Способ оценки эффективности мишени противостоять воздействию кинетических снарядов

Изобретение относится к методам оценки эффективности бронебойных боеприпасов и брони при их соударении и может быть использовано при создании новых боеприпасов и новой брони для защиты объектов. Способ оценки эффективности мишени противостоять воздействию кинетических снарядов заключается в том, что по пробной мишени конечной толщины со свойствами, идентичными свойствам основной мишени, производят удар снарядом в виде шара, со скоростью, достаточной для возникновения кратера в зоне соударения и появления в мишени трещин растяжения, перпендикулярных направлению удара. Визуально фиксируют появление первой трещины растяжения в зоне между кратером и задней стенкой мишени. Измеряют расстояние В от задней стенки мишени до трещины. В случае откола части задней стенки мишени, за величину В принимают толщину отколотой части в месте, перпендикулярном направлению удара. Мишень с большим значением величины В при одинаковых параметрах соударения считают более эффективной. Технический результат – возможность выполнения оценки для различных скоростей соударения снаряда с мишенью с использованием нового параметра, являющегося характеристикой материала мишени. 2 ил.

 

Изобретение относится к методам оценки эффективности бронебойных боеприпасов и брони при их соударении и может быть использовано при создании новых боеприпасов и новой брони для защиты объектов.

Для оценки эффективности бронебойных боеприпасов, как правило, проводят испытания стрельбой реальными снарядами по реальной броневой защите. При всей объективности такой оценки этот способ очень дорог.

Известны способы ориентировочной оценки параметров взаимодействия снаряда с броней, основанные на выполнении расчетов, основанных на экспериментальных исследованиях. На основании таких расчетов проводится оценка эффективности снаряда на стадии проектирования. Например, используются взаимосвязи длины бронебойного снаряда со свойствами материалов снаряда и мишени (Физика взрыва / Под ред. Л.П. Орленко. - изд. 3-е, переработанное. - В 2 т. Т. 2. - М: ФИЗМАТЛИТ, 2002. - 656 с.).

Недостатком этих способов является то, что они не позволяют выполнить оценки для различных скоростей соударения снаряда с мишенью.

В заявляемом способе предлагается для оценки эффективности брони по противодействию ударам кинетических снарядов использовать новый параметр, основанный на установленных закономерностях поведения материала мишени под действием снарядов. Этот параметр является характеристикой материала мишени.

Способ оценки эффективности мишени противостоять воздействию кинетических снарядов, заключается в том, что по пробной мишени конечной толщины со свойствами идентичными свойствам основной мишени производят удар снарядом в виде шара, со скоростью достаточной для возникновения кратера в зоне соударения, и появления в мишени трещин растяжения перпендикулярных направлению удара. Визуально фиксируют появление первой трещины растяжения в зоне между кратером и задней стенкой мишени. Измеряют расстояние В от задней стенки мишени до трещины. В случае откола части задней стенки мишени за величину В принимают толщину отколотой части в месте перпендикулярном направлению удара. Мишень с большим значением величины В при одинаковых параметрах соударения считают более эффективной.

Использование данного способа основано на результатах, проведенных автором расчетов и экспериментов. В результате этих исследований установлено, что линейный размер зоны воздействия ударной волны из зоны соударения снаряда с мишенью с энергией достаточной для разрушения материала можно оценить на основании данных экспериментальных наблюдений при действии «коротких» снарядов (шар, цилиндр) по мишеням небольшой толщины.

В случае соударения «коротких» снарядов с мишенью конечной толщины ударная волна сжатия отходит от поверхности, расширяющегося кратера (пояснения на фиг. 1), и достигает задней стенки мишени. Здесь она отражается, превращаясь в волну растяжения, распространяющуюся в обратном направлении. Возникновение волны растяжения обусловлено необходимостью равенства нулю мгновенных нормальных напряжений на свободной поверхности мишени во все моменты времени. Там, где эти напряжения превышают способность материала выдерживать действующую нагрузку, образуются трещины, центр которых расположен на оси направления удара. Чем больше расстояние от задней стенки мишени до трещины, тем материал мишени более эффективен по противодействию ударам снарядов, так как с увеличением этого расстояния растет уровень действующих напряжений, способных разрушить материал мишени. А это значит, что данный материал мишени более эффективен против воздействия на него кинетических снарядов.

