Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе



Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
G01N29/00 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2662738:

АО "Сигма-Оптик" (RU)

Изобретение относится к области газодобывающей промышленности и может быть использовано для контроля изменений уровней дебитов различных компонент взвесенесущего газового потока в эксплуатационных условиях газовых скважин. Техническим результатом, полученным от внедрения изобретения, является дополнительный контроль уровня гидратообразования на скважине путем использования информативного сигнала с датчика акустического, резонансного, эмиссионного типа и дополнительной информации о газодинамических условиях, в которых получается информация датчика. Для достижения поставленного технического результата в известном способе контроля изменений уровней дебита твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины в моменты контроля дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины дополнительно синхронно измеряют перепады температуры и избыточного давления потока, обусловливающие фазовые превращения в газовой смеси, по значению которых контролируют уровни образования гидратных структур и оценивают уровень гидратообразования на устье скважины, а контроль изменений уровней дебитов фаз проводят, когда уровень гидратообразования на устье скважины не превышает наперед заданного порогового значения. 3 з.п. ф-лы, 9 ил.

 

Изобретение относится к области измерительной техники, телемеханики, в частности к акустическим методам измерения и контроля содержания твердых и жидких примесей в газожидкостном потоке скважин. Оно может быть использовано в газовой, нефтяной промышленности, в частности, при добыче и подземном хранении газа, для контроля изменений уровней содержания и количества различных компонент взвесенесущего потока при эксплуатации скважин.

Известен способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины, заключающийся в приеме и преобразовании акустических сигналов, пропорциональных уровням дебитов твердых включений и капельной влаги в газовом потоке с помощью пьезодатчика акустического, эмиссионного, резонансного типа, с последующей фильтрацией и детектированием выходных сигналов с пьезодатчика и дальнейшей их оцифровкой с помощью аналого-цифрового преобразователя, при этом для отдельных выборок сигнала по времени, полученных на одной или нескольких кратно-разнесенных рабочих частотах, из оцифрованных выборок сигнала строят распределения дискретизированных по времени точек этого сигнала по его величине с заданным шагом дискретизации, образующим шкалу уровней сигнала, затем определяют максимумы в построенных распределениях и от максимумов вверх по величине сигнала определяют крутизну спадов полученных распределений и сравнивают ее с наперед заданными порогами крутизны спадов для различных компонент контролируемого потока и по результатам сравнения диагностируют наличие твердых включений и капельной влаги в газовом потоке по выносу песка и влаги (ВПВ), при этом количественные значения уровней дебита твердых включений и капельной влаги в контролируемом потоке, а также влияние внешних воздействий на трубопровод определяют по положению максимумов построенных распределений на шкале уровней сигнала при использовании градуировочных зависимостей, предварительно полученных при метрологических испытаниях трубопроводов однотипной конфигурации в натурных условиях /Патент RU 2389002, кл. G01F 1/74, G01N 29/00, H04R 29/00, 2009/.

Данный способ принят за прототип.

Недостатком прототипа является отсутствие в нем возможности контроля рисков гидратообразования на устье скважины и в трубопроводах при резких изменениях термобарических параметров газовой смеси, которое может привести как к ее остановке, так и к нарушению режима работы газопровода. Гидратные образования, также как и выносимый пластовый песок, представляют собой твердую фазу в потоке газа. Гидратообразования обусловлены аварийными ситуациями, связанными с вероятностью накопления гидратов и возникновением пробок на определенных участках газотранспортной системы, влекущие за собой прекращение подачи газа. Убытки от рисков определяются потерями в добыче газа из-за простоя скважин и материально- техническими затратами, связанными с ликвидацией гидратных пробок.

Техническим результатом, получаемым от внедрения изобретения, является обеспечение дополнительного контроля уровня гидратообразования в фонтанной арматуре скважины путем использования и синхронной обработки информативного сигнала с датчика акустического в части упругости ударов твердых частиц и дополнительной информации о текущих термобарических параметрах газовой смеси с датчиков температуры и давления.

