Радиоприёмное устройство

Использование: для создания элементов и приборов радиоприемной аппаратуры. Сущность изобретения заключается в том, что радиоприемное устройство, содержащее подложку с нанесенным на нее, по меньшей мере одним, диэлектрическим слоем, в диэлектрическом слое и подложке выполнено углубление, на поверхности диэлектрического слоя с примыканием к углублению на его сторонах выполнены катод, анод, радиоэлектрод и управляющий электрод с отсутствием электрического контакта между ними, на боковой поверхности катода, примыкающей к углублению, сформирован массив из углеродных нанотрубок, область с углублением закрыта герметизирующей пластиной. Технический результат: обеспечение возможности увеличения амплитуды выходного низкочастотного сигнала посредством увеличения автоэмиссионного тока, повышения стабильности работы и срока службы радиоприемного устройства. 9 з.п. ф-лы, 5 ил.

 

Изобретение относится к радиоприемным устройствам с применением углеродных нанотрубок (УНТ). Изобретение может быть использовано для создания элементов и приборов радиоприемной аппаратуры.

В заявке на патент US 2010144296 (А1) «Саrbon Nanotubes for Wireless Communication and Radio Transmission» (МПК H04B 1/16, опубликовано 10.06.2010 г.) описано технические решение реализации демодулятора радиоприемного устройства, состоящего из подложки, двух электродов, которые соединены между собой с помощью УНТ. Недостатком данного технического решения является возможность использования УНТ только в качестве демодулятора радиосигнала.

В патенте США US 8717046 (В2) «Nanotube Resonator Devices» (МПК G01R 27/04; Н03Н 9/24, опубликовано 06.05.2014 г.) описано радиоприемное устройство, состоящее из анода и катода, на поверхности которого зафиксирована одиночная углеродная нанотрубка. Электрический контакт между катодом и анодом отсутствует. Для работы радиоприемного устройства необходимо размещение устройства в вакуумированном объеме для обеспечения условий протекания автоэлектронной эмиссии из УНТ. Недостатком данного технического решения является отсутствие управляющего электрода, наличие которого позволяет повысить стабильность тока автоэлектронной эмиссии без изменения напряжения между катодом и анодом, изменение которого приводит к изменению резонансной частоты УНТ и ухудшению приема радиосигнала.

Наиболее близким по совокупности существенных признаков (прототипом) изобретения является техническое решение, описанное в патенте США на изобретение US 8022791 (В2) «Radio frequency device comprising a vibratile carbon nanotube and a vibratile tuning electrode» (МПК H03H 9/24; H03H 9/46; H04B 1/16 опубликовано 20.09.2011 г.). В изобретении описано радиоприемное устройство, состоящее из подложки №1, на поверхности которой располагается катод с углеродной нанотрубкой, подложки №2, на поверхности которой сформирован анод с осциллирующим электродом и управляющий электрод, и подложки №3, на поверхности которой размещаются подложка №1 и подложка №2 лицевой стороной друг напротив друга, и вакуумного корпуса, где размещаются элементы радиоприемного устройства. Недостатками данного технического решения являются: применение одиночной УНТ, это ограничивает максимальную плотность тока эмиссии данного эмиттера, не позволяя добиться высоких коэффициентов усиления и больших выходных величин детектируемого низкочастотного сигнала; использование в конструкции трех подложек и внешнего вакуумного корпуса усложняет процесс изготовления и накладывает ограничения на миниатюризацию радиоприемного устройства; отсутствие в конструкции радиоэлектрода для подключения напрямую к линии передачи или внешней антенны с целью обеспечения устойчивой работы устройства, в случае слабого источника радиосигнала и необходимость использования радиопрозрачных материалов в конструкции вакуумного корпуса радиоприемного устройства.

Технической проблемой изобретения является разработка конструкции радиоприемного, устройства с применением массивов УНТ, с обеспечением размещения элементов радиоприемного устройства на одной подложке, с обеспечением формирования вакуумированного объема в рабочей области радиоприемного устройства и группы электродов для ввода управляющих и радиочастотных сигналов в вакуумированный объем устройства.

Технический результат заключается в увеличении амплитуды выходного низкочастотного сигнала посредством увеличения автоэмиссионного тока за счет использования массивов УНТ, в совокупности с повышением стабильности работы и срока службы радиоприемного устройства с применением углеродных нанотрубок.

