обусловленного этим плохого перемешивания оказывается сложным. Кроме того, протекают плохо контролируемые реакции сочетания из-за взаимодействия более одного конца полимерных цепей с атомом углерода CO2. Это сочетание можно предотвратить путем последовательной реакции карбанионных концов полимерной цепи сначала с этиленоксидом или пропиленоксидом и последующей реакции теперь алкоксидных концов цепей с циклическим ангидридом (US 4465809). Но и здесь также имеется тот недостаток, что в высоковязкий раствор каучука необходимо вводить газообразный и к тому же очень токсичный этиленоксид или пропиленоксид. Кроме того, в результате реакции алкоксидных концов цепей с циклическим ангидридом образуются гидролизирующиеся сложноэфирные соединения, которые могут отщепиться при переработке и при позднейшем применении.

В частности, силаны и циклосилоксаны, содержащие в общей сложности по меньшей мере два галогеновых, и/или алкокси-, и/или арилокси-заместителя на кремнии, хорошо подходят для функционализации концевых групп диеновых каучуков, так как один из указанных заместителей на атоме Si легко может быть заменен в быстрой реакции замещения анионным концом цепи диенового полимера, а второй или следующие из вышеуказанных заместителей на Si доступны как функциональные группы, которые, при необходимости после гидролиза, могут взаимодействовать с наполнителем в смеси для протектора шины. Примеры таких силанов можно найти в документах US3244664, US4185042, EP077831 1A1 и US20050203251A1.

Эти силаны содержат, как правило, функциональные группы, которые напрямую соединены с атомом Si или соединены через промежуточное звено и которые могут взаимодействовать с поверхностью силикатного наполнителя в каучуковой смеси. Под такими функциональными группами подразумеваются, как правило, алкокси-группы или галогены прямо на атоме Si, а также заместители третичные амины, которые соединены с Si через промежуточное звено. Недостатками этих силанов являются возможные реакции нескольких анионных концов полимерных цепей на одну молекулу силана, отщепление нежелательных компонентов и соединение с образованием связей Si-O-Si при переработке и хранении. Введение карбоксильных групп с помощью этих силанов не описывается.

В документе WO2012/065908A1 описываются 1-окса-2-силациклоалканы в качестве функционализирующих агентов для введения гидроксильных концевых групп в диеновые полимеры. Эти 1-окса-2-силациклоалканы не имеют недостатков силанов, описанных в предыдущем абзаце, таких как реакция нескольких анионных концов полимерных цепей на молекулу силана, отщепление нежелательных компонентов и соединение с образованием связей Si-O-Si при обработке и хранении. Правда, эти функционализирующие агенты также не позволяют вводить карбоксильные группы на концы полимерных цепей.

Таким образом, стоит задача разработать полимеры с карбоксильными концевыми группами, которые не имеют недостатков уровня техники и которые позволяют, в частности, использовать хорошую химическую активность силанов в отношении концов цепей анионных полимеров.

Для решения этой задачи предлагаются полимеры с функционализованными концевыми группами, которые на конце полимерной цепи имеют силансодержащую карбоксильную группу формулы (I)

в которой

R1, R2 являются одинаковыми или разными и означают H, алкильный, алкокси-, циклоалкильный, циклоалкокси-, арильный, арилокси-, алкарильный, алкарилокси-, аралкильный или аралкокси-остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,

R3, R4 являются одинаковыми или разными и означают H, алкильный, циклоалкильный, арильный, алкарильный или аралкильный остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,

A означает двухвалентный органический остаток, который наряду с C и H может содержать один или несколько гетероатомов, предпочтительно O, N, S или Si.

Предпочтительно, предлагаемые изобретением полимеры с функционализованными концевыми группами могут являются карбоксилатами с концевыми группами формулы (II):

в которой

R1, R2 являются одинаковыми или разными и означают H, алкильный, алкокси-, циклоалкильный, циклоалкокси-, арильный, арилокси-, алкарильный, алкарилокси-, аралкильный или аралкокси-остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,

R3, R4 являются одинаковыми или разными и означают H, алкильный, циклоалкильный, арильный, алкарильный или аралкильный остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,

A означает двухвалентный органический остаток, который наряду с C и H может содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,

n означает целое число от 1 до 4,

M означает металл или получеталл с валентностью от 1 до 4, предпочтительно Li, Na, K, Mg, Ca, Zn, Fe, Co, Ni, AI, Nd, Ti, Sn, Si, Zr, V, Mo или W.

Предпочтительными полимерами для получения полимеров с функционализованными концевыми группами согласно изобретению являются диеновые полимеры и сополимеры диенов, полученные сополимеризацией диенов с винилароматическими мономерами.

В качестве диенов предпочтительны 1,3-бутадиен, изопрен, 1,3-пентадиен, 2,3-диметилбутадиен, 1-фенил-1,3-бутадиен и/или 1,3-гексадиен. Особенно предпочтительно использовать 1,3-бутадиен и/или изопрен.

В качестве винилароматических сомономеров можно применять, например, стирол, о-, м- и/или п-метилстирол, п-трет-бутилстирол, α-метилстирол, винилнафталин, дивинилбензол, тривинилбензол и/или дивинилнафталин. Особенно предпочтительно использовать стирол.

Эти полимеры получают предпочтительно анионной полимеризацией в растворе или полимеризацией на координационных катализаторах. Под координационными катализаторами в этой связи следует понимать катализаторы Циглера-Натта или монометаллические каталитические системы. Предпочтительные координационные катализаторы имеют в основе Ni, Co, Ti, Zr, Nd, V, Cr, Mo, W или Fe.

Инициаторы для анионной полимеризации в растворе являются инициаторы на основе щелочных или щелочноземельных металлов, например, метиллитий, этиллитий, изопропиллитий, н-бутиллитий, втор-бутиллитий, пентиллитий, н-гексиллитий, циклогексиллитий, октиллитий, дециллитий, 2-(6-литио-н-гексокси)тетрагидропиран, 3-(трет-бутилдиметилсилокси)-1-пропиллитий, фениллитий, 4-бутилфениллитий, 1-нафтиллитий, п-толуиллитий, а также аллиллитиевые соединения, производные от третичных N-аллиламинов, как [1-(диметиламино)-2-пропенил]литий, [1-[бис(фенилметил)амино]-2-пропенил]литий, [1-(дифениламино)-2-пропенил]литий, [1-(1-пирролидинил)-2-пропенил]литий, литийамиды вторичных аминов, как литийпирролидид, литийпиперидид, литийгексаметиленимид, литий-1-метилимидазолидид, литий-1-метилпиперазид, литийморфолид, литийдициклогексиламид, литийдибензиламид, литийдифениламид. Эти аллиллитиевые соединения и эти литийамиды могут быть получены также in situ реакцией литийорганического соединения с соответствующими третичными N-аллиламинами или с соответствующими вторичными аминами. Кроме того, можно использовать также би- и полифункциональные литийорганические соединения, например, 1,4-дилитиобутан, дилитийпиперазид. Предпочтительно использовать н-бутиллитий и втор-бутиллитий.

