Способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида



Способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида
Способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида
Способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида
Способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида
C08K2003/2296 - Использование неорганических или низкомолекулярных органических веществ в качестве компонентов для композиций на основе высокомолекулярных соединений (пестициды, гербициды A01N; лекарственные препараты, косметические средства A61K; взрывчатые вещества C06B; краски, чернила, лаки, красители, полировальные составы, клеящие вещества C09; смазочные вещества C10M; моющие средства C11D; химические волокна или нити D01F; средства для обработки текстильных изделий D06)

Владельцы патента RU 2663045:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) (RU)

Изобретение относится к полимерной промышленности и может быть использовано для изготовления изделий с повышенным уровнем бензомаслостойкости - уплотнителей, ремней, конвейерных лент, шлангов, и деталей с повышенной озоно- и атмосферостойкостью. Осуществляют коагуляцию смеси латекса натурального каучука и нестабилизированного латекса поливинилхлорида под действием 1% водного раствора полидиаллилдиметиламмоний хлорида. Вводят в полученную основу вулканизующую систему при температуре 50°С с последующей вулканизацией образованной композиции. Обеспечивается повышение стойкости термопластичного эластомера к воздействию органических жидкостей и агрессивных сред при сохранении его деформационно-прочностных свойств. 1 табл., 1 пр., 5 ил.

 

Изобретение относится к области полимерных термопластичных материалов на основе натурального каучука и поливинилхлорида, предназначенных для изготовления изделий с повышенным уровнем бензомаслостойкости - уплотнителей, ремней, конвейерных лент, шлангов, и деталей с повышенной озоно- и атмосферостойкостью, используемых в различных отраслях промышленности.

Известен способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида, для повышения совместимости которых используются сопромоторы (патент WO 0034383, МПК C08L 7/00, C08L 7/02, C08L 9/02, C08L 9/04, C08L 77/06, C08L 23/06, C08L 23/08, C08L 23/12, C08L 75/04, опубл. 15.06.2000). Способ состоит из двух этапов и заключается в формировании каучуковой фазы (резиновой матрицы), состоящей из натурального каучука, сопромоторов и добавок. Резиновая матрица образуется в процессе смешивания, при температуре менее 120°С. Второй этап смешивания осуществляют в расплаве или посредством динамической вулканизации. Термопластичный эластомер формируется путем смешивания фазы поливинилхлорида и каучуковой фазы при температуре, достаточной, по меньшей мере, для смягчения поливинидхлорида и дальнейшей вулканизации полученной композиции.

Недостатком данного способа является термическое разрушение резиновой матрицы при смешении и плохая интеграция компонентов композиции, вызванная необходимостью ограничения температурного режима процесса.

Известен способ получения резин на основе натурального каучука и хлорсульфированного полиэтилена 50/50, содержащих поливинилхлорид в качестве совмещающего компонента для лучшей гомогенизации двух основ (Influence of Poly(vinyl chloride) on Natural rubber/Chlorosulfonated polyethylene blends / M. Phiriyawirut, S. Luamlam // Open Journal of Organic Polymer Materials, 2013, 3, 81-86). Компоненты эластомера смешивали на двухвалковой мельнице при комнатной температуре. Вулканизацию смеси проводили с использованием гидравлического горячего пресса при 160°С под давлением 15 МПа.

В данном способе поливинилхлорид используется в качестве сшивки для двухкомпонентной основы. Недостатком способа является необходимость использования высоких температур и давления. Кроме этого низкое количество каучука ухудшает пластичность резин.

Известен способ получения эластомера на основе смеси натурального каучука, модифицированного путем привитой сополимеризации со стиролом и метилметакрилатом, и поливинилхлорида (Blends of Poly(Vinyl Chloride) (PVC)/Natural Rubber-g-(Styrene-co-Methyl Methacrylate) for Improved Impact Resistance of PVC / W. Arayapranee, P. Prasassarakich, G.L. Rempel // Journal of Applied Polymer Science, Vol. 93, 1666-1672 (2004)). Перед выделением натурального каучука из стабилизированного латекса проводили его модификацию. После этого латекс коагулировали и выделяли модифицированный каучук. Порошок из ПВХ и привитого сополимера смешивали в расплаве, куда добавляли предварительно подготовленную вулканизующую смесь. Полученную композицию вулканизировали на экструдере при температуре 165°С.

Недостатком способа является образование смеси из модифицированного натурального каучука, свободного каучука, сополимеров и гомополимеров модифицирующих мономеров. Кроме этого способ не обеспечивает эффективной интегрированности каучука и поливинилхлорида, что не позволяет эффективно улучшить свойства вулканизата.