Для достижения вышеуказанного технического результата радиоприемное устройство содержит подложку с нанесенным на нее, по меньшей мере, одним диэлектрическим слоем, в диэлектрическом слое и подложке выполнено углубление, на поверхности диэлектрического слоя с примыканием к углублению на его противоположных сторонах выполнены катод, анод, радиоэлектрод и управляющий электрод с отсутствием электрического контакта между ними. На боковой поверхности катода, примыкающей к углублению, сформирован массив углеродных нанотрубок, область с углублением закрыта герметизирующей пластиной.

От прототипа радиоприемное устройство отличается тем, что в диэлектрическом слое и подложке выполнено углубление, на боковой поверхности катода, примыкающей к углублению сформирован массив УНТ, в конструкции присутствует радиоэлектрод, а область с углублением закрыта герметизирующей пластиной.

Формирование углубления в диэлектрическом слое и подложке, размещение на поверхности диэлектрического слоя с примыканием к углублению на его противоположных сторонах: катода, анода, радиоэлектрода и управляющего электрод, формирование на боковой поверхности катода, примыкающей к углублению, массива УНТ, вакуумирование области с углублением посредством герметизирующей пластины обеспечивает размещение анода, катода с массивом УНТ, радиоэлектрода и управляющего электрода в одной плоскости, что упрощает процесс изготовления с минимизацией габаритов устройства. Таким образом, формируется радиоприемное устройство, с размещенным в вакуумированном объеме массивом УНТ, это обеспечивает высокую плотность рабочего эмиссионного тока, возможность работы в области с большой крутизной характеристики, что позволяет повысить коэффициент усиления устройства и получить на выходе более высокую величину амплитуды низкочастотного сигнала. Наличие в конструкции дополнительного управляющего электрода позволяет управлять плотностью эмиссионного тока, для фокусировки потока электронов и стабилизации рабочего режима детектора (рабочей точки на эмиссионной ВАХ), а радиоэлектрода позволяет подключить внешнюю антенну для обеспечения приема слабого источника радиосигнала или для согласования входного импеданса с выходами различных радиочастотных устройств и линий связи. Формы конструкции управляющего электрода и радоэлектрода, для оптимального взаимодействия электромагнитных полей с массивом УНТ, могут быть выполнены в виде нескольких отдельных частей, разнесенных по обе стороны (симметрично) относительно осевой линии от катода до анода, реализующих планарную фокусирующую-стабилизирующую систему для получения нужной плотности потока электронов из УНТ.

В частных случаях выполнения изобретения углубление в подложке выполнено в форме прямоугольного параллелепипеда площадью основания от 1 до 100 мкм2.

В частных случаях выполнения изобретения углубление в подложке выполнено глубиной от 0,1 мкм до 20 мкм.

В частных случаях выполнения изобретения торец катода, анода, радиоэлектрода и управляющего электрода, примыкающий к углублению, выполнен в виде прямоугольника или трапеции.

В частных случаях выполнения изобретения длина массива углеродных нанотрубок составляет от 0,5 до 8 мкм.

В частных случаях выполнения изобретения катод, анод, радиоэлектрод и управляющий электрод могут быть выполнены, по меньшей мере, из одного слоя титана и/или молибдена, и/или золота, и/или платины, и/или алюминия, и/или меди, и/или хрома, и/или вольфрама.

В частных случаях выполнения изобретения подложка состоит, по меньшей мере, из одного слоя кремния и/или оксида кремния, и/или ситалла, и/или стекла, и/или оксида алюминия.

В частных случаях выполнения изобретения диэлектрический слой выполнен из оксида кремния, и/или оксида алюминия, и/или нитрида кремния толщиной от 50 нм до 3 мкм.

В частных случаях выполнения изобретения герметизирующая пластина выполнена из кремния и/или оксида кремния, и/или ситала, и/или стекла, и/или оксида алюминия толщиной от 0,1 мм до 1 мм.

В частных случаях выполнения изобретения герметизирующая пластина соединена с поверхностью подложки методом сращивания посредством стеклянного припоя.

В частных случаях выполнения изобретения сформированном вакуумированном объеме с помощью герметизирующей пластины создается давление не более 1×10-3 Па.

Совокупность признаков, характеризующих изобретение, позволяет получить радиоприемное устройство с увеличенным значением, коэффициента усиления и выходной амплитуды низкочастотного сигнала, с повышенной надежностью функционирования и увеличенным сроком службы.