Кроме того, можно использовать известные агенты рандомизации и регулирования микроструктуры полимеров, например, следующие простые эфиры: диэтиловый эфир, ди-н-пропиловый эфир, диизопропиловый эфир, ди-н-бутиловый эфир, диметиловый эфир этиленгликоля, диэтиловый эфир этиленгликоля, ди-н-бутиловый эфир этиленгликоля, ди-трет-бутиловый эфир этиленгликоля, диметиловый эфир диэтиленгликоля, диэтиловый эфир диэтиленгликоля, ди-н-бутиловый эфир диэтиленгликоля, ди-трет-бутиловый эфир диэтиленгликоля, 2-(2-этоксиэтокси)-2-метилпропан, диметиловый эфир триэтиленгликоля, тетрагидрофуран, этилтетрагидрофурфуриловый эфир, гексилтетрагидрофурфуриловый эфир, 2,2-бис(2-тетрагидрофурил)пропан, диоксан, триметиламин, триэтиламин, Ν,Ν,Ν',Ν'-тетраметил-этилендиамин, N-метилморфолин, N-этилморфолин, 1,2-дипиперидинoэтан, 1,2-дипирролидиноэтан, 1,2-диморфолинoэтан, а также калиевые и натриевые соли спиртов, фенолов, карбоновых кислот, сульфокислот.

Такие типы растворной полимеризации известны и описаны, например, в работах I. Franta, Elastomers and Rubber Compounding Materials; Elsevier 1989, p. 113-131, Houben-Weyl, Methoden der Organischen Chemie, Thieme Verlag, Stuttgart, 1961, Band XIV/1 Seiten 645-673 или Band E 20 (1987), Seiten 114-134, Seiten 134-153, а также в Comprehensive Polymer Science, Vol. 4, Part II (Pergamon Press Ltd., Oxford 1989), p. 53-108.

Получение предпочтительных диеновых гомо- и сополимеров предпочтительно проводится в растворителе. В качестве растворителя для полимеризации предпочтительно используются инертные апротонные растворители, как, например, парафиновые углеводороды, такие как изомеры бутана, пентана, гексана, гептана, октана, декана, циклопентана, метилциклопентана, циклогексана, метилциклогексана, этилциклогексана или 1,4-диметилциклогексана, или алкены, как 1-бутен, или ароматические углеводороды, как бензол, толуол, этилбензол, ксилол, диэтилбензол или пропилбензол. Эти растворители можно применять по отдельности или в комбинации. Предпочтительны циклогексан, метилциклопентан и н-гексан. Возможно также смешение в полярными растворителями.

Количество растворителя в способе согласно изобретению составляет обычно от 100 до 1000 г, предпочтительно от 200 до 700 г, в расчете на 100 г суммарного количества используемых мономеров. Однако можно также проводить полимеризацию мономеров в отсутствие растворителей.

Полимеризацию можно проводить таким образом, чтобы сначала ввести мономеры и растворитель, а затем инициировать полимеризацию путем добавления инициатора или катализатора. Полимеризацию можно также осуществить способом подпитки, согласно которому реактор полимеризации заполняют путем подачи мономеров и растворителя, причем инициатор или катализатор уже присутствуют или добавляются с мономерами и растворителем. Возможны варианты, такие как сначала наполнение реактора растворителем, затем добавление инициатора или катализатора с последующим добавлением мономеров. Кроме того, полимеризацию можно вести в непрерывном режиме. Во всех случаях возможно добавка дополнительных мономеров и растворителя во время или в конце полимеризации.

Время полимеризации может колебаться в широких пределах, от нескольких минут до нескольких часов. Обычно продолжительность полимеризации составляет от 10 минут до 8 часов, предпочтительно от 20 минут до 4 часов. Она может проводиться как при нормальном давлении, так и при повышенном давлении (от 1 до 10 бар).

Неожиданно было установлено, что благодаря применению одного или нескольких силалактонов в качестве функционализирующих агентов можно получить полимеры с концевыми карбоксильными группами, не имеющие недостатков уровня техники.

Под силалактонами имеются в виду соединения формулы (III)

причем

R1, R2 являются одинаковыми или разными и означают H, алкильный, алкокси-, циклоалкильный, циклоалкокси-, арильный, арилокси-, алкарильный, алкарилокси-, аралкильный или аралкокси-остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,

R3, R4 являются одинаковыми или разными и означают H, алкильный, циклоалкильный, арильный, алкарильный или аралкильный остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,

A означает двухвалентный органический остаток, который наряду с C и H может содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,

причем предпочтительно:

- R1, R2 являются одинаковыми или разными и означают H, (C1-C24)-алкильный, (C1-C24)-алкокси-, (C3-C24)-циклоалкильный, (C3-C24)-циклоалкокси-, (C6-C24)-арильный, (C6-C24)-арилокси-, (C6-C24)-алкарильный, (C6-C24)-алкарилокси-, (C6-C24)-аралкильный или (C6-C24)-аралкокси-остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si, и

- R3, R4 являются одинаковыми или разными и означают H, (C1-C24)-алкильный, (C3-C24)-циклоалкильный, (C6-C24)-арильный, (C6-C24)-алкарильный или (C6-C24)-аралкильный остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si.

Примерами соединений формулы (III) являются:

2,2-диметил-1-окса-2-силациклогексан-6-он (1), 2,2,4-триметил-1-окса-2-силациклогексан-6-он (2), 2,2,5-триметил-1-окса-2-силациклогексан-6-он (3), 2,2,4,5-тетраметил-1-окса-2-силациклогексан-6-он (4), 2,2-диэтил-1-окса-2-силациклогексан-6-он (5), 2,2-диэтокси-1-окса-2-силациклогексан-6-он (6), 2,2-диметил-1,4-диокса-2-силациклогексан-6-он (7), 2,2,5-триметил-1,4-диокса-2-силациклогексан-6-он (8), 2,2,3,3-тетраметил-1,4-диокса-2-силациклогексан-6-он (9), 2,2-диметил-1-окса-4-тиа-2-силациклогексан-6-он (10), 2,2-диэтил-1-окса-4-тиа-2-силациклогексан-6-он (11), 2,2-дифенил-1-окса-4-тиа-2-силациклогексан-6-он (12), 2-метил-2-этенил-1-окса-4-тиа-2-силациклогексан-6-он (13), 2,2,5-триметил-1-окса-4-тиа-2-силациклогексан-6-он (14), 2,2-диметил-1-окса-4-аза-2-силациклогексан-6-он (15), 2,2,4-триметил-1-окса-4-аза-2-силациклогексан-6-он (16), 2,4-диметил-2-фенил-1-окса-4-аза-2-силациклогексан-6-он (17), 2,2-диметил-4-триметилсилил-1-окса-4-аза-2-силациклогексан-6-он (18), 2,2-диэтокси-4-метил-1-окса-4-аза-2-силациклогексан-6-он (19), 2,2,4,4-тетраметил-1-окса-2,4-дисилациклогексан-6-он (20), 3,4-дигидро-3,3-диметил-1H-2,3-бензоксасилин-1-он (21), 2,2-диметил-1-окса-2-силациклопентан-5-он (22), 2,2,3-триметил-1-окса-2-силациклопентан-5-он (23), 2,2-диметил-4-фенил-1-окса-2-силациклопентан-5-он (24), 2,2-ди(трет-бутил)-1-окса-2-силациклопентан-5-он (25), 2-метил-2-(2-пропен-1-ил)-1-окса-2-силациклопентан-5-он (26), 1,1-диметил-2,1-бензоксасилол-3(1H)-он (27), 2,2-диметил-1-окса-2-силациклогептан-7-он (28).