Данный технический результат достигают за счет того, что в известном способе контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины, заключающемся в приеме и преобразовании акустических сигналов, пропорциональных уровням дебитов твердых включений и капельной влаги в газовом потоке с помощью пьезодатчика акустического, эмиссионного, резонансного типа, с последующей фильтрацией и детектированием выходных сигналов с пьезодатчика и дальнейшей их оцифровкой с помощью аналого-цифрового преобразователя, при этом для отдельных выборок сигнала по времени, полученных на одной или нескольких кратно-разнесенных рабочих частотах, из оцифрованных выборок сигнала строят распределения дискретизированных точек этого сигнала по его величине с заданным шагом дискретизации, образующим шкалу уровней сигнала, затем определяют максимумы в построенных распределениях и от максимумов вверх по величине сигнала определяют крутизну спадов полученных распределений, и сравнивают ее с наперед заданными порогами крутизны спадов для различных компонент контролируемого потока и по результатам сравнения диагностируют наличие твердых включений и капельной влаги в газовом потоке, при этом количественные значения уровней дебита твердых включений и капельной влаги в контролируемом потоке, а также влияние внешних воздействий на трубопровод определяют по положению максимумов построенных распределений на шкале уровней сигнала при использовании градуировочных зависимостей, предварительно полученных при метрологических испытаниях трубопроводов однотипной конфигурации в натурных условиях, в моменты контроля дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины дополнительно синхронно измеряют перепады температуры и избыточного давления потока, обусловливающие фазовые превращения в газовой смеси, по значению которых контролируют уровни образования гидратных структур и оценивают уровень гидратообразования на устье скважины, а контроль изменений уровней дебитов фаз проводят, когда уровень гидратообразования на устье скважины не превышает наперед заданного порогового значения.

Измерение перепада температуры проводят на стенке и внутри канала фонтанной арматуры скважины.

При оценке уровня гидратообразования на устье скважины при обнаружении ударов твердых частиц на кратно разнесенных частотах проводят сравнение амплитуд и дисперсии сигналов, по результатам которого выделяют неупругие удары частиц гидрата.

Уровень гидратообразования на устье скважины оценивают в соответствии с термобарическими условиями образования и появления гидрата в газожидкостном потоке.

Изобретение поясняется чертежами. На фиг. 1 представлена схема реализации способа, на фиг. 2…9 - диаграммы, поясняющие существо способа.

На выходном трубопроводе 1 устья скважины смонтирован датчик 2 акустический (ДА), эмиссионный, резонансного типа (как в прототипе).

Выход датчика 2 соединен с блоком обработки 3, содержащим входной усилитель 4, узкополосный фильтр 5 с низкочастотным детектором, АЦП 6 и амплитудный дискриминатор, и анализатор на основе микроконтроллера 7, осуществляющего также обработку показаний датчиков температуры 8 и давления 9 газа.

Таким образом, согласно фиг. 1 в схему дополнительно включены датчик температуры 8 и датчик избыточного давления 9, выходы которых также соединены с соответствующими каналами в блоке обработки 3.

Реализация способа с помощью представленной на фиг. 1 схемы основана на следующем.

Фазовое состояние взвесенесущего газового потока определяется расходом газа (дебитом), влажностью и термобарическими параметрами: Рг - давление газа в трубопроводе, Тг - температура газа, Тв - температура окружающей среды, ветровая нагрузка (скорость ветра) - Vв. При изобарическом процессе охлаждения газа ниже значений температуры фазового перехода возникают условия для конденсации паров влаги. При этом возможен переход паровой влаги как в капельное состояние, так и в твердое с образованием гидратных структур (десублимация). При конденсации пара выделяется теплота фазового перехода (скрытая теплота парообразования), поэтому процесс конденсации неразрывно связан с конвективным теплообменом в поперечном и продольном сечении трубопровода.

Температура фазового перехода (точка росы) и количество конденсата зависят от влагосодержания газовой смеси. При этом:

- чем ниже влажность, тем точка росы ниже фактической (текущее значение) температуры;

- чем выше влажность, тем точка росы выше и ближе к фактической температуре;

- если относительная влажность составляет 100%, то точка росы совпадает с фактической температурой.

Поэтому в отличие от прототипа на устье скважины для контроля термобарических параметров газовой смеси в блок обработки сигналов 3 дополнительно включены каналы приема и синхронной обработки показаний температуры и давления газа с соответствующими датчиками 8 и 9.