Изобретение поясняется чертежами, где

на фиг. 1 - схематическое изображение радиоприемного устройства вид сверху;

на фиг. 2 - схематическое изображение среза радиоприемного устройства вдоль штриховой линии;

на фиг. 3 - функциональная электрическая схема;

на фиг. 4 - осциллограмма для случая, когда частота несущего модулированного сигнала, не совпадает с частотой собственных колебаний массива УНТ;

на фиг. 5 - осциллограмма для случая, когда частота несущего модулированного сигнала, совпадает с частотой собственных колебаний массива УНТ.

Радиоприемное устройство содержит подложку 1 с нанесенным на нее диэлектрическим слоем 2, катод 3, анод 4, радиоэлектрод 5 и управляющий электрод 6, массив углеродных нанотрубок 7, герметизирующую пластину 8 (фиг. 1 и фиг. 2).

В подложке 1 с нанесенным на нее диэлектрическим слоем 2 выполнено углубление, на поверхности диэлектрического слоя 2 с примыканием к углублению на его противоположных сторонах сформированы катод 3, анод 4, радиоэлектрод 5 и управляющий электрод 6. Между катодом 3, анодом 4, радиоэлектродом 5 и управляющим электродом 6 отсутствуют электрические контакты. На боковой поверхности катода 3, примыкающей к углублению выращен массив углеродных нанотрубок 7, область с углублением закрыта герметизирующей пластиной 8.

Подложка 1 состоит, по меньшей мере, из одного слоя кремния и/или оксида кремния, и/или ситалла, и/или стекла, и/или оксида алюминия, диэлектрический слой 2 выполнен из оксида кремния, и/или оксида алюминия, и/или нитрида кремния толщиной от 50 нм до 3 мкм. Углубление в подложке 1 выполнено в форме прямоугольного параллелепипеда площадью основания от 1 до 100 мкм2, глубиной от 0,1 мкм до 20 мкм. Катод 3, анод 4, радиоэлектрод 5 и управляющий электрод 6 могут быть выполнены, по меньшей мере, из одного слоя титана и/или молибдена, и/или золота, и/или платины, и/или алюминия, и/или меди, и/или хрома, и/или вольфрама. Торцы катода 3, анода 4, радиоэлектрода 5 и управляющего электрода 6, примыкающие к углублению, могут быть выполнены в виде прямоугольника или трапеции. Длина массива углеродных нанотрубок 7 составляет от 0,5 до 8 мкм. Герметизирующая пластина 8 может быть выполнена из кремния и/или оксида кремния, и/или ситала, и/или стекла, и/или оксида алюминия толщиной от 0,1 мм до 1 мм и соединяется с поверхностью подложки 1 методом сращивания посредством стеклянного припоя 9. В сформированном вакуумированном объеме с помощью герметизирующей пластины 8 создается давление не более 1×10-3 Па.

Радиоприемное устройство работает следующим образом.

При подаче модулированного радиосигнала в случае совпадения несущей частоты радиосигнала, с частотой собственных колебаний массива УНТ 7 в цепи анода 4 помимо постоянного эмиссионного тока, в цепи возникнет переменный ток, связанный с вынужденными колебаниями УНТ, при этом во время резонанса амплитуда этого тока резко возрастет. Вследствие нелинейной характеристики рабочего элемента (эмиссионной ячейки из УНТ), мгновенное значение этого тока в области низких частот будет подчиняться закону модуляции принимаемого (детектируемого) радиосигнала, в частности для амплитудной модуляции (AM), значение низкочастотного переменного тока будет повторять огибающую АМ-сигнала. В статье (Barkaline V., Abramov I., Belogurov E., Chashynski A. Simulation of Carbon Nanotubes and Resonant Excitation of their Mechanical Vibrations by Electromagnetic Field for Nanoradio // Applications Nonlinear Phenomena in Complex Systems. 2012. Vol. 15, no. 1. PP. 23-42.) на основании теоретических расчетов показана возможность возбуждения колебаний массива УНТ как единого целого, что подтверждает возможность использования массива УНТ в качестве активного элемента при создании радиоприемного устройства с применением УНТ. Для проверки работоспособности радиоприемного устройства с применением УНТ можно использовать функциональную схему, представленную на фиг. 3. Для демонстрации работы радиоприемного устройства необходим источник постоянного напряжения Е1, измеритель постоянного тока РА1, источник напряжения с управлением Е2 и дифференциальный усилитель DA1. Резисторы в цепи анода R1 и управляющего электрода R2, необходимы для ограничения максимального тока, протекающего через устройство. Так же допускается их исключение из схемы.