Синтез таких силалактонов описан, например, в работах US 2,635,109; M. Wieber, M. Schmidt, Chemische Berichte 1963, 96 (10), 2822-5; J.M. Wolcott, F.K. Cartledge, Journal of Organic Chemistry 1974, 39 (16), 2420-4; M.P. Sibi, J.W. Christensen, Tetrahedron Letters 1995, 36 (35), 6213-6; T. Linker, M. Maurer, F. Rebien, Tetrahedron Letters 1996, 37 (46), 8363-6; M. Shindo et al., Angewandte Chemie, International Edition 2004, 43 (1), 104-6.

Было установлено, что предлагаемые изобретением полимеры с функционализованными концевыми группами можно получить реакцией реакционно-способных концов полимерных цепей с силалактонами и при необходимости с последующим протонированием образующихся при этом карбоксилатных концевых групп с образованием карбоксильных концевых групп.

Таким образом, применение силалактонов в качестве агентов функционализации для получения предлагаемых изобретением полимеров с функционализованными концевыми группами формулы (I) или (II) также является объектом изобретения.

При реакции полимеров, которые содержат очень химически активные нуклеофильные концы цепей, с соединениями формулы (III), связывание полимерных цепей может происходить не только на атоме Si функционализирующего агента, но дополнительно может возникать также связывание на карбонильном атоме углерода. Это ведет к линейному присоединению полимерных цепей (схема 1). В этом случае имеется смесь полимеров. Полимерами с высокоактивными концами цепей являются, например, диеновые гомо- и сополимеры, которые получены анионной полимеризацией или полимеризацией с координационными катализаторами.

Полимер-: полимерная цепь с реакционно-способным концом

M+: противоион, например, Li+

Схема 1

Такие реакции сочетания в некоторых случаях могут быть желательными, чтобы повысить полидисперсность и тем самым повлиять на реологические свойства полимеров, такие как вязкость по Муни и хладотекучесть. В других случаях может быть выгодным подавить реакцию сочетания, чтобы получить максимально высокое число функционализованных концов полимерных цепей, что должно положительно влиять на механико-динамические свойства вулканизатов, содержащих эти полимеры.

Теперь же неожиданно было обнаружено, что реакцию сочетания согласно схеме 1 можно почти полностью подавить (<5 вес.% от полного количества полимера), если полимерные цепи, содержащие очень химически активные нуклеофильные концы, на первой стадии привести в реакцию с реагентом, который ведет к полимерам с силанольными или силанолятными концевыми группами, а на второй стадии позволить этим полимерам с силанольными или силанолятными концевыми группами реагировать с соединениями формулы (III) (схема 2). Можно также целенаправленно устанавливать желательную степень сочетания, если на первой стадии реакцию реакционно-способных нуклеофильных концов полимерных цепей с реагентом, ведущим к полимерам с силанольными или силанолятными концевыми группами, проводить не до конца.

1-ая стадия:

Схема 2

Реагенты, какие используются на первой стадии, могут привести, напрямую или опосредованно (например, в результате последующего гидролиза групп Si-Cl) к силанольным или силанолятным концевым группам. Однако предпочтительны реагенты, которые дают силанолятные концевые группы в прямой реакции. В высшей степени предпочтительны циклосилоксаны формулы (IV)

причем R5, R6 в схеме 2 и в формуле (IV) являются одинаковыми или разными и означают H, алкильный, циклоалкильный, арильный, алкарильный и аралкильный остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si.

Предпочтительными являются гексаметилциклотрисилоксан, октаметилциклотетрасилоксан, декаметилциклопентасилоксан и додекаметилциклогексасилоксан, а также смеси циклосилоксанов с разной величиной цикла.

Промежуточные продукты, получаемые согласно схеме 2, можно выделить известными специалисту методами.

Полимеры с функционализованными концевыми группами согласно изобретению предпочтительно имеют средний молекулярный вес (среднечисленный, Mn) от 10000 до 2000000 г/моль, предпочтительно от 100000 до 1000000 г/моль и температуру стеклования от -110°C до +20°C, предпочтительно от -110°C до 0°C, а также вязкость по Муни [ML1+4 (100°C)] от 10 до 200, предпочтительно от 30 до 150 единиц Муни.

Следующим объектом изобретение является способ получения предлагаемых изобретением полимеров с функционализованными концевыми группами, в соответствии с которым одно или несколько соединений формулы (III), в виде чистого вещества, раствора или суспензии, добавляют в полимеры с реакционно-способными концами цепей. Добавление предпочтительно осуществлять по окончании полимеризации, но его можно также осуществить и до достижения полной конверсии мономеров. Реакцию соединений формулы (III) с полимерами с реакционно-способными концами цепей проводят при температурах, обычно применяемых для полимеризации. Продолжительность реакции соединений формулы (III) с реакционно-способными концами полимерных цепей может составлять от нескольких минут до нескольких часов.

Количество этих соединений можно выбирать так, чтобы все реакционно-способные концы полимерных цепей прореагировали с соединениями формулы (III), или эти соединения можно использовать в недостаточном количестве. Количество используемых соединений формулы (III) может варьироваться в широком диапазоне. Предпочтительные количества составляют от 0,005 до 2 вес.%, особенно предпочтительно от 0,01 до 1 вес.%, в расчете на количество полимера.

Следующим объектом изобретения является взаимодействие полимеров с карбанионными концами цепей (полученными в результате анионной или координационной полимеризации) сначала с циклосилоксанами формулы (IV) и на следующей стадии взаимодействие полученных на первой стадии полимеров с силанольными концевыми группами с соединениями формулы (III) с получением полимеров с карбоксилатными концевыми группами. Циклосилоксаны формулы (IV) могут использоваться самостоятельно или как смесь разных циклосилоксанов. Количество циклосилоксанов можно выбирать так, чтобы все реакционно-способные концы полимерных цепей прореагировали с циклосилоксанами формулы (IV), или эти соединения можно использовать в недостаточном количестве. Количества используемых циклосилоксанов формулы (IV) могут варьироваться в широких пределах. Предпочтительные количества составляют от 0,002 до 4 вес.%, особенно предпочтительно от 0,005 до 2 вес.%, в расчете на количество полимера. Количество соединений формулы (III) на следующей стадии в идеале следует выбирать так, чтобы все имеющиеся в известных случаях карбанионные концы полимерных цепей и все концы цепей с силанольными концевыми группами реагировали с соединениями формулы (III). Предпочтительное отношение в смеси силалактона к циклосилоксану составляет от 20:1 до 1:1, особенно предпочтительно это отношение составляет от 10:1 до 1:1, в высшей степени предпочтительно от 3:1 до 1:1.

В дополнение к соединениям формулы (III) и циклосилоксанам формулы (IV) можно также использовать типичные для анионной полимеризации диенов агенты сочетания для реакции с реакционно-способными концами цепей. Примерами таких агентов сочетания являются тетрахлорид кремния, метилтрихлорсилан, диметилдихлорсилан, тетрахлорид олова, хлорид дибутилолова, тетраалкоксисиланы, диглицидиловый эфир этиленгликоля, 1,2,4-трис(хлорметил)бензол. Такие агенты сочетания можно добавлять перед добавлением соединений формулы (III), вместе с ними или после них.

После добавления соединений формулы (III) и при необходимости после реакций сочетания, перед или во время обработки силансодержащих полимеров согласно изобретению с карбоксильными концевыми группами предпочтительно добавляют обычные ингибиторы старения, такие как стерически затрудненные фенолы, ароматические амины, фосфиты, тиоэфиры. Кроме того, можно добавить обычные, использующиеся для диеновых каучуков масла-пластификаторы, такие как масла DAE (Distillate Aromatic Extract = дистиллированный ароматический экстракт), TDAE (Treated Distillate Aromatic Extract = очищенный дистиллированный ароматический экстракт), MES (Mild Extraction Solvates = сольваты мягкой экстракции), RAE (Residual Aromatic Extract = остаточный ароматический экстракт), TRAE (Treated Residual Aromatic Extract = очищенный остаточный ароматический экстракт), нафтеновые и тяжелые нафтеновые масла. Возможна также добавка наполнителей, таких как сажа и кремниевая кислота, каучуков и вспомогательных добавок для каучуков.