При этом способ обработки сигналов отличается тем, что акустический канал, работая на двух кратно разнесенных частотах, контролирует моменты проявлений упругих (песок) и неупругих (гидрат) ударов твердых включений и капельной влаги, а каналы контроля температуры и давления регистрируют перепады этих параметров в моменты проявлений твердых включений и капельной влаги, величина и знак изменений которых позволяет идентифицировать уровень гидратообразования на устье скважины, оценивая его в соответствии с термобарическими условиями образования гидратных структур.

Когда измеренные таким образом пороговые уровни содержания частиц гидрата на устье скважины превышают наперед заданный порог, блок обработки 3 (фиг. 1) по интерфейсу RS45 передает верхней телеметрической системе управления по оптимизации добычи газа сигнал превышения, по которому принимается решение о подаче на устье скважины соответствующей уровню гидратообразования порции ингибитора.

Лабораторными исследованиями установлен характер отличия импульсов-откликов воздействия упругих ударов песка и упругопластических ударов частиц гидрата. Имитатором гидрата служил при этом пористый селикагель, по физическим свойствам близкий к частицам гидрата. На фиг. 2 приведен фрагмент хронограммы ударов селикагеля (гидрата) о металлическую стенку трубопровода, на фиг. 3 - ударов частиц песка (на частоте 200 кГц и на частоте 640 кГц). По оси X - отложено время в секундах, а по оси Y - уровень сигнала в дБ.

Из приведенных хронограмм видно, что задний фронт импульсов от ударов гидрата существенно положе, чем от ударов песка. Практически каждый удар частиц песка является упругим, т.к. имеет отклик на обеих частотах, в то время как упругопластические удары селикагеля (гидрата) имеют отклик чаще только на более низкой частоте. Сравнительная статистика откликов на двух частотах позволяет выделить из общего количества импульсов отклики - импульсы упругопластических ударов частиц гидрата о стенку трубопровода в потоке газа на скважине.

На фиг. 4 представлен фрагмент показаний датчика 2 (фиг. 1) при изменяющихся метеоусловиях (отрицательной температуре наружного воздуха и скорости ветра). Из графика видно, что наблюдается прямая зависимость понижения температуры с началом регистрации превышения первого, а затем и второго уровня содержания твердых включений, которое связано с началом образования гидратных структур при прохождении пластовой смеси по каналу фонтанной арматуры. Постепенное снижение температуры окружающей трубопровод среды при неизменной ветровой нагрузке (3÷5) м/с усиливает теплообменные процессы на поверхности фонтанной арматуры, что приводит к понижению температуры внутреннего приповерхностного слоя газового потока.

На фиг. 5 представлена графическая интерпретация динамики изменения соотношения «давление - температура» ((Р/Т) - как безразмерного параметра) и зарегистрированные датчиком 2 (фиг. 1) уровни образования твердых включений - гидратных структур.

Пунктирная линия термодинамического параметра (Р/Т) условно делит значения уровней содержания гидрата в потоке газа на две области. Значениям соотношения (Р/Т), находящимся ниже величины 4,95, соответствует 1-й уровень выноса твердых фракций и воды (на графике уровни ВПВ). Значениям (Р/Т), находящимся выше величины 4,95, - 2-й уровень ВПВ. Таким образом, можно представить механизм образования гидратных структур при прохождении потока газа по каналу фонтанной арматуры как результат интенсификации теплообменного процесса в условиях воздействия наружной конвекции.

На фиг. 6 и 7 представлены показания датчика 2 по наличию твердых включений и воды в потоке газа, а также скачок давления как результат фазовых превращений с выбросом продуктов деструкции гидрата в виде капельной влаги.

Из приведенных диаграмм видно, что перепады температуры газа, провоцирующие процесс гидратообразования, могут составлять от (0,5÷0,7)°С до нескольких град. С, а длительность их зависит от динамики изменения значений температуры поверхности трубы и метеоусловий. Провоцируемые при этом выбросы ВПВ сопровождаются перепадами давления от 0,5 кг/см2 до (1,5÷2) кг/см2. Зафиксированные значения перепадов и их продолжительность практически могут быть использованы для оценки уровня гидратообразования как в режиме текущего мониторинга показаний ВПВ, так и при анализе архивированных данных.