Наиболее близким является способ получения эластомера на основе натурального каучука и поливинилхлорида, которую получают под действием уксусной кислоты на смесь латекса каучука и дисперсии поливинилхлорида в воде (Latex Stage Blending of Natural Rubber and Poly(Vinyl Chloride) for Improved Mechanical Properties / Laliamma J., Rani J. // International Journal of Polymeric Materials and Polymeric Biomaterials, Vol.54, Is. 5, 387-396). Латекс натурального каучука и дисперсию поливинилхлорида смешивают с помощью высокоскоростной механической мешалки. Полученную смесь коагулируют 2%-ой уксусной кислотой. В выделенную смесь основы при 150°С вводят оксид цинка, стеариновую кислоту, антиоксидант NA 4020, перемешивают и при охлаждении на двухвалковых вальцах добавляют диоктилфталат, ускоритель вулканизации и серу. Полученную композицию вулканизуют.

Недостатком способа является многостадийный процесс получения, а также использование поливинилхлорида в виде дисперсии, при этом частицы ПВХ в композиции получаются крупными, что не обеспечивает хорошей интегрированности компонентов основы.

Задачей данного изобретения является разработка способа получения термопластичного эластомера на основе натурального каучука (НК) и поливинилхлорида (ПВХ), обеспечивающего эффективную интеграцию указанных компонентов в вулканизате.

Техническим результатом являются повышенная стойкость термопластичного эластомера к воздействию органических жидкостей и агрессивных сред при сохранении его деформационно-прочностных свойств.

Технический результат достигается при реализации способа получения термопластичного эластомера на основе натурального каучука и поливинилхлорида, заключающегося в коагуляции латекса натурального каучука из его смеси с водной дисперсией поливинилхлорида, введении в полученную основу вулканизующей системы и последующей вулканизации образованной композиции, при этом коагуляцию проводят под действием 1% водного раствора полидиаллилдиметиламмоний хлорида, в качестве водной дисперсии поливинилхлорида используют нестабилизированный латекс поливинилхлорида, а вулканизующую систему вводят при температуре 50°С.

Сущность заявляемого технического решения заключается в одновременном выделении неполярного эластомера (натурального каучука) и полярного термопласта (поливинилхлорида) в результате действия универсального для данной системы коагулянта полидиаллилдиметиламмоний хлорида (ПДАДМАХ) из смеси из латексов. При этом размеры частиц ПВХ очень малы (0,1-0,5 мкм) и равномерно распределены в непрерывной эластомерной фазе.

Получение термопластичного эластомера с использованием такой основы позволяет обеспечить высокую стойкость к воздействию органических жидкостей и агрессивных сред, а также повышает деформационно-прочностные свойства вулканизата.

Были исследованы характеристики полученного термопластичного эластомера.

Деформационно-прочностные свойства были определены по ГОСТ 270-75. Твердость Шора А была определена по ГОСТ 263-75. Набухание термопластичного эластомера проводилось при выдерживании вулканизатов в разных растворителях в течение 96 часов: гексан ТУ 6-09-3875-78, бензол ГОСТ 5955-75, толуол ГОСТ 5789-78 и о-ксилол ТУ 2631-008-44493179-97, и рассчитывалась по формуле:

где W1 и W2 - навески исходного и набухшего образцов соответственно, г.

Характеристики термопластичного эластомера на основе НК и ПВХ представлены в таблице.

Из таблицы видно, что полученный заявленным способом термопластичный эластомер обладает повышенными деформационно-прочностными свойствами, повышенной твердостью и меньшей степенью равновесного набухания, что обеспечивает стойкость к воздействию органических жидкостей и агрессивных сред.

На фиг. 1 показано СЭМ-изображение термопластичной эластомерной композиции НК/ПВХ 90/10. Изображение получено с помощью сканирующего электронного микроскопа VERSA 3D DualBeam (FEI, США) и показывает размерность частиц поливинилхлорида, обеспечивающее эффективную интеграцию ПВХ и НК в основе композиции.

На фиг. 2-5 показаны графики, иллюстрирующие степени набухания термопластичного эластомера, полученного по заявленному способу (кривая 1) и вулканизата на основе натурального каучука, полученного кислотной коагуляцией (кривая 2) в органических растворителях: гексане (фиг. 2), бензоле (фиг. 3), толуоле (фиг. 4) и о-ксилоле (фиг. 5).

Вулканизаты (кривая 2) на основе натурального каучука получали вулканизацией с помощью вулканизации такой же вулканизующей группы, с использованием каучука, полученного коагуляцией муравьиной кислотой (Большой справочник резинщика. Ч. 1. Каучуки и ингредиенты / Под ред. С.В. Резниченко, Ю.Л. Морозова. - М.: ООО «Издательский центр «Техинформ» МАИ», 2012. - 744 с. - стр. 106, 110).

Из графиков видно, что степень набухания термопластичного эластомера, полученного по заявленному способу, ниже, следовательно, он более стойкий к воздействию органических жидкостей.