Удаление растворителей из процесса полимеризации можно осуществить обычным способом, таким как дистилляция, отгонка водяным паром или приложением вакуума, при необходимости при повышенной температуре.

Следующим объектом изобретения является применение предлагаемых изобретением полимеров с функционализованными концевыми группами для получения вулканизующихся каучуковых композиций.

Эти вулканизующиеся каучуковые композиции предпочтительно включают дополнительные каучуки, наполнители, реагенты для взаимодействия с каучуками, технологические добавки и масла-пластификаторы.

Дополнительными каучуками являются, например, натуральный каучук, а также синтетические каучуки. Если таковые присутствуют, их количество обычно составляет от 0,5 до 95 вес.%, предпочтительно от 10 до 80 вес.% от полного количества полимеров в смеси. Количество дополнительно добавляемых каучуков определяется соответствующим назначением смесей по изобретению. Примерами таких синтетических каучуков являются BR (полибутадиен), сополимеры акриловой кислоты с алкиловым эфиром, IR (полиизопрен), E-SBR (бутадиен-стирольные сополимеры, полученные эмульсионной полимеризацией), S-SBR (бутадиен-стирольные сополимеры, полученные полимеризацией в растворе), IIR (сополимеры изобутилена с изопреном), NBR (сополимеры бутадиена с акрилонитрилом), HNBR (частично или полностью гидрированный NBR-каучук), EPDM (тройные сополимеры этилена, пропилена и диена), а также смеси этих каучуков. Для получения шин для автомобилей представляют интерес, в частности, натуральный каучук, E-SBR, а также S-SBR с температурой стеклования выше -60°C, полибутадиеновый каучук с высоким содержание цис-звеньев (>90%), который был получен с катализаторами на основе Ni, Co, Ti или Nd, а также полибутадиеновый каучук с содержанием винильных групп до 80%, а также их смеси.

В качестве наполнителей для каучуковых композиций согласно изобретению подходят все применяющиеся в резиновой промышленности наполнители. Сюда входят как активные, так и неактивные наполнители.

Можно упомянуть, например:

- высокодисперсные кремниевые кислоты, получаемые, например, осаждением из растворов силикатов или пламенным гидролизом галогенидов кремния, с удельными поверхностями 5-1000, предпочтительно 20-400 м2/г (поверхность по БЭТ) и с размером первичных частиц 10-400 нм. При необходимости кремниевые кислоты могут также находиться в виде смешанных оксидов с оксидами других металлов, как оксиды Al, Mg, Ca, Ba, Zn, Zr, Ti;

- синтетические силикаты, как алюмосиликат, силикат щелочноземельного металла, как силикат магния или силикат кальция, с поверхностями по БЭТ 20-400 м2/г и диаметрами первичных частиц 10-400 нм;

- природные силикаты, как каолин, монтмориллонит и другие кремниевые кислоты природного происхождения;

- стекловолокна и продукты из стекловолокон (маты, прутки) или микростеклошарики;

- оксиды металлов, как оксид цинка, оксид кальция, оксид магния, оксид алюминия;

- карбонаты металлов, как карбонат магния, карбонат кальция, карбонат цинка;

- гидроксиды металлов, как, например, гидроксид алюминия, гидроксид магния;

- сульфаты металлов, как сульфат кальция, сульфат бария;

- сажа: подходящей для применения в настоящем изобретении сажей является сажа, полученная огневым способом, канальным способом, печным способом, газовым способом, термическим способом получения сажи, способом получения ацетиленовой сажи или электродуговым способом, она имеет поверхность по БЭТ 9-200 м2/г, например, сажа SAF, ISAF-LS, ISAF-HM, ISAF-LM, ISAF-HS, CF, SCF, HAF-LS, HAF, HAF-HS, FF-HS, SPF, XCF, FEF-LS, FEF, FEF-HS, GPF-HS, GPF, APF, SRF-LS, SRF-LM, SRF-HS, SRF-HM и MT, например, сажи N110, N219, N220, N231, N234, N242, N294, N326, N327, N330, N332, N339, N347, N351, N356, N358, N375, N472, N539, N550, N568, N650, N660, N754, N762, N765, N774, N787 и N990 согласно ASTM;

- каучуковые гели, в частности, на основе BR, E-SBR и/или полихлоропрена с размером частиц от 5 до 1000 нм.

Предпочтительно, в качестве наполнителей используются высокодисперсные кремниевые кислоты и/или сажа.

Указанные наполнители могут применяться самостоятельно или в смеси. В одном особенно предпочтительном варианте осуществления каучуковые композиции содержат в качестве наполнителей смесь светлых наполнителей, таких как высокодисперсные кремниевые кислоты, и сажи, причем соотношение в смеси между светлыми наполнителями и сажей составляет от 0,01:1 до 50:1, предпочтительно от 0,05:1 до 20:1.

При этом наполнители используются в количестве от 10 до 500 весовых частей на 100 весовых частей каучука. Предпочтительно используются количества в диапазоне от 20 до 200 весовых частей.

В следующем варианте осуществления изобретения каучуковые композиции дополнительно содержат вспомогательные добавки для каучука, которые, например, улучшают технологические свойства каучуковых композиций, служат для сшивки каучуковых композиций, улучшают физические свойства вулканизатов, получаемых из каучуковых композиций согласно изобретению, для их конкретного назначения, улучшают взаимодействие между каучуком и наполнителем или служат для связывания каучука с наполнителем.

Вспомогательные добавки в каучук представляют собой, например, сшивающие агенты, как, например, сера или соединения - доноры серы, а также ускорители реакции, ингибиторы старения, термостабилизаторы, светостабилизаторы, антиозонанты, технологические добавки, пластификаторы, средства для повышения клейкости, порообразователи, красители, пигменты, воски, мягчители, органические кислоты, силаны, замедлители, оксиды металлов, масла-пластификаторы, как, например, масла DAE (Distillate Aromatic Extract = дистиллированный ароматический экстракт), TDAE (Treated Distillate Aromatic Extract = очищенный дистиллированный ароматический экстракт), MES (Mild Extraction Solvates = сольваты мягкой экстракции), RAE (Residual Aromatic Extract = остаточный ароматический экстракт), TRAE (Treated Residual Aromatic Extract = очищенный остаточный ароматический экстракт), нафтеновые и тяжелые нафтеновые масла, а также активаторы.

Полное количество вспомогательных добавок в каучук составляет от 1 до 300 весовых частей в расчете на 100 весовых частей всего каучука. Предпочтительно вспомогательные добавки в каучук используются в количестве от 5 до 150 весовых частей.

Получение вулканизующихся каучуковых композиций можно осуществить одностадийным или многостадийным способом, причем предпочтительны 2-3 ступени смешения. Так, например, добавление серы и ускорителя может происходить на отдельной ступени смешения, например, на валке, при этом предпочтительны температуры в диапазоне от 30°C до 90°C. Добавление серы и ускорителя предпочтительно проводится на последней ступени смешения.