Для генерации радиосигнала предлагается использовать ВЧ генератор с модуляцией, чтобы через излучающую антенну передать тестовый сигнал с информационной составляющей непосредственно на массив УНТ 7 или радиоэлектрод 5, подключенный к антенне. В качестве регистрирующего устройства предлагается использовать осциллограф или иное записывающее (обрабатывающее, анализирующее) информационный сигнал устройство.

Для регистрации информационного сигнала, предлагается в цепь анода 4 включить резистор R3, измеряемое на нем переменное напряжение будет пропорционально протекающему эмиссионному току, возникающему в результате детектирования. Конденсаторы С1 и С2 необходимы для блокировки попадания постоянного напряжения на вход усилителя. В качестве системы питания радиоприемного устройства был использован двухканальный источник-измеритель с низким уровнем шума, такой прибор позволяет одновременно установить и контролировать рабочее напряжение устройства, стабилизировать его рабочий ток, используя канал обратной связи. Дифференциальный усилитель должен обеспечить необходимую полосу пропускания для информационного сигнала и усиление для конченого регистрирующего устройства, например осциллографа.

Для обеспечения правильной работы устройства, источник-измеритель достаточно использовать в режиме источника напряжения. Первый канал этого прибора подключается к аноду 4. Второй канал подключается к управляющему электроду 6. Катод 3, является общим для обоих источников. Необходимое напряжение на аноде 4 задается источником постоянного напряжения Е1, а ток (IA) в цепи анода 4 измеряется амперметром РА1. Значение этого напряжения выбирается таким образом, чтобы получить устойчивый эмиссионный ток (IE), значение этого тока контролируются РА1. Величина напряжения (VU) на управляющем электроде 6 устанавливается вторым источником напряжения Е2 и в дальнейшем, автоматический подстраивается в процессе работы радиоприемного устройства, чтобы протекающий постоянный ток через резистор R3 в цепи анода 4 имел фиксированную величину, равную заданному вначале рабочему току эмиссии, IA→IЕ0. В качестве алгоритма регулировки, предлагается использовать следующую формулу:

где β - коэффициент обратной связи, определяющий глубину и диапазон регулировки рабочего тока для устройства. На практике, при работе устройства, источник Е2 должен обеспечить подстроку напряжения VU пропорционально разности тока IA-IE0, где ток IA измеряется РА1. Данная стабилизация рабочего тока необходима для компенсации нестабильности эмиссионного тока из массива УНТ 7. Для правильного функционирования стабилизации, на обратную связь между источником Е2 и измерителем РА2, наложены определенные ограничения по скорости работы. Постоянная времени обратной связи не должна быть очень большой, иначе не будут отслеживаться быстрые флуктуации эмиссионного тока, с другой стороны, она не должна быть меньше по времени, самых медленных (низко частных) процессов в информационном сигнале.

Пример

Радиоприемное устройство с применением углеродных нанотрубок содержит подложку из кремния с нанесенным на ее поверхность оксидом кремния толщиной 2 мкм, в диэлектрическом слое и подложке выполнено углубление в виде прямоугольного параллелепипеда со сторонами основания 5 мкм на 5 мкм глубинной 4 мкм, на поверхности диэлектрического слоя с примыканием к углублению на его противоположных сторонах выполнены катод, анод, радиоэлектрод и управляющий электрод из титана толщиной 500 нм, торцы которых выполнены в виде прямоугольника шириной 4 мкм, на боковой поверхности катода, примыкающей к углублению выращен массив углеродных нанотрубок длинной до 4 мкм, область с углублением закрыта герметизирующей пластиной из кремния посредством сращивания подложки и пластины с помощью слоя стеклянного припоя толщиной 50 мкм при давлении не выше 5×10-4 Па.

На фиг. 4 представлена рабочая осциллограмма для случая, когда частота несущего модулированного сигнала, не совпадает с частотой собственных колебаний массива УНТ. Серым цветом изображен AM модулированный ВЧ сигнал, для контроля измеряемый с выхода тестового генератора. Черным цветом изображен выходной сигнал устройства, соответствующий переменному току в цепи анода, имеющий шумовой характер, вследствие, протекающей автоэмиссии из УНТ. На фиг. 5 представлена рабочая осциллограмма для другого случая, когда частота несущей передаваемого модулированного сигнала, совпадает с частотой собственных колебаний массива УНТ. Серым цветом изображен AM модулированный ВЧ сигнал, для контроля измеренный на выходе генератора, черным цветом изображен детектируемый в реальном времени сигнал, соответствующий переменному току в цепи анода. При совпадении несущей частоты радиосигнала с резонансной частотой массива УНТ в цепи анода возникнет сильный и различимый ток, соответствующий огибающей ВЧ сигнала, происходит детектирование сигнала, как показано на осциллограмме (фиг. 5).