В составе основы для термопластичной эластомерной композиции использовали высокоаммиачный натуральный латекс ГОСТ 29081-91, поливинилхлоридный латекс марки ЕП-6602-С и в качестве коагулянта - полидиаллилдиметиламмоний хлорид (ПДАДМАХ) - полиэлектролит водорастворимый катионный марки ВПК-402 ТУ 2227-184-00203312-98 «Каустик». В качестве вулканизующей группы композиции используют стандартные компоненты: стеариновую кислоту, оксид цинка, каптакс и серу, а в качестве стабилизатора для ПВХ - стеарат кальции.

Способ осуществляется следующим образом.

Пример.

Для получения термопластичного эластомера на основе натурального каучука и поливинилхлорида в емкость с 116 г высокоаммиачного натурального латекса (сухой остаток 61,77%) и 25 г нестабилизированного латекса поливинилхлорида (сухой остаток 31,38%) прилили дистиллированной воды в массовом отношении смесь латексов: вода, равном 1:2. Смесь перемешивали в течение 2 часов, далее добавили к ней 63,2 г 1%-го раствора ПДАДМАХ. Время коагуляции составило 12 ч. Полученную крошку отделили фильтрованием, затем сушили при 70°С в течение 12 час.

В смесителе Брабендер при температуре 50°С и скорости вращения 70 об/мин в полученную основу ввели вулканизующую систему: 3,45 г оксида цинка, 0,34 г стеариновой кислоты, 0,38 г стеарата кальция, 0,48 г каптакса, 2,07 г серы.

Полученную термопластичную эластомерную композицию вулканизировали на прессе под давлением при 143°С в течение 15 минут с образованием термопластичного эластомера.

Таким образом, способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида, заключающийся в коагуляции смеси латекса натурального каучука и нестабилизированного латекса поливинилхлорида под действием 1% водного раствора полидиаллилдиметиламмоний хлорида, введении в полученную основу вулканизующей системы при температуре 50°С и последующей вулканизации образованной композиции, обеспечивает повышенную стойкость термопластичного эластомера к воздействию органических жидкостей и агрессивных сред при сохранении его деформационно-прочностных свойств.

Способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида, заключающийся в коагуляции латекса натурального каучука из его смеси с водной дисперсией поливинилхлорида, введении в полученную основу вулканизующей системы и последующей вулканизации образованной композиции, отличающийся тем, что коагуляцию проводят под действием 1% водного раствора полидиаллилдиметиламмоний хлорида, в качестве водной дисперсии поливинилхлорида используют нестабилизированный латекс поливинилхлорида, а вулканизующую систему вводят при температуре 50°С.



 

Похожие патенты:
Изобретение относится к каучуковой композиции, способу получения каучуковой композиции и покрышке. Каучуковая композиция содержит: каучуковый компонент (А), включающий по меньшей мере 50% (масс.) по меньшей мере одного каучука на изопреновой основе, выбранного из группы, состоящей из натурального каучука и синтетического изопренового каучука; термопластическую смолу (В) и наполнитель (С), включающий по меньшей мере 70% (масс.) диоксида кремния.

Изобретение относится к резиновым смесям для изготовления вулканизатов, к способу изготовления и вулканизации данных резиновых смесей, к резиновым изделиям, содержащим вулканизаты, и к транспортным средствам, содержащим резиновые изделия.

Изобретение относится к области полимерных термопластичных композиций, предназначенных для изготовления изделий с повышенным уровнем бензомаслостойкости - уплотнителей, ремней, конвейерных лент, шлангов, и деталей с повышенной озоно- и атмосферостойкостью.

Изобретение относится к резинотехнической промышленности и может быть использовано для производства автомобильных шин, полимерных напольных покрытий, промышленных шлангов, транспортеров, лент, ремней, строительных материалов.

Изобретение относится к резиновой смеси и шине, изготовленной с ее использованием. Резиновую смесь получают смешиванием, по меньшей мере, одного каучукового компонента, выбранного из натурального каучука и/или диенового синтетического каучука с диоксидом кремния и композицией эфира глицерина и жирной кислоты, в которой количество композиции эфира глицерина и жирной кислоты составляет 0,5-15 мас.ч.

Настоящее изобретение относится к эмульсионному коагулянту для коагуляции эмульсии и набору для герметизации проколов в шинах с применением эмульсионного коагулянта.

Изобретение относится к композиции с высокой жесткостью для покрышки. Композиция элемента конструкции покрышки содержит сшиваемую полимерную основу с ненасыщенной цепью, армирующий наполнитель и отвердители.