Агрегатами, подходящими для получения вулканизующихся каучуковых композиций, являются, например, валки, пластикаторы, закрытые резиносмесители или смесительные экструдеры.

Таким образом, вулканизующиеся каучуковые композиции, содержащие полимеры с функционализованными концевыми группами формул (I) или (II), являются следующим объектом изобретения.

Следующим объектом изобретения является применение предлагаемых изобретением вулканизующихся каучуковых композиций для получения резины, в частности, для производства шин, в частности, протекторов шин, которые имеют особенно низкое сопротивление качению при высоком сцеплении с мокрой дорогой и высокой стойкостью к истиранию.

Вулканизующиеся каучуковые композиции согласно изобретению подходят также для получения формованных изделий, например, оболочек кабеля, шлангов, приводных ремней, конвейерных лент, покрытий валков, подошв для обуви, уплотнительных колец и амортизирующих элементов.

Следующие примеры служат для пояснения изобретения, однако не имеют при этом ограничительного характера.

Примеры

Пример 1: Синтез нефункционализованного бутадиен-стирольного сополимера (сравнительный пример)

В инертизированный 20-л реактор вводили 8,5 кг гексана, 1185 г 1,3-бутадиена, 315 г стирола, 8,6 ммоль 2,2-бис(2-тетрагидрофурил)пропана, а также 11,3 ммоль бутиллития и содержимое нагревали до 60°C. При перемешивании проводили полимеризацию 25 минут при 60°C. Затем добавляли 11,3 ммоль цетилового спирта для обрыва анионных концов полимерных цепей, сливали раствор каучука, стабилизировали добавлением 3 г Irganox® 1520 (2,4-бис(октилтиометил)-6-метилфенол)) и растворитель удаляли путем отгонки водяным паров. Каучуковую крошку сушили при 65°C в вакууме.

Пример 2: Синтез бутадиен-стирольного сополимера с силанoльными концевыми группами путем реакции с циклосилоксаном (сравнительный пример)

Действовали как в примере 1. Однако вместо цетилового спирта добавляли эквимолярное бутиллитию количество гексаметилциклотрисилоксана (в виде раствора в циклогексане) и затем содержимое реактора грели еще 20 минут при 60°C.

Пример 3: Синтез силансодержащего бутадиен-стирольного сополимера с концевыми карбоксильными группами путем реакции с циклосилоксаном, а затем с силалактоном (согласно изобретению)

Действовали как в примере 2. Через 20 минут после добавления гексаметилциклотрисилоксана дополнительно добавляли эквимолярное бутиллитию и гексаметилциклотрисилоксану количество 2,2-диметил-1-окса-4-тиа-2-силациклогексан-6-она (в виде раствора в толуоле) и грели еще 20 минут при 60°C.

Пример 4: Синтез силансодержащего бутадиен-стирольного сополимера с концевыми карбоксильными группами и с третичной аминогруппой в начале цепи путем реакции с циклосилоксаном, а затем с силалактоном (согласно изобретению)

Действовали как в примере 3. Однако перед добавлением бутиллития добавляли эквимолярное количество пирролидина.

Пример 5: Синтез силансодержащего бутадиен-стирольного сополимера с концевыми гидроксильными группами путем реакции с 1-окса-2-силациклоалканом (сравнительный пример)

Действовали как в примере 2. Однако вместо гексаметилциклотрисилоксана добавляли эквимолярное бутиллитию количество 2,2,4-триметил-1-окса-4-аза-2-силациклогексана (в виде раствора в гексане).

Полимерные свойства бутадиен-стирольных сополимеров из примеров 1-5 сведены в таблице 1. Из таблицы 1 видно, что силансодержащие полимеры с концевыми карбоксильными группами из примеров 3 и 4 согласно изобретению при том же уровне молекулярного веса и полидисперсности, что и полимеры из сравнительных примеров 1, 2 и 5, имеют заметно более высокую вязкость по Муни и заметно более низкие значения хладотекучести. Низкие значения хладотекучести выгодны, так как соответствующие каучуки при хранении имеют меньшую склонность к текучести и, тем самым, лучшую стабильность формы.

Примеры 6 a-e: Каучуковые композиции

Готовили каучуковые композиции для протектора шины, которые содержат бутадиен-стирольные сополимеры из примеров 1-5. Компоненты перечислены в таблице 2. Каучуковые композиции (без серы и ускорителя) получали в 1,5-литровом пластикаторе. Затем на валке при 40°C добавляли компоненты серу и ускоритель.

Таблица 1
Свойства бутадиен-стирольных сополимеров из примеров 1-5
SSBR из примера Функционализирующий агент Содержание винила a) [вес.%] Содержание стирола a) [вес.%] Tg b) [°C] Mn c) [kг/моль] Mw/Mn c) ML1+4 d) [ME] Хладотекучесть e) [мг/мин]
1 (сравнительный) - 51,5 20,9 -23 244 1,10 42 21
2 (сравнительный) гексаметил-циклотрисилоксан 50,6 21,3 -24 239 1,10 41 21
3 (согласно изобретению) 1. гексаметил-циклотрисилоксан
2. силалактон
50,7 21,0 -24 246 1,09 79 0
4 (согласно изобретению) 1. гексаметил-циклотрисилоксан
2. силалактон
49,9 21,9 -24 183 1,22 56 9
5 (сравнительный) 1-окса-2-силациклоалкан 50,9 21,5 -23 220 1,15 37 25
a) Определение содержаний винильных групп и стирола методом ИК-спектроскопии с Фурье-преобразованием
b) Определение температуры стеклования методом ДСК
c) Определение молекулярных масс Mn и полидисперсности Mw/Mn методом ГПХ (калибровка по полистиролу)
d) Определение вязкости по Муни при 100°C
e) Определение хладотекучести при 50°C

Таблица 2
Компоненты каучуковых композиций для протекторов шин (данные в phr: весовые части на 100 весовых частей каучука)
Ср. пример 6a Ср. пример 6b Пример 6с по изобретению Пример 6d по изобретению Ср. пример 6e
бутадиен-стирольный сополимер из примера 1 70 0 0 0 0
бутадиен-стирольный сополимер из примера 2 0 70 0 0 0
бутадиен-стирольный сополимер из примера 3 0 0 70 0 0
бутадиен-стирольный сополимер из примера 4 0 0 0 70 0
бутадиен-стирольный сополимер из примера 5 0 0 0 0 70
полибутадиен с высоким содержанием цис-звеньев (BUNA™ CB 24 от Lanxess Deutschland GmbH) 30 30 30 30 30
кремниевая кислота (Ultrasil® 7000) 90 90 90 90 90
сажа (Vulcan® J/N 375) 7 7 7 7 7
масло TDAE (Vivatec 500) 36,3 36,3 36,3 36,3 36,3
технологическая добавка (Aflux 37) 3 3 3 3 3
стеариновая кислота (Edenor C18 98-100) 1 1 1 1 1
ингибитор старения (Vulkanox® 4020/LG от Lanxess Deutschland GmbH) 2 2 2 2 2
ингибитор старения (Vulkanox® HS/LG от Lanxess Deutschland GmbH) 2 2 2 2 2
оксид цинка (цинковые белила липотон) 3 3 3 3 3
воск (Antilux 654) 2 2 2 2 2
силан (Si 69® от Evonik) 7,2 7,2 7,2 7,2 7,2
дифенилгуанидин (Rhenogran DPG-80) 2,75 2,75 2,75 2,75 2,75
сульфенамид (Vulkacit® NZ/EGC от Lanxess Deutschland GmbH) 1,6 1,6 1,6 1,6 1,6
сера (молотая сера 90/95 Chancel) 1,6 1,6 1,6 1,6 1,6
сульфонамид (Vulkalent® E/C) 0,2 0,2 0,2 0,2 0,2

Примеры 7a-e: Свойства вулканизата

Каучуковые композиции для протектора шины из примеров 6a-e согласно таблице 2 вулканизовали 20 минут при 160°C. Свойства соответствующих вулканизатов приведены в таблице 3 как примеры 7a-e. Свойствам вулканизованных образцов из сравнительного примера 7a с нефункционализованным бутадиен-стирольным сополимером был присвоен показатель 100. Все значения выше 100 в таблице 3 означают соответствующее процентное улучшение исследуемого свойства.