Фазовые превращения, наблюдаемые при переменных значениях термобарических параметров газожидкостного потока под влиянием резких изменений метеоусловий (см. фиг. 8), приводят, как правило, к образованию, и выносу гидрата. Это, в свою очередь, вызывает резкое изменение режима работы скважины (см. фиг. 9), вплоть до полной ее остановки. Наиболее вероятным местом начала образования гидрата в фонтанной арматуре скважины является внутренний канал углового штуцера (см. фиг. 1). Это обусловлено наличием дополнительных негативных факторов для начала образования гидратных структур: сужение проходного сечения канала (100/60 мм), повышенная зона турбулентности и изменения направления потока газа (90°), увеличенная поверхность теплообмена. Из приведенных на фиг. 9 данных видно, что при достижении лавинообразного выноса гидрата датчик 2 (фиг. 1) регистрирует пиковые значения содержания твердых включений до 5-го уровня. Накопление гидрата в канале фонтанной арматуры и выходном газопроводе вызвало снижение устьевого давления газа в течение 9 часов и привело к остановке скважины. На фиг. 9 видно, что продувка и прогрев скважины через газофакельную установку (ГФУ) сопровождались выносом гидратного массива (до 5-го уровня по твердым включениям) и двух пачек воды (до 4-го уровня по капельной фракции). После пуска скважины в работу ее параметры были выведены на рабочий режим.

Промысловыми исследованиями скважин с использованием предложенного способа установлено, что в осенне-зимний-весенний периоды требуется постоянный мониторинг и контроль гидратообразования с целью оптимизации режима работы скважин, газосборной сети и экономии ингибитора. При обработке сигналов предложенным способом акустический канал, работая на двух кратно разнесенных частотах, контролирует моменты проявлений упругих (песок) и неупругих (гидрат) ударов твердых включений и капельной влаги, а каналы контроля температуры и давления синхронно регистрируют перепады этих параметров в периоды фазовых превращений на фоне проявлений твердых включений и капельной влаги, величина и знак изменений которых позволяет идентифицировать уровень гидратообразования на устье скважины, оценивая уровень в соответствии с термобарическими условиями образования гидратных структур.

1. Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины, заключающийся в приеме и преобразовании акустических сигналов, пропорциональных уровням дебитов твердых включений и капельной влаги в газовом потоке с помощью пьезодатчика акустического, эмиссионного, резонансного типа, с последующей фильтрацией и детектированием выходных сигналов с пьезодатчика и дальнейшей их оцифровкой с помощью аналого-цифрового преобразователя, при этом для отдельных выборок сигнала по времени, полученных на одной или нескольких кратно-разнесенных рабочих частотах, из оцифрованных выборок сигнала строят распределения дискретизированных точек этого сигнала по его величине с заданным шагом дискретизации, образующим шкалу уровней сигнала, затем определяют максимумы в построенных распределениях и от максимумов вверх по величине сигнала определяют крутизну спадов полученных распределений, и сравнивают ее с наперед заданными порогами крутизны спадов для различных компонент контролируемого потока, по результатам сравнения диагностируют наличие твердых включений и капельной влаги в газовом потоке, при этом количественные значения уровней дебита твердых включений и капельной влаги в контролируемом потоке, а также влияние внешних воздействий на трубопровод определяют по положению максимумов построенных распределений на шкале уровней сигнала при использовании градуировочных зависимостей, предварительно полученных при метрологических испытаниях трубопроводов однотипной конфигурации в натурных условиях, отличающийся тем, что в моменты контроля дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины дополнительно синхронно измеряют перепады температуры и избыточного давления потока, обусловливающие фазовые превращения в газовой смеси, по значению которых контролируют уровни образования гидратных структур и оценивают уровень гидратообразования на устье скважины, а контроль изменений уровней дебитов фаз проводят, когда уровень гидратообразования на устье скважины не превышает наперед заданного порогового значения.

2. Способ по п. 1, отличающийся тем, что изменение перепада температуры проводят на стенке и внутри трубопровода.

3. Способ по п. 1, отличающийся тем, что при оценке уровня гидратообразования на устье скважины при обнаружении ударов твердых частиц на кратно разнесенных частотах проводят сравнение амплитуд и дисперсии сигналов, по результатам которого выделяют неупругие удары частиц гидрата.