Фиг. 1. Схема пробивания мишени «коротким» снарядом (левая часть рисунка). Образование волн растяжения при отражении волны сжатия от свободной поверхности (правая часть рисунка). Фиг. 2. Разрезанный образец мишени после нанесения по ней высокоскоростного удара: диаметр кратера в мишени D, диаметр снаряда d.

Использование мишеней конечной толщины (фактически тонких) связано с тем, что возникающая при соударении ударная волна быстро затухает и только при малом расстоянии до свободной поверхности она способна иметь энергию достаточную для разрушения металла мишени, хотя бы с образованием трещины напряжения. Но длина этой волны остается практически постоянной и позволяет судить о длине волны в зоне разрушения и способности материала мишени противостоять воздействию снарядов.

Определение этой величины важно также для расчета тепловой энергии, которая образуется при соударении снаряда с мишенью. На фиг. 2 приведена фотография экспериментального образца, в котором реализован процесс, рассмотренный выше, а именно, выполнено высокоскоростное соударение «короткого» цилиндрического снаряда диаметром d с мишенью конечной толщины.

Как видно, на определенном расстоянии от свободной задней поверхности мишени перпендикулярно направлению удара, наблюдается трещина растяжения. Эта трещина образована за счет возникшей в мишени ударной волны растяжения (в зоне пика волны растяжения), которая является продуктом волны сжатия, возникшей в зоне соударения, и частично повторяет ее параметры (длину волны, скорость распространения и др.).

Таким образом, измерение расстояния от задней стенки мишени позволяет оценить состояние материала мишени и способность его противостоять воздействию кинетических снарядов.

Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.

Способ оценки эффективности мишени противостоять воздействию кинетических снарядов, заключающийся в том, что с помощью эмпирического соотношения с учетом параметров снаряда и свойств мишени определяют параметры разрушения мишени в зоне соударения, отличающийся тем, что по пробной мишени конечной толщины со свойствами, идентичными свойствам основной мишени, производят удар снарядом в виде шара со скоростью, достаточной для возникновения кратера в зоне соударения и появления в мишени трещин растяжения, перпендикулярных направлению удара, фиксируют появление первой трещины растяжения в зоне между кратером и задней стенкой мишени, измеряют расстояние В от задней стенки мишени до трещины, при отколе части задней стенки мишени за величину В принимают толщину отколотой части в месте, перпендикулярном направлению удара, мишень с большим значением величины В при одинаковых параметрах соударения считают более эффективной.



 

Похожие патенты:

Изобретение относится к области испытательной техники и может быть использовано в лабораторных условиях для экспериментальной отработки исполнительных устройств в газовых системах, работающих от пороховых пиротехнических источников давления.

Изобретение относится к способам и устройствам для измерения характеристик взрыва боеприпаса. Способ определения характеристик взрыва заряда взрывчатого вещества (ВВ) в ближней зоне с использованием измерительного стержня Гопкинсона расчетным путем по замеренным параметрам упругой деформации, возникающей в стержне под действием продольной волны напряжения, инициированной импульсным воздействием ударной воздушной волны непосредственно на его торец.

Изобретение относится к способам и устройствам для измерения характеристик взрыва боеприпаса. Способ определения характеристик взрыва в ближней зоне с использованием нагружаемого элемента в форме стержня - величины давления ударной воздушной волны (УВВ) и импульса осуществляется по результатам действия на материал стержня продольной волны напряжения, инициированной импульсным воздействием УВВ непосредственно на его торец.

Изобретение относится к лабораторному оборудованию и может быть использовано для моделирования процессов, происходящих во взрывной полости скважин при ведении взрывных работ.