Таблица 3
Свойства вулканизата
Ср. пример 7a Ср. пример 7b Пример 7с по изобретению Пример 7d по изобретению Cр. пример 7e
Бутадиенстирольный сополимер в вулканизате:
бутадиен-стирольный сополимер из примера 1 X
бутадиен-стирольный сополимер из примера 2 X
бутадиен-стирольный сополимер из примера 3 X
бутадиен-стирольный сополимер из примера 4 X
бутадиен-стирольный сополимер из примера 5 X
Свойства вулканизата:
tgδ при 0°C (динамическое демпфирование при 10 Гц) 100 112 125 125 115
tgδ при 60°C (динамическое демпфирование при 10 Гц) 100 110 143 145 117
tgδ-максимум (MTS-амплитудная модуляция при 1 Гц, 60°C) 100 115 134 139 117
δG* (G*@0,5% - G*@15% из MTS-амплитудной модуляции) [МПа] 100 159 254 255 189
эластичность по отскоку при 60°C [%] 100 113 118 121 114
износ (DIN 53516) [мм3] 100 119 135 130 113

Эластичность по отскоку при 60°C, динамическое демпфирование tgδ при 60°C, максимальный tgδ при амплитудной модуляции, а также разность модулей δG* между низким и высоким удлинением в амплитудной модуляции являются индикаторами сопротивления качению шины. Как видно из таблицы 3, вулканизаты из примеров 7c и 7d согласно изобретению отличаются особенно значительным улучшением этих важных для сопротивления качению свойств.

Динамическое демпфирование tgδ при 0°C является индикатором для сцепления шин с мокрой дорогой. Как следует из таблицы 3, вулканизаты из примеров 7c и 7d согласно изобретению отличаются особенно значительным улучшением этих важного для сцепления с мокрой дорогой свойства.

Износ согласно стандарту DIN является показателем прочности на истирание протектора шины. Как видно из таблицы 3, вулканизаты из примеров 7c и 7d согласно изобретению отличаются особенно значительным улучшением этого свойства.

1. Полимеры с функционализованными концевыми группами, отличающиеся тем, что указанные полимеры на конце полимерной цепи имеют силансодержащую карбоксильную группу формулы (I)

в которой

R1, R2 являются одинаковыми или разными и означают алкильный остаток,

R3, R4 означают H,

A означает двухвалентный органический остаток, который наряду с C и H содержит атом S,

где данная силансодержащая карбоксильная группа связана с цепью полимера через один или несколько двухвалентных структурных элементов формулы (V)

предпочтительно производных от циклосилоксанов, особенно предпочтительно циклосилоксанов формулы (IV)

причем R5, R6 в формуле (IV) являются одинаковыми или различными и означают H, алкильный, циклоалкильный, арильный, алкарильный или аралкильный остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si, и наиболее предпочтительно представляют собой гексаметилциклотрисилоксан, октаметилциклотетрасилоксан, декаметилциклопентасилоксан или додекаметилциклогексасилоксан, и

где полимеры являются диеновыми полимерами, предпочтительно полибутадиеном или полиизопреном, или диеновыми сополимерами, полученными сополимеризацией диенов с винилароматическими мономерами, предпочтительно сополимерами бутадиена и изопрена, сополимерами бутадиена и стирола, сополимерами изопрена и стирола или тройными сополимерами бутадиена, изопрена и стирола.

2. Полимеры с функционализованными концевыми группами, отличающиеся тем, что концевые группы полимеров имеют вид карбоксилатов формулы (II)

в которой

R1, R2 являются одинаковыми или разными и означают алкильный остаток,

R3, R4 означают H,

A означает двухвалентный органический остаток, который наряду с C и H содержит атом S,

n означает целое число от 1 до 4,

M означает металл или полуметалл с валентностью от 1 до 4, предпочтительно Li, Na, K, Mg, Ca, Zn, Fe, Co, Ni, AI, Nd, Ti, Sn, Si, Zr, V, Mo или W,

где данная силансодержащая карбоксильная группа связана с цепью полимера через один или несколько двухвалентных структурных элементов формулы (V)

предпочтительно производных от циклосилоксанов, особенно предпочтительно циклосилоксанов формулы (IV)

причем R5, R6 в формуле (IV) являются одинаковыми или различными и означают H, алкильный, циклоалкильный, арильный, алкарильный или аралкильный остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si, и наиболее предпочтительно представляют собой гексаметилциклотрисилоксан, октаметилциклотетрасилоксан, декаметилциклопентасилоксан или додекаметилциклогексасилоксан, и

где полимеры являются диеновыми полимерами, предпочтительно полибутадиеном или полиизопреном, или диеновыми сополимерами, полученными сополимеризацией диенов с винилароматическими мономерами, предпочтительно сополимерами бутадиена и изопрена, сополимерами бутадиена и стирола, сополимерами изопрена и стирола или тройными сополимерами бутадиена, изопрена и стирола.

3. Полимеры с функционализованными концевыми группами по п. 1 или 2, отличающиеся тем, что полимер получен реакцией реакционно-способных концов полимерных цепей с одним или несколькими функционализирующими агентами в виде силалактонов.

4. Полимеры с функционализованными концевыми группами по п. 3, отличающиеся тем, что силалактоны являются соединениями формулы (III)

в которой

R1, R2 являются одинаковыми или разными и означают алкильный остаток,

R3, R4 означают H,

A означает двухвалентный органический остаток, который наряду с C и H содержит атом S.

5. Полимеры с функционализованными концевыми группами по п. 1 или 2, отличающиеся тем, что полимеры имеют средний молекулярный вес (среднечисленный, Mn) от 10000 до 2000000 г/моль, предпочтительно от 100000 до 1000000 г/моль.

6. Полимеры с функционализованными концевыми группами по п. 1 или 2, отличающиеся тем, что полимеры имеют температуру стеклования от -110°C до +20°C, предпочтительно от -110°C до 0°C.

7. Применение силалактонов для получения полимеров с функционализованными концевыми группами по одному из пп. 1-6, где силалактоны являются соединениями формулы (III)

в которой

R1, R2 являются одинаковыми или разными и означают алкильный остаток,

R3, R4 означают H,

A означает двухвалентный органический остаток, который наряду с C и H содержит атом S.

