Способ определения плотности атмосферы на высоте полета космического аппарата

Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов. При этом измеряют параметры движения центра масс и параметры вращательного движения КА. По параметрам ориентации КА и положению его подвижных частей определяют площадь миделя КА. Гасят возмущающие воздействия на калиброванный объект (КО), свободно перемещаемый внутри КА, и измеряют параметры движения КО относительно корпуса КА, в т.ч. – непрерывно с момента, когда эти параметры станут менее заданных значений, до момента контакта КО с корпусом КА. Плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, а также – по векторам расстояния и ускорения движения центра масс КО относительно центра масс КА. Технический результат состоит в возможности определения локальной плотности атмосферы по параметрам относительного движения КО. 1 з.п. ф-лы.

 

Изобретение относится к области космической техники и может быть использовано при определении плотности атмосферы на высоте полета космического аппарата (КА).

Известен способ определения плотности атмосферы по модели, описанной в государственном стандарте ГОСТ 4401-81 Атмосфера стандартная. Параметры. Данный ГОСТ устанавливает числовые значения основных параметров атмосферы для высот до 1200 км как функции высоты. Недостаток указанной «статической» модели атмосферы заключается в том, что в ней не предусмотрен учет изменения значений параметров атмосферы во времени, в частности учет переменного уровня солнечной активности и других космических факторов (Модель космоса. Том 2. НИИЯФ МГУ, 1983; Гальперин Ю.И., Дмитриев А.В., Зеленый Л.М., Панасюк Л.М. Влияние космической погоды на безопасность авиационных и космических полетов. «Полет 2001»).

Недостаток способа частично устраняется с использованием модели, описанной в государственном стандарте ГОСТ 25645.302-83 Расчеты баллистические искусственных спутников Земли. Методика расчета индексов солнечной активности.

Данный ГОСТ устанавливает методику расчета индексов солнечной активности (индексы W и F10.7) для интервалов времени прогнозирования условий движения КА от 4 мес до 11 лет при проведении проектных баллистических расчетов.

Наиболее близким из аналогов, принятым за прототип, является способ определения плотности атмосферы при баллистическом обеспечении полета КА, включающий измерение параметров движения КА и определение плотности атмосферы с учетом координат местоположения КА (ГОСТ 25645.166-2004. Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли - прототип). Указанный стандарт определяет соотношения для расчета значений параметров плотности атмосферы Земли в диапазоне высот 120-1500 км для различных уровней солнечной активности при известных дате, времени и координатах точки пространства, которую пролетает КА.

Недостатком способа-прототипа является то, что при его использовании точность определения плотности атмосферы Земли ограничена точностью модельных расчетов, не учитывающих фактическое состояние атмосферы в текущий момент времени в конкретных точках космического пространства, составляющих орбиту КА.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности определения плотности атмосферы Земли.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в определении плотности атмосферы на высоте полета КА с инерционными исполнительными органами по измерениям параметров относительного движения свободно перемещаемого калиброванного объекта внутри корпуса КА.

Технический результат достигается тем, что в способе определения плотности атмосферы на высоте полета КА, включающем измерение параметров движения КА с инерционными исполнительными органами и определение плотности атмосферы с учетом координат местоположения КА, дополнительно на участке орбиты с отключенными двигателями КА поддерживают ориентацию КА с помощью гиродинов, измеряют параметры движения центра масс и параметры вращательного движения КА, по определенным параметрам углового положения КА и положению его подвижных частей определяют площадь миделя КА, гасят воздействия на свободно перемещаемый внутри корпуса КА калиброванный объект, измеряют параметры движения калиброванного объекта относительно корпуса КА, по измеренным параметрам движения калиброванного объекта относительно корпуса КА определяют момент времени, в который параметры движения калиброванного объекта относительно КА менее задаваемых значений, начиная с данного момента непрерывно измеряют параметры движения калиброванного объекта относительно КА до момента контакта калиброванного объекта с элементами корпуса КА, на интервале измерения параметров движения калиброванного объекта по измеренным параметрам движения КА определяют радиус-вектор и вектор скорости движения КА, и плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, вектору расстояния от центра масс калиброванного объекта до центра масс КА и вектору ускорения движения центра масс калиброванного объекта относительно центра масс КА.