4. Способ по п. 1, отличающийся тем, что уровень гидратообразования на устье скважины оценивают в соответствии с термобарическими условиями образования гидратных структур с учетом метеорологических условий.



 

Похожие патенты:

Использование: для измерения вязкоупругих свойств жидких и твердых сред. Сущность изобретения заключается в том, что осуществляют возбуждение крутильных колебаний в измерительном устройстве расположенными на его поверхности преобразователями, при этом возбуждение крутильных колебаний производят путем подачи импульсного сигнала на излучающие преобразователи, расположенные на поверхности измерительного устройства, геометрические параметры которого позволяют возбуждать в нем крутильные колебания, регистрируют сигнал принимающими преобразователями, определяют коэффициент затухания серии эхо-импульсов многократных отражений крутильных колебаний в ненагруженном и нагруженном исследуемой средой измерительном устройстве, вычисляют коэффициент затухания серии эхо-импульсов многократных отражений крутильных колебаний с учетом коэффициента отражения на границе «преобразователь - труба», а вязкость и модуль сдвига с учетом известной плотности исследуемой среды, вычисленного коэффициента затухания крутильных колебаний и основной частоты в спектре сигнала определяют по номограммам.

Использование: для измерения скорости распространения и коэффициента затухания ультразвуковых волн при исследовании физико-механических характеристик материалов.

Использование: для определения упругих констант токопроводящих твердых тел. Сущность изобретения заключается в том, что одновременно или поочередно воздействуют на поверхность локальной области упомянутого твердого тела электромагнитным одно- или многопериодным импульсом и постоянным или импульсным магнитным полем, возбуждают акустические продольную и две плоско-поляризованные сдвиговые волны, ориентируют векторы смещений упомянутых сдвиговых волн, соответственно, вдоль и поперек направления прокатки или приложенного усилия, принимают и усиливают одно-многократно отраженные акустические сигналы, при этом уточняют упомянутые направления прокатки или приложенного усилия по максимальным значениям амплитуд сдвиговых волн, путем стробирования выделяют из принятой последовательности импульсов одно-многократно отраженные эхо-сигналы продольной и сдвиговых волн соответствующей поляризации, производят корреляционную обработку сигналов, измеряют временные интервалы между эхо-сигналами, соответственно, продольной и сдвиговых волн соответствующей поляризации, рассчитывают скорости распространения акустических волн и по соотношению этих интервалов и скоростей и известному значению плотности исследуемых твердых тел определяют упругие константы по соответствующим формулам.

Использование: для определения режима многофазной смеси в трубопроводе. Сущность изобретения заключается в том, что на внешней поверхности трубопровода устанавливается группа излучателей, одновременно являющихся приемниками, которая прозвучивает (зондирует) ультразвуковыми колебаниями заданной частоты многофазный поток, движущийся в трубопроводе, перпендикулярно продольной его оси.

Изобретение относится к метрологии, в частности к устройствам для контроля формы и размеров подземных хранилищ газа. Способ исследования геометрических параметров каверны подземного хранилища газа с установленной в ней насосно-компрессорной трубой с помощью ультразвукового сканирующего звуколокатора заключается в облучении ультразвуковыми зондирующими импульсами стенок исследуемой каверны в горизонтальных и наклонных плоскостях на различных глубинах каверны, заполненной рабочей жидкостью, и последующем измерении времен распространения зондирующими импульсами двойного расстояния от стенок каверны до приемо-передающего электроакустического преобразователя звуколокатора, по которым определяют геометрические размеры и форму каверны.

Изобретение может быть использовано для непрерывных измерений в режиме реального времени состава и других свойств отдельных фаз смеси нефти, воды и газа во время процесса добычи нефти.

Изобретение относится к измерительному устройству и способу определения скорости потока текучей среды, текущей в трубопроводе. Измерительное устройство (10) для определения скорости потока текучей среды (12), текущей в трубопроводе (14), посредством по меньшей мере одного ультразвукового преобразователя (18а-b), размещенного снаружи на стенке (22) трубопровода и имеющего колебательный элемент (34), соединенный с участком (32) стенки (22) трубопровода, действующим в качестве колеблемой мембраны ультразвукового преобразователя (18а-b), имеет карман (30), размещенный снаружи в трубопроводе (14), при этом нижняя часть кармана образует мембрану (32), причем между мембраной (32) и колебательным элементом (34) расположен соединительный элемент (36), поперечное сечение которого меньше поперечного сечения колебательного элемента (34).