8. Способ получения полимеров с функционализованными концевыми группами по одному из пп. 1-6, отличающийся тем, что к полимерам с реакционно-способными концами полимерных цепей добавляют один или несколько силалактонов, где полимеры являются диеновыми полимерами, предпочтительно полибутадиеном или полиизопреном, или диеновыми сополимерами, полученными сополимеризацией диенов с винилароматическими мономерами, предпочтительно сополимерами бутадиена и изопрена, сополимерами бутадиена и стирола, сополимерами изопрена и стирола или тройными сополимерами бутадиена, изопрена и стирола, и

силалактоны являются соединениями формулы (III)

в которой

R1, R2 означают алкильный остаток,

R3, R4 означают H,

A означает двухвалентный органический остаток, который наряду с C и H содержит атом S,

причем после полимеризации и перед добавлением силалактонов используют циклосилоксаны формулы (IV)

где R5, R6 в формуле (IV) являются одинаковыми или разными и означают H, алкильный, циклоалкильный, арильный, алкарильный или аралкильный остатки, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si, и предпочтительно используют циклосилоксаны, представляющие собой гексаметилциклотрисилоксан, октаметилциклотетрасилоксан, декаметилциклопентасилоксан или додекаметилциклогексасилоксан.

9. Способ по п. 8, отличающийся тем, что добавление силалактонов проводят по окончании полимеризации.

10. Способ по п. 8 или 9, отличающийся тем, что силалактоны используются в избытке, стехиометрическом количестве или в недостатке по отношению к количеству полимера.

11. Способ по п. 8 или 9, отличающийся тем, что количество силалактонов составляет от 0,005 до 2 вес.%, предпочтительно от 0,01 до 1 вес.% в расчете на количество полимера.

12. Способ по п. 8 или 9, отличающийся тем, что количество циклосилоксанов формулы (IV) лежит в интервале от 0,002 до 4 вес.%, предпочтительно от 0,005 до 2 вес.%, в расчете на количество полимера.

13. Способ по п. 8 или 9, отличающийся тем, что количественное соотношение компонентов силалактона к циклосилоксану составляет от 20:1 до 1:1, предпочтительно от 10:1 до 1:1, особенно предпочтительно от 3:1 до 1:1.

14. Применение полимеров с функционализованными концевыми группами по любому из пп. 1-6 для получения вулканизирующихся каучуковых композиций.

15. Вулканизирующиеся каучуковые композиции, содержащие

a) полимеры с функционализованными концевыми группами по любому из пп. 1-6, а также

b) ингибиторы старения, масла, наполнители, каучуки и/или другие вспомогательные средства для каучука.

16. Применение вулканизирующихся каучуковых композиций по п. 15 для получения шин.

17. Формованные изделия, представляющие собой шины, которые могут быть получены из вулканизирующихся каучуковых композиций по п. 15.



 

Похожие патенты:

Изобретение относится к полимерам с функционализированными концевыми группами со сниженной текучестью на холоде и хорошей перерабатываемостью, их получению и применению.

Настоящее изобретение относится к искусственному, не содержащему вулканизатора латексу содержащий воду и один или несколько олефин-ненасыщенных радиальных блок-сополимеров стирола общей формулы: A-B-Y-(B-A)n, где каждое А независимо друг от друга представляет собой полимерный блок, состоящий по меньшей мере из 90 мол.% стирольного мономера; содержание А по массе от общей массы полимера (PSC) находится в интервале 8-13%; Y является остатком агента сочетания, имеющего функциональность более 2; степень разветвления (DoB) равна n+1, где n представляет собой целое число от 2 до 5; каждое В независимо друг от друга представляет собой олефин-ненасыщенный полимерный блок, состоящий по меньшей мере из 90 мол.% одного или нескольких сопряженных диенов; блок-сополимер стирола имеет эффективность связывания (CE) по меньшей мере 90%; каждый блок А, независимо, имеет средневесовую молекулярную массу (ММ А) в интервале от 9000 до 15000, и каждый блок В, независимо, имеет средневесовую молекулярную массу (ММ B) в интервале от 75000 до 150000, где молекулярные массы определяют в соответствии с ASTM 3536 с использованием монодисперсных полистирольных стандартов, диспергированный в указанной воде в количестве от 20 до 80% по массе от комбинации воды и блок-сополимера стирола; (a) тио-функционализированный фенольный антиоксидант, или (b) группу анитиоксидантов, содержащий первичный фенольный антиоксидант и тиоэфир в качестве вторичного антиоксиданта; или (c) сочетание (a) и (b); и где количество тио-функционализированного фенольного антиоксиданта находится в интервале от 0,1 до 3,0 массовых частей, предпочтительно в интервале от 0,15 до 2,5 массовых частей, и более предпочтительно в интервале от 0,2 до 2,0 массовых, на 100 массовых частей каучука, составляющего каучуковый латекс (м.ч.), и/или в котором количество первичного антиоксиданта и тиоэфира, каждый независимо друг от друга, находится в интервале от 0,1 до 3,0 массовых частей, предпочтительно в интервале от 0,15 до 2,5 массовых частей и более предпочтительно в интервале от 0,2 до 2,0 массовых частей на 100 массовых частей каучука, составляющего каучуковый латекс (м.ч.).

Изобретение относится к кабельной промышленности, а именно к полимерным электроизоляционным композициям, предназначенным для применения в конструкциях кабельных изделий, эксплуатирующихся в условиях повышенной пожароопасности и пониженных температур при воздействии дизельного топлива и смазочных масел.

Изобретение относится к способу получения привитых полимеров из полимера на основе конъюгированных звеньев диена и привитого компонента-производного тиола и может быть использовано для битум-полимерной композиции.

Изобретение относится к модифицированному наполнителю, включающему наполнитель, содержащий адсорбированный на нем триазол, имеющий следующие формулы: где Zb представляет собой алкиленовую C1-C4-группу, где b равно 0 или 1; X представляет собой H, NH2, SH, NHNH2, CHO, COOR, COOH, CONR2, CN, CH3, OH, NDD′ или CF3; Y представляет собой H или NH2; A является функциональной группой, которая представляет собой SkR, SSO3H, SO2NRR′, SO2SR, SNRR′, SNQ, SO2NQ, S-(1,4-пиперазиндиил)-SR, 2-(1,3-дитианил) или 2-(1,3-дитиоланил); где R и R′, которые являются одинаковыми или различными, представляют собой водород; разветвленный или неразветвленный C1-C12-алкил, алкенил, алкинил; арил; гетероарил; алкиларил; арилалкил, арилен, гетероарилен или алкиларилен; k равно целому числу от 1 до 8, если R представляет собой H, а в остальных случаях k равно 2-8; Q представляет собой (CH2)w, (CH2)xO(CH2)z, (CH2)xNR(CH2)z или (CH2)xS(CH2)z, где x равно 1-6, z равно 1-6, и w равно 2-6; E представляет собой группу Sw, где w равно 2-8, SSO, SSO2, SOSO2, SO2SO2; и указанный триазол может быть, но необязательно, N-замещен NDD′-заместителем, где D и D′, которые являются одинаковыми или различными, представляют собой H или C1-C4алкил.