1. Радиоприемное устройство, содержащее подложку с нанесенным на нее, по меньшей мере одним, диэлектрическим слоем, в диэлектрическом слое и подложке выполнено углубление, на поверхности диэлектрического слоя с примыканием к углублению на его сторонах выполнены катод, анод, радиоэлектрод и управляющий электрод с отсутствием электрического контакта между ними, на боковой поверхности катода, примыкающей к углублению, сформирован массив из углеродных нанотрубок, область с углублением закрыта герметизирующей пластиной.

2. Радиоприемное устройство по п. 1, отличающееся тем, что углубление в подложке выполнено в форме прямоугольного параллелепипеда площадью основания от 1 до 100 мкм2.

3. Радиоприемное устройство по п. 1, отличающиеся тем, что углубление в подложке выполнено глубиной от 0,1 мкм до 20 мкм.

4. Радиоприемное устройство по п. 1, отличающееся тем, что торец катода, анода, радиоэлектрода и управляющего электрода, примыкающий к углублению, выполнен в виде прямоугольника или трапеции.

5. Радиоприемное устройство по п. 1, отличающиеся тем, что длина массива углеродных нанотрубок составляет от 0,5 до 8 мкм.

6. Радиоприемное устройство по п. 1, отличающееся тем, что катод, анод, радиоэлектрод и управляющий электрод могут быть выполнены, по меньшей мере, из одного слоя титана и/или молибдена, и/или золота, и/или платины, и/или алюминия, и/или меди, и/или хрома, и/или вольфрама.

7. Радиоприемное устройство по п. 1, отличающееся тем, что подложка состоит, по меньшей мере, из одного слоя кремния и/или оксида кремния, и/или ситалла, и/или стекла, и/или оксида алюминия.

8. Радиоприемное устройство по п. 1, отличающееся тем, что диэлектрический слой выполнен из оксида кремния, и/или оксида алюминия, и/или нитрида кремния толщиной от 50 нм до 3 мкм.

9. Радиоприемное устройство по п. 1, отличающееся тем, что герметизирующая пластина выполнена из кремния и/или оксида кремния, и/или ситала, и/или стекла, и/или оксида алюминия толщиной от 0,1 мм до 1 мм.

10. Радиоприемное устройство по п. 1, отличающееся тем, что герметизирующая пластина соединена с поверхностью подложки методом сращивания посредством стеклянного припоя с образованием в области углубления вакуума с давлением не более 1×10-3 Па.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть использовано в измерительной технике, в устройствах средств связи, радиотехнической разведки, радиоэлектронного противодействия.

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов.

Изобретение относится к области радиотехники и может быть использовано для создания перспективных радиосредств с программируемой архитектурой с цифровой обработкой сигналов непосредственно на радиочастоте в условиях воздействия блокирующих сигналов для обеспечения устойчивой радиосвязи в сложной помеховой обстановке.

Изобретение относится к радиотехнике и предназначено для приема навигационного сигнала на фоне преднамеренных помех, и может быть использовано в навигационной аппаратуре потребителя (НАП) глобальной навигационной спутниковой системы (ГНСС).

Изобретение относится к мобильной связи и может быть использовано для компенсации затухания между устройством мобильной связи и антенной. Схемное устройство (1) для компенсации затухания, возникающего в антенном проводе между устройством (2) мобильной связи и антенной (3) с несколькими подканалами (Т1, Т2, Т3) для соответствующей передачи в специфических частотных диапазонах.

Изобретение относится к области техники приема и обработки радиосигналов и может быть использовано для создания перспективных радиосредств с программируемой архитектурой и цифровой обработкой сигналов непосредственно на радиочастоте для обеспечения эффективной по стоимости и мощности потребления многоканальной радиосвязи в расширенном частотном диапазоне приема.