Измерения параметров движения калиброванного объекта относительно КА на задаваемом временном интервале предлагается осуществлять посредством непрерывной фото-видеосъемки движения калиброванного объекта фото-видеоаппаратурой, жестко установленной относительно корпуса КА.

В полете КА набегающий поток воздействует на элементы конструкции КА тем больше, чем больше площадь проекции элементов на плоскость, перпендикулярную направлению набегающего потока, которое, в свою очередь, параллельно направлению вектора скорости КА.

В предлагаемом способе рассматриваем КА с инерционными исполнительными органами. На участке орбиты с отключенными двигателями КА поддерживают ориентацию КА с помощью гиродинов и измеряют параметры движения центра масс КА и параметры вращательного движения КА.

По определенным параметрам углового положения КА и положению подвижных частей КА (вращающиеся солнечные батареи КА, вращающиеся радиаторы КА и т.п.) определяют площадь миделя КА.

Далее используют находящийся на КА свободно перемещаемый внутри корпуса КА калиброванный объект - объект известной массы.

Гасит воздействия на данный калиброванный объект и измеряют параметры движения калиброванного объекта относительно корпуса КА.

Например, космонавт фиксирует положение данного калиброванного объекта внутри объема корпуса КА руками или с помощью специальных приспособлений.

Измерения параметров движения калиброванного объекта относительно КА на задаваемом временном интервале могут быть выполнены, например, посредством непрерывной фото-видеосъемки движения калиброванного объекта фото-видеоаппаратурой, жестко установленной относительно корпуса КА.

По измеренным параметрам движения калиброванного объекта относительно корпуса КА определяют момент времени, в который параметры движения калиброванного объекта относительно КА менее задаваемых значений.

Начиная с данного момента непрерывно измеряют параметры движения калиброванного объекта относительно КА до момента контакта калиброванного объекта с элементами корпуса КА. На интервале измерения параметров движения калиброванного объекта по измеренным параметрам движения КА определяют радиус-вектор и вектор скорости движения КА.

Плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, вектору расстояния от центра масс калиброванного объекта до центра масс КА и вектору ускорения движения центра масс калиброванного объекта относительно центра масс КА.

Например, плотность атмосферы ρ может быть определена по соотношению

где - вектор ускорения движения центра масс калиброванного объекта относительно центра масс КА;

ΔR - векторное расстояние от центра масс калиброванного объекта до центра масс КА;

R - радиус-вектор центра масс КА;

V - вектор скорости КА в гринвичской системе координат;

CX - коэффициент аэродинамического сопротивления КА;

g(R,t) - напряженность гравитационного поля Земли;

SX - площадь миделя КА;

m - масса КА.

Соотношение (1) может быть получено и решено с помощью известных методов механики космического полета (Навигационное обеспечение полета орбитального комплекса «Салют-6»-«Союз»-«Прогресс». - М.: Наука, 1985; Иванов Н.М., Лысенко Л.Н., Дмитриевский А.А. Баллистика и навигация космических аппаратов. М.: Машиностроение, 1986; Охоцимский Д.Е., Сихарулидзе Ю.Г. «Основы механики космического полета. М.: Наука. 1990). При этом могут быть реализованы различные случаи расположения центра масс калиброванного объекта относительно орбиты движения центра масс КА в момент гашения воздействий на калиброванный объект и начала измерения параметров движения калиброванного объекта относительно корпуса КА: центр масс калиброванного объекта может располагаться дальше, на уровне и ближе к Земле, чем центр масс КА.

Опишем технический эффект предлагаемого изобретения.