Настоящее изобретение относится к термопластичной эластомерной композиции и способу ее получения. Описана термопластичная эластомерная композиция на основе смеси блок-сополимера стирола с диеновыми сополимерами для изоляции гибких кабелей, для изготовления уплотнителей окон и дверей, прокладок, кровельных материалов, деталей автомобилей, для изготовления товаров народного потребления, включающая эластичную каучуковую фазу, термопластичную полиолефиновую фазу, пластификатор, наполнитель и стабилизатор, в качестве эластичной каучуковой фазы берут блок-сополимер стирола с диеновыми сополимерами, который имеет трехблочную структуру, а именно два жестких кристаллических блока полистирола, сопряженных между собой гибкими блоками сополимеров диеновых мономеров, при этом используют сополимеры с содержанием полистирольных звеньев не менее 25 мас.%, а именно в качестве описанных блок-сополимеров выбирают стирол-этилен/бутилен-стирольный блок-сополимер, либо стирол-этилен/пропилен-стирольный блок-сополимер, либо стирол-(этилен-этилен/пропилен)-стирольный блок-сополимер, либо их комбинации с молекулярной массой от 300000 до 600000 г/моль, в качестве термопластичной полиолефиновой фазы берут комбинацию кристаллического полимера, который выбирают из ряда: полиолефины, а именно полиэтилен низкого или высокого давления (ПЭНД или ПЭВД), полипропилен (ПП) гомополимер, статистические или рандом сополимеры, c добавлением сополимера этилена с винилацетатом (СЭВА) с содержанием винилацетатных групп не менее 10%, в качестве пластификатора выбирают минеральное парафиновое масло, наполнитель выбирают из карбонат кальция, талька, каолина, углеродной сажи, а также их комбинаций, в качестве стабилизаторов выбирают аминные или фенольные антиоксиданты, причем указанные компоненты берут в следующем соотношении: эластичная фаза стирольного блок-сополимера от 15 до 80 мас.%, термопластичная полиолефиновая фаза от 0,1 до 60 мас.%, минеральное парафиновое масло от 0,1 до 90 мас.%, наполнитель от 0,1 до 80 мас.%, термостабилизатор 0,1 до 5 мас.%.

Настоящее изобретение относится к улучшенному стирол-бутадиеновому каучуку. Описана композиция для получения изделия, содержащая растворный стирол-бутадиеновый каучук, где стирол-бутадиеновый каучук до какой-либо вулканизации характеризуется следующими критериями: (a) две и более части в одной полимерной цепи, которые несовместимы друг с другом; (b) две и более температуры стеклования частей каучука (а), которые разнятся, по меньшей мере, приблизительно на 6°C; (c) два и более значения параметра растворимости δ частей каучука (а), которые различаются, по меньшей мере, более чем приблизительно на 0,65 (Дж/см3)0,5; (d) две и более части каучука, которые разнятся по уровню содержания стирола, по меньшей мере, приблизительно на 20 массовых процентов в расчете на совокупную массу каждой части; где стирол-бутадиеновый каучук содержит, по меньшей мере, часть, которая совместима со вторым каучуком, и часть, которая несовместима с упомянутым тем же самым вторым каучуком, где, по меньшей мере, часть стирол-бутадиенового каучука подвергают функционализации по концам цепей; где часть стирол-бутадиенового каучука, которую подвергают функционализации по концам цепей, характеризуется меньшим уровнем содержания стирола, чем часть стирол-бутадиенового каучука, которую не подвергают функционализации по концам цепей; и где стирол-бутадиеновый каучук подвергают реакции сочетания в степени, доходящей вплоть до 40% (масс.) в расчете на совокупную массу каучука.

Изобретение относится к бесцветному синтетическому вяжущему, которое находит дорожно-промышленное применение. Бесцветное синтетическое вяжущее содержит масло растительного происхождения, смолу нефтяного происхождения и полимер.

Изобретение относится к стабилизированным полимерным композициям, содержащим бромированный полимерный антипирен, предназначенным, в частности, для получения пеноматериала.

Изобретение относится к композиции, содержащей сшитый интерполимер. Композиция включает сшитый интерполимер, содержащий одно или более мономерных звеньев на основе диена и сшитых тетраалкоксисилановым сшивающим агентом.

Изобретение относится к полимерам с функционализированными концевыми группами со сниженной текучестью на холоде и хорошей перерабатываемостью, их получению и применению.

Изобретение относится к способу получения новой гелевой структурированной системы для хранения и транспортировки диэтилового эфира. Предложен способ, заключающийся в том, что диэтиловый эфир смешивают с пероксидом общей формулы ROOH (I), где R=Н или R1R2C(OOR3), где R1=СН2СН(СН3)2, R2=СН3 или R1=R2=н-бутил или R1+R2=(СН2)4, (СН2)5, (СН2)6, (СН2)7, (СН2)11, (СН2)2СН(СН3)(СН2)2, (СН2)2СНС(СН3)3(СН2)2, 2-адамантилил; R3=Н либо R4R5C(OOH), где R4+R5=(СН2)5, (СН2)2СН(СН3)(СН2)2, (СН2)6, (СН2)11, тетраэтоксисиланом и кислотным катализатором, и процесс проводят при мольном соотношении пероксид:тетраэтоксисилан:кислотный катализатор (4-8):1,0:(0,5-2,0) и объемном соотношении диэтилового эфира, равном 3,0-5,0 мл на 1,0 ммоль тетраэтоксисилана.

Изобретение относится к способу получения растворимых полиметилсилсесквиоксанов из метилтриалкоксисиланов. Предложен способ получения растворимых в органических растворителях полиметилсилсесквиоксанов гидролитической поликонденсацией метилтриалкоксисилана общей формулы MeSi(OAlk)3, где Alk обозначает C1-C3 алкил, в закрытой системе при температуре 50-180°C и давлении 0,1-0,2 МПа.

Изобретение относится к способам получения алкоксисиланов. Предложен способ проведения контролируемого гидролиза и конденсации алкоксисилана, содержащего эпоксидные функциональные группы, и возможно другого алкоксисилана с органическими функциональными группами, при этом на один моль алкоксильной функции в используемых силанах используют от 0,001 до ≤5 молей воды и кроме борной кислоты в качестве катализатора гидролиза и участвующей в конденсации компоненты не используют никакие другие катализаторы гидролиза или, соответственно, конденсации, а образующиеся в результате взаимодействия продукты конденсации основаны на Si-O-B-связях и/или на Si-O-Si-связях.

Изобретение относится к композиции для покрытий. .

Изобретение относится к новым химическим соединениям, используемым для модификации волокнистых материалов, и способам их получения. .

Изобретение относится к области синтеза кремнийорганических соединений. .

Изобретение относится к способу гидролиза метилтрихлорсилана и получаемому этим способом продукту, который может быть использован в качестве исходного для получения адсорбентов для техники и медицины, для производства гидрофобизирующих составов, наполнителей в производстве строительных материалов.

Изобретение относится к покрывающим композициям для нанесения покрытия на упаковку. Покрывающая композиция содержит гибридную латексную эмульсию, полученную смешиванием этиленненасыщенного мономерного компонента и стабилизатора в носителе, с образованием мономерной эмульсии, и взаимодействием мономерной эмульсии с инициатором формирования гибридной латексной эмульсии.

Изобретение относится к полимерам с функционализованными концевыми группами, их получению и применению. Предложены полимеры с функционализованными концевыми группами, где полимеры являются диеновыми полимерами, имеющими на конце полимерной цепи силансодержащую карбоксильную группу формулы, в которой R1, R2 являются одинаковыми или разными алкильными остатками, R3, R4 означают H, A означает двухвалентный органический остаток, который наряду с C и H содержит атом S, где силансодержащая карбоксильная группа связана с цепью полимера через один или несколько двухвалентных структурных элементов, производных от циклосилоксанов. Предложен также полимер, концевые группы которого имеют вид силансодержащих карбоксилатов, способ получения заявленных полимеров, использование в этом способе силолактонов, а также применение указанных полимеров для получения вулканизирующихся композиций, соответствующие композиции, их применение для получения шин и полученные шины. Технический результат – предложенные полимеры позволяют получить шины с улучшенными характеристиками в отношении заноса, имеющие при этом стойкость к истиранию. 8 н. и 9 з.п. ф-лы, 3 табл., 7 пр.

Наверх