Изобретение относится к системам обработки информации, обладающей внутренней избыточностью и искаженной помехами. Техническим результатом является возможность обнаружения и исправления ошибок передачи информации за счет ее внутренней избыточности, связанной с наличием корреляционной зависимости между соседними значениями цифровой информации; обеспечение дополнительного контроля достоверности принятых и восстановленных сообщений.

Изобретение относится к радиолокационной технике и может быть использовано для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов.

Изобретение относится к беспроводной межмашинной связи (МТС). Технический результат заключается в обеспечении возможности избирательного соединения с беспроводными сотами оборудования пользователя (UE).

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности каналов передачи.

Изобретение относится к способу изготовления радиоприемного устройства с применением углеродных нанотрубок. Технический результат заключается в повышении стабильности работы и срока службы радиоприемного устройства с применением углеродных нанотрубок.

Изобретение относится к области радиотехники и может использоваться как для создания приемо-передающей аппаратуры, так и для измерения электрофизических характеристик среды распространения сигнала. Технический результат - повышение КПД излучения сигнала и стойкости к внешним электромагнитным возмущениям. Для этого в устройство введены первый (2) и второй (3) резисторы, формирователь ФМН (1) содержит последовательно соединенные источник сигнала несущей частоты (1.1) и первый резистор формирователя (1.4), вывод которого подключен к инвертирующему входу операционного усилителя (1.3) и через второй резистор формирователя (1.8) - к выходу операционного усилителя (1.3), который соединен со стоком второго МОП-транзистора (1.7), выход источника сигнала несущей частоты (1.1) подсоединен к стоку первого МОП-транзистора (1.6), истоки обоих МОП-транзисторов объединены и являются выходом формирователя ФМн (1), при этом выход формирователя ПСП (1.2) подсоединен к затвору первого МОП-транзистора (1.6) и входу инвертора (1.5), инвертирующий выход которого соединен с затвором второго МОП-транзистора (1.7), кроме того, неинвертирующий вход операционного усилителя (1.3) соединен с общей шиной, при этом согласующее устройство (6) выполнено из материала, диэлектрическая проницаемость которого находится в диапазоне 200…230. 4 ил.

Изобретение относится к области радиосвязи. Техническим результатом является снижение потребляемой мощности мобильного электронного устройства. Мобильное электронное устройство включает в себя множество антенн и приемопередатчик, причем приемопередатчик включает в себя блок управления, выполненный с возможностью переключаться в режим низкого потребления мощности для работы в режиме низкого потребления мощности или для эксплуатации по меньшей мере одной из множества антенн в режиме низкого потребления мощности при наступлении периода отсутствия передачи данных в течение заранее определенного времени в активном состоянии. 2 н. и 18 з.п. ф-лы, 15 ил.

Изобретение относится к радиотехнике. Технический результат состоит в повышении мощности генерации амплитудно-модулированных сигналов (ГАМС). Для этого на управляющие переходы мощных силовых транзисторов подаются сигналы двух различных частот, например несущая 500 кГц и модулирующая 50 Гц (полезный сигнал). Предлагаемый ГАМС состоит из источника постоянного напряжения, четырех силовых транзисторов, собранных по мостовой схеме, колебательного резонансного контура, нагрузки и блока управления (БУ). БУ состоит из двух частей. Первая - управляет двумя транзисторами левого плеча моста, а вторая часть БУ - формирует управляющие сигналы для транзисторов правого плеча, путем суммирования двух сигналов с различными частотами (несущей и модулирующей). 3 ил.

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в повышении производительности фильтрации в системе радиосвязи дуплексного режима с временным разделением. Узел радиосети в системе радиосвязи дуплексного режима с временным разделением содержит: первый фильтр, выполненный с возможностью осуществления первого типа фильтрации сигнала, передаваемого на устройство или принимаемого от него в системе радиосвязи через радиоинтерфейс; второй фильтр, выполненный с возможностью осуществления второго типа фильтрации сигнала, передаваемого на устройство, с удовлетворенной потребностью в дополнительной фильтрации для передачи помимо потребности в общей фильтрации; третий фильтр, выполненный с возможностью осуществления третьего типа фильтрации сигнала, принимаемого от устройства, с удовлетворенной потребностью в дополнительной фильтрации для приема помимо потребности в общей фильтрации, при этом затухание частоты, обеспечиваемое упомянутым вторым фильтром, отличается от того же, обеспечиваемого упомянутым третьим фильтром. 2 н. и 13 з.п. ф-лы, 9 ил.
Наверх