Согласно правилам управления полетом международной космической станции (Спецификация Российского сегмента. Программа Международная космическая станция. SSP 41163. Редакция Н, 27.01.2001. раздел 3.3.12.8; Общие правила полета по операциям МКС. Том В. Управление полетных операций. NSTS-12820. Космический центр им. Линдона Б.Джонсона. Хьюстон, Техас, основной вариант, 09.10.2001. правило В4-152) текущая высота орбиты международной космической станции (МКС) должна поддерживаться такой, чтобы при текущем баллистическом коэффициенте МКС высота орбиты МКС не опустилась ниже 278 км в течение последующих 90 суток полета для стадии сборки МКС и 180 суток для послесборочной стадии. Указанные сроки необходимы для гарантированного обеспечения изготовления, запуска и стыковки с МКС транспортных кораблей, обеспечивающих жизнеспособность экипажа МКС. Это означает, что циклограмма поддержания требуемой высоты орбиты МКС определяется фактором торможения МКС в атмосфере Земли. В свою очередь, сопротивление атмосферы увеличивается как при увеличении баллистического коэффициента КА, так и при понижении орбиты, поскольку при приближении к Земле плотность атмосферы Земли увеличивается. Более того, в периоды возмущенной атмосферы, когда плотность атмосферы существенно возрастает относительно номинальных прогнозируемых значений, возможны случаи катастрофического понижения орбиты и нарушения указанного требования обеспечения безопасности экипажа и МКС в целом.

Предлагаемое изобретение обеспечивает определение фактической плотности атмосферы на текущей высоте полета КА (в том числе МКС), что в свою очередь повышает точность прогнозирования изменения скорости падения высоты орбиты КА и позволяет выходить из таких опасных ситуаций и/или экономить энергетические ресурсы на подъем орбиты КА до уровня, необходимого для обеспечения жизнеспособности и выполнения целевых задач КА.

Достижение технического результата в предложенном изобретении обеспечивается за счет, в том числе:

- построения предложенной ориентации КА,

- предложенных измерений предложенных параметров,

- предложенных гашения воздействий на свободно перемещаемый внутри корпуса КА калиброванный объект и регистрации его движения относительно КА до момента контакта с элементами корпуса КА,

- предложенного определения предложенных параметров и моментов по результатам выполненных измерений.

Таким образом, достигается технический эффект предлагаемого изобретения, который заключается в определении плотности атмосферы на текущей высоте полета КА по измерениям параметров относительного движения свободно перемещаемого калиброванного объекта внутри корпуса КА.

Выполненная оценка эффективности применения предлагаемого изобретения на российском сегменте (PC) МКС показала, что его использование позволит качественно повысить точность моделей учета влияния атмосферы при определении и прогнозирования движения МКС, обеспечивая при этом уникальную возможность уточнения плотности атмосферы на текущей фактической высоте полета МКС.

При этом в качестве упомянутого калиброванного объекта может использоваться как специально изготовленный и доставленный на PC МКС объект выбранной формы и массы, так и некоторый имеющийся на борту PC МКС объект известной массы.

При гашении воздействий на калиброванный объект исключается (минимизируется) влияние на калиброванный объект воздушных потоков внутри МКС, возникающих из-за работы систем вентиляции или охлаждения аппаратуры. Для этого на время проведения сеанса измерений эти системы должны быть отключены или калиброванный объект должен быть изолирован от возникающих воздушных потоков с помощью прозрачной для съемки воздухонепроницаемой перегородки.

Измерения параметров движения калиброванного объекта относительно МКС могут быть выполнены посредством имеющегося на российском сегменте МКС комплекса фото-видео аппаратуры, например, фото/видеоаппаратура Nikon D3x и кронштейны для жесткой фиксации съемочной аппаратуры внутри МКС.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

1. Способ определения плотности атмосферы на высоте полета космического аппарата, включающий измерение параметров движения космического аппарата с инерционными исполнительными органами и определение плотности атмосферы с учетом координат местоположения космического аппарата, отличающийся тем, что дополнительно на участке орбиты с отключенными двигателями космического аппарата поддерживают ориентацию космического аппарата с помощью гиродинов, измеряют параметры движения центра масс и параметры вращательного движения космического аппарата, по определенным параметрам углового положения космического аппарата и положению его подвижных частей определяют площадь миделя космического аппарата, гасят воздействия на свободно перемещаемый внутри корпуса космического аппарата калиброванный объект, измеряют параметры движения калиброванного объекта относительно корпуса космического аппарата, по измеренным параметрам движения калиброванного объекта относительно корпуса космического аппарата определяют момент времени, в который параметры движения калиброванного объекта относительно космического аппарата менее задаваемых значений, начиная с данного момента непрерывно измеряют параметры движения калиброванного объекта относительно космического аппарата до момента контакта калиброванного объекта с элементами корпуса космического аппарата, на интервале измерения параметров движения калиброванного объекта по измеренным параметрам движения космического аппарата определяют радиус-вектор и вектор скорости движения космического аппарата, а плотность атмосферы на высоте полета космического аппарата определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости космического аппарата, вектору расстояния от центра масс калиброванного объекта до центра масс космического аппарата и вектору ускорения движения центра масс калиброванного объекта относительно центра масс космического аппарата.