Изобретение относится к каучуковой композиции и шине, использующей композицию в качестве протекторного каучука. Каучуковую композицию получают в результате введения в композицию каучукового компонента (А), включающего натуральный каучук в количестве, составляющем 70 мас.% и более, и каучуковый сополимер стирол-бутадиена, и дальнейшего введения в композицию совместно с каучуковым компонентом в количестве 100 мас.ч.: (В) по меньшей мере одного типа термопластичных смол, выбираемых из числа смол на С5-основе, смол на С5-С9-основе, смол на С9-основе, смол на терпеновой основе, смол на основе терпена-ароматического соединения, дициклопентадиеновых смол и смол на алкилфенольной основе, в количестве от 5 до 50 мас.ч.; и (С) наполнителя, включающего диоксид кремния и технический углерод, в количестве от 20 до 120 мас.ч., причем диоксид кремния представляет собой влажный диоксид кремния с площадью удельной поверхности БЭТ в диапазоне 200-250 м2/г и его содержание составляет 90 мас.% и более.
Изобретение относится к сшиваемой серой каучуковой смеси, в частности, для протекторов пневматических автомобильных шин и к пневматической автомобильной шине. Каучуковая смесь содержит по меньшей мере следующие составляющие: 40-100 частей по меньшей мере одного природного и/или синтетического полиизопрена на 100 частей каучука, 15 частей или более по меньшей мере одной углеводородной смолы на 100 частей каучука, образованной из 50-100 вес.% алифатических мономеров C5 и из 0-50 вес.% по меньшей мере одного дополнительного мономера, причем углеводородная смола имеет значение Q от 0,015 до 0,050 [°С⋅моль/г], где Q=температура размягчения [°C]/определенная центрифугированием средняя Mc [г/моль], и причем углеводородная смола имеет температуру размягчения по стандарту ASTM E 28 (метод кольца и шарика) от 60 до 200°С, и 10-300 частей по меньшей мере одной кремниевой кислоты на 100 частей каучука.

Изобретение относится к каучуковым смесям, к способу получению каучуковых смесей, к способу получению вулканизатов, к вулканизатам и применению эфира ω-меркапто- С 2 –С 6-карбоновой кислоты с многоатомным спиртом для получения каучуковых смесей и их вулканизатов.
Изобретение относится к области химической технологии получения термостабилизаторов экструзивной переработки ПВХ смол - солей органических карбоновых кислот и двухвалентного свинца и направлено на устранение известных недостатков, присущих ранее разработанным способам получения данного класса соединений.

Изобретение относится к области полимерных термопластичных композиций, предназначенных для изготовления изделий с повышенным уровнем бензомаслостойкости - уплотнителей, ремней, конвейерных лент, шлангов, и деталей с повышенной озоно- и атмосферостойкостью.

Изобретение относится к поливинилхлоридным пластизолям, предназначенным для изготовления мягких детских игрушек со звукообразующим отверстием. Пластизоль содержит поливинилхлорид эмульсионный К-66, эпоксидированное соевое масло, стеарат кальция, диоктилфталат, компоненты тонирования, в качестве которых используют двуокись титана пигментную и пигменты.

Изобретение относится к полимерной композиции, пригодной для изготовления синтетических напольных покрытий, включающей 75-90 мас.% минерального наполнителя, 5-20 мас.% поливинилхлорида и 5-15 мас.% добавок, причем по меньшей мере 50 мас.% поливинилхлорида является поливинилхлоридом, пригодным для повторного использования, и по меньшей мере 50 мас.% добавок является эпоксидированным соевым маслом.

Изобретение относится к способу получения металлсодержащей смазки, используемой при производстве жестких и полужестких материалов на основе поливинилхлоридной композиции.

Изобретение относится к способу получения пластификатора, используемого при производстве мягких и полужестких материалов на основе поливинилхлоридных композиций.

Изобретение относится к способу получения композиционных материалов в виде полимерных матриц, наполненных наночастицами оксидов металлов с модифицированной поверхностью, которые могут найти применение для получения материалов электронной техники.

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Осуществляют смешение поливинилхлорида, диоктилфталата, стеарата кальция, трехосновного сульфата свинца, эпоксидной смолы, дифенилолпропана, добавление в смесь трихлорпропилфосфата и технический углерод К-354.

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Композиция для кабельного пластиката содержит компоненты при следующем соотношении, мас.ч: поливинилхлорид эмульсионный ЕП 6602-С (100,0); эпоксидная смола ЭД-20 (10,0); диоктилфталат (55,0); трехосновной сульфат свинца (2,0); стеарат кальция (2,0); бутадиен-нитрильный каучук БНКС-33 (35,0); древесная мука, предварительно обработанная 10-20%-ным водным раствором ФБО (5,0-10,0).

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Композиция для кабельного пластиката содержит компоненты при следующем соотношении, мас.ч.: поливинилхлорид эмульсионный ЕП 6602-С 100,0; эпоксидная смола ЭД-20 10,0; диоктилфталат 