Изобретение относится к области испытательной и измерительной техники, к способам определения фугасного действия объектов испытаний. Способ включает размещение на поверхности измерительной площадки на измерительных лучах, в заданных направлениях и на заданных расстояниях от точки подрыва, датчиков давления, установку испытуемого боеприпаса в заданной точке с последующим подрывом или подрыв его в заданной точке в процессе перемещения с регистрацией характеристик проходящей ударной воздушной волны в измерительных точках.

Изобретение относится к области боеприпасов и может быть использовано при проверке взрывателей на безопасность. Крешерное устройство содержит корпус, в полости которого установлены плунжерные элементы с возможностью осевого перемещения, зарядное устройство и органы регистрации результатов исследования, при этом органы регистрации результатов исследования выполнены в виде двух крешерных столбиков и свободно установленных тарированных грузиков, дополнительно введены поджимная гайка со ступенчатым осевым отверстием с резьбой, верхняя торцевая втулка с корпусом с резьбой, с торцевым цилиндрическим выступом с резьбой и ступенчатой полостью с резьбой, корпус со ступенчатой полостью с резьбой, демпферное кольцо из эластичного материала с осевым отверстием, втулка демпферная с торцевым цилиндрическим выступом с резьбой и осевым отверстием, тарировочная втулка с осевым отверстием с резьбой, втулка торцевая нижняя с двумя цилиндрическими осевыми выступами с резьбой и полостью с резьбой, шток с корпусом с резьбой, с полостью с резьбой и осью с резьбой, втулка крешерная с осевым отверстием с резьбой, поджимной винт, поджимная гайка с контровочным винтом и опорный корпус с полостью с резьбой, при этом поджимная гайка резьбой осевого ступенчатого отверстия контактирует с резьбой цилиндрического выступа верхней торцевой втулки и жестко крепит зарядное устройство, резьба корпуса верхней торцевой втулки контактирует с резьбой полости корпуса, резьба корпуса штока контактирует с резьбой ступенчатой полости корпуса, втулка крешерная установлена в полости корпуса штока, крешер и грузик установлены в осевом отверстии втулки крешерной, а поджимной винт своей резьбой контактирует с резьбой полости корпуса штока, торец корпуса контактирует с верхним торцом демпферного кольца, торец втулки демпферной контактирует с нижним торцом демпферного кольца, ось штока проходит через осевые отверстия корпуса, демпферного кольца и втулки демпферной и своей резьбой контактирует с резьбой поджимной гайки с контровочным винтом, тарировочная втулка резьбой осевого отверстия контактирует с резьбой цилиндрического выступа втулки демпферной, втулка торцевая нижняя резьбой цилиндрического выступа контактирует с резьбой осевого отверстия тарировочной втулки, втулка крешерная нижняя установлена в полости втулки торцевой нижней, крешер и грузик установлены в осевом отверстии втулки крешерной нижней, поджимной винт своей резьбой контактирует с резьбой полости нижней торцевой втулки, резьба полости корпуса опорного контактирует с резьбой цилиндрического выступа нижней торцевой втулки.

Изобретение относится к лабораторному оборудованию и предназначено для моделирования процессов, происходящих во взрывной полости скважин при ведении взрывных работ.

Изобретение относится к лабораторному оборудованию и предназначено для моделирования процессов, происходящих во взрывной полости скважин при ведении взрывных работ.

Изобретение относится к лабораторному оборудованию и предназначено для моделирования процессов, происходящих во взрывной полости скважин при ведении взрывных работ.

Изобретение относится к лабораторному оборудованию и предназначено для моделирования процессов, происходящих во взрывной полости скважин при ведении взрывных работ.

Изобретение относится к способам определения защитных свойств средств индивидуальной бронезащиты, преимущественно шлемов для головы. Способ, при котором наносят удар телом с нормированной энергией по незащищенному макету объекта, заполненному жидкостью, и удар телом с определенной энергией по защищенному средством индивидуальной защиты макету объекта.