2. Способ определения плотности атмосферы на высоте полета космического аппарата по п.1, отличающийся тем, что измерения параметров движения калиброванного объекта относительно космического аппарата на задаваемом временном интервале осуществляют посредством непрерывной фото-видеосъемки движения калиброванного объекта фото-видеоаппаратурой, жестко установленной относительно корпуса космического аппарата.



 

Похожие патенты:

Изобретение относится к спутниковым системам обнаружения, наблюдения и мониторинга небесных тел Солнечной системы, угрожающих столкновением с Землей. Способ включает размещение двух космических аппаратов с телескопами Т1 (КА Т1) и Т2 (КА Т2) на орбите Земли (2) вокруг Солнца (1).

Изобретение относится к способам получения детальных изображений космического мусора и других объектов вблизи геостационарной орбиты (ГСО). Обзор производят с космического аппарата (КА) на полусуточной высокоэллиптической орбите (ВЭО) с апогеем A на 200 км ниже или на 500 км выше ГСО и перигеем до 5000 км, с наклонением от 0 до 5°.

Изобретение относится к способу измерения дальности до космического аппарата (КА). Для измерения дальности до КА генерируют сигнал, модулируют на его основе цифровой или аналоговый сигнал, переносят на несущую частоту и передают его с наземного комплекса управления КА, принимают сигнал бортовой аппаратурой командно-измерительной системы КА, демодулируют, формируют сигнал на ответной частоте и ретранслируют на наземный комплекс управления, получают искомое значение дальности по сдвигу фазы принятого сигнала относительно исходного либо с помощью пересчета времени задержки распространения сигнала.
Изобретение относится к наблюдению за полётом космических аппаратов (КА), например, при инспекциях КА или при несанкционированном уводе в зону захоронения с низких околоземных орбит.

Группа изобретений относится к способу обмена данными с космическими аппаратами (КА) и наземному комплексу управления. Наземный комплекс управления содержит два комплекса средств управления полетом КА, соответствующие первому и второму центру управления полетом (ЦУП1 и ЦУП2), наземную станцию командно-измерительной системы (НС КИС), связанных через линию передачи данных управляющих воздействий, телеметрической информации (ТМИ) и информации функционального контроля (ИФКТ) определенным образом.
Изобретение относится к способу территориального размещения мобильных командно-измерительных приёмо-передающих станций (мобильных станций). Для реализации способа определяют текущее положение мобильных станций и космических аппаратов, проводящих дистанционное зондирование заданного района Земли с помощью измерительных средств, прогнозируют траектории и рассчитывают трассы полета космических аппаратов с помощью вычислительных средств, определяют геометрический центр зондируемого района и антиподную точку на поверхности Земли с учетом ее угловой скорости вращения, периодов обращения космических аппаратов и ограничений по размещению мобильных станций, определяют место размещения мобильных станций и в соответствии с ними осуществляют их перемещение.

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт.

Изобретение относится к комплексам защиты Земли от космических объектов. Система определения параметров движения астероида содержит передатчик, дуплексер, приемопередающую антенну, приемные антенны, опорный генератор, генератор импульсов, электронный коммутатор, гетеродин, смеситель, фильтр разностной частоты, усилители высокой частоты, перемножители, полосовые фильтры, линию задержки, фазовые детекторы, фазовращатель на 90°, блок регистрации, фильтр нижних частот, фазометр и вычислительный блок.

Изобретение относится к космической технике и может быть использовано при создании бортовых систем управления космических аппаратов (КА). Бортовая система управления космическим аппаратом (КА) содержит бортовую аппаратуру командно-измерительной системы (БА КИС) со средством защиты информации от несанкционированного доступа, циркулирующей в системе управления КА.

Изобретение относится к радиолокации пассивных космических объектов (КО), например, крупных метеоритов и астероидов. Способ включает радиолокационное зондирование КО, вращающегося в процессе полета, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности.
Наверх