Использование: для измерения частотной зависимости коэффициента отражения звука от поверхности в лабораторных и натурных условиях при различных углах падения звуковой волны.

Использование: для определение наличия и координат напряжений в околошовных зонах трубопроводов. Сущность изобретения заключается в том, что очищают поверхность околошовной зоны, определяют наличие дефектов, проводят настройку прибора, определяют скорость прохождения ультразвуковой волны через металл без нагрузки, обеспечивают постепенное создание нагрузки с периодическим замером скорости прохождения ультразвуковой волны с определением мест концентрации напряжений и регистрацией их местоположения, обеспечивают создание нагрузки до образования трещин с регистрацией данных измерения скорости ультразвуковой волны, проводят обзор появления трещины при помощи электронного микроскопа, фиксируют координаты образования дефекта и сравнивают с координатами зоны концентрации напряжений.

Изобретение относится к метрологии. Стенд содержит основание, на котором посредством, по крайней мере, трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему, в качестве генератора гармонических колебаний использован эксцентриковый вибратор.

Изобретение относится к средствам передачи информации по гидравлическому каналу связи. Техническим результатом является повышение надежности передачи информации за счет исключения потенциальных путей утечек в устройстве генерирования импульсов давления.

Изобретение относится к бурению сближенных скважин, в частности к средствам определения расположения обсадной колонны соседней скважины. Техническим результатом является расширение арсенала технических средств.

Изобретение относится к области бурения в нефтяной и газовой промышленности при строительстве скважин, в частности к способам определения предотвращения осложнений в виде поглощений бурового раствора и тампонажных жидкостей.

Изобретение относится к бурению скважин и может быть использовано для контроля расположения пробуриваемой скважины относительно целевой скважины. В частности, предложена скважинная дальномерная система, содержащая: первый оптический волновод, размещенный в первой скважине формации, причем первый оптический волновод расположен вдоль части осевой длины первой скважины; по меньшей мере второй оптический волновод, расположенный вдоль по меньшей мере той же самой осевой длины первой скважины, что и первый оптический волновод; и источник звука, размещенный во второй скважине и акустически связанный с указанной формацией.

Изобретение относится к неразрушающему контролю. Техническим результатом является расширение технологических возможностей устройства, позволяющих контролировать уровень остаточных технологических напряжений в профильных канавках на внутренней поверхности труб разных диаметров с разным количеством канавок с продольным и спиральным направлением.

Изобретение относится к средствам дальнометрии в процессе бурения скважин и может быть использовано для определения расстояния и направления между соседними скважинами.

Изобретение относится к бурению сближенных скважин и может быть применено для определения расстояния между скважинами. Техническим результатом является расширение арсенала технических средств.

Изобретение относится к области измерения температуры посредством термометрических электрических датчиков и предназначено для одновременного измерения и регистрации значений температуры грунтов в нескольких точках объекта в зависимости от его конструкции, в частности в термометрических скважинах любого типа в полевых условиях, проведения стационарных и лабораторных исследований температурного режима талых, мерзлых, охлажденных и промерзающих/оттаивающих грунтов, организации сети для мониторинга теплового режима грунтов с большим количеством точек наблюдения, в том числе в пожаро-, взрывоопасных и агрессивных средах.

Изобретения относятся к метрологии, в частности к средствам контроля формы и размеров подземных хранилищ газа. Звуколокатор содержит узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей.

Изобретение относится к метрологии, в частности к устройствам для контроля формы и размеров подземных хранилищ газа. Способ исследования геометрических параметров каверны подземного хранилища газа с установленной в ней насосно-компрессорной трубой с помощью ультразвукового сканирующего звуколокатора заключается в облучении ультразвуковыми зондирующими импульсами стенок исследуемой каверны в горизонтальных и наклонных плоскостях на различных глубинах каверны, заполненной рабочей жидкостью, и последующем измерении времен распространения зондирующими импульсами двойного расстояния от стенок каверны до приемо-передающего электроакустического преобразователя звуколокатора, по которым определяют геометрические размеры и форму каверны.

Изобретение относится к газодобывающей промышленности, в частности к технологии измерения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения (ДИКТа).
Наверх