Изобретения относятся к средствам защиты и могут быть использованы при изготовления бронепанелей. Предложен способ изготовления бронепанели из слоистых полимерных композитов, при котором в форму (2) для контактного формования укладывают пропитанные слои основания (3).

Изобретение относится к области вооружений и военной техники, в частности к броневым конструкциям, которые могут быть применены в индивидуальных и транспортных средствах для защиты от воздействия пуль стрелкового оружия и высокоэнергетических осколков поля боя, а также в атомной и других отраслях промышленности для применения в качестве средств пассивной защиты изделий.

Изобретение относится к снаряжению спасателей в сфере чрезвычайных ситуаций, в частности для экипировки спасателей при проведении аварийно-спасательных работ в условиях природных и техногенных ЧС, вызывающих разрушение объектов, а также в условиях разливов легковоспламеняющихся жидкостей, сопровождающихся взрывами и пожарами. Недостатком известного снаряжения и одежды спасателей является сравнительно невысокая степень защиты от взрывов и пожаров. Технически достижимый результат - повышение эффективности защиты спасателя, действующего в чрезвычайных ситуациях, сопровождающихся взрывами и пожарами. Это достигается тем, что в снаряжении спасателя, действующего в условиях чрезвычайных ситуаций, содержащим легкий защитный костюм спасателя с защитным жилетом от электромагнитного излучения, состоящим из брюк с защитными чулками, рубахи с капюшоном, двупалых перчаток и подшлемника, причем брюки сшиты вместе с чулками, заканчивающимися резиновой осоюзкой с ботами, к которым пришиты тесемки для крепления к ногам, дополнительно предусмотрен защитный жилет от электромагнитного излучения, состоящий из тканевой подкладки, соединенной с защитной оболочкой, а в тканевой подкладке закреплены упругие каркасные стойки посредством фиксаторов на поясном ремне, а защитная оболочка крепится на упругих каркасных стойках, при этом защитная оболочка выполнена трехслойной, причем первый слой, обращенный в окружающую оператора среду, обработан пенной полифункциональной композицией для дегазации, дезинфекции, дезинсекции, дезактивации и экранирования поверхностей, объемов и объектов от опасных агентов и веществ пеной, где жидкая фаза пены представляет собой раствор клатрата дидецилдиметиламмоний галогенида с карбамидом в качестве действующего вещества в количестве от 0,1 до 5% по массе, а в качестве клатрата дидецилдиметиламмоний галогенида с карбамидом используется клатрат дидецилдиметиламмоний хлорида с карбамидом и/или клатрат дидецилдиметиламмоний бромида с карбамидом.

Изобретение относится к системам обеспечения безопасности при использовании стрелкового и охотничьего оружия в условиях совместных действий стрелков в группе. Техническим результатом является повышение эффективности сигнализирующего устройства, предупреждающего стрелка о попадании линии прицеливания в запрещенный сектор, где возможно поражение «своего».

Изобретение относится к системам обеспечения безопасности при использовании стрелкового и охотничьего оружия в условиях совместных действий стрелков в группе. Технический результат заключается в создании более эффективного оборудования для стрелкового оружия, сигнализирующего о попадании линии прицеливания в запрещенный сектор стрельбы, где возможно поражение «своего».

Изобретение относится к средствам индивидуальной защиты человека и предназначено для проведения аварийно-спасательных и ремонтных работ в чрезвычайных условиях, в частности воздействия газообразной и жидкой фазы агрессивных химически опасных веществ (АХОВ) на предприятиях химической промышленности, а также в условиях разбора завалов, где требуется длительная работа с виброактивным инструментом, например перфоратором, отбойным молотком, а также в условиях низких температур.

Изобретение относится к области вооружения и экипировки, к разработкам защитного обмундирования и может быть использовано для изготовления броне-теплозащитных костюмов для сотрудников спецподразделений и МЧС.

Изобретение относится к средствам индивидуальной защиты работников сельскохозяйственного производства. .

Изобретение относится к средствам индивидуальной защиты операторов от механического воздействия. .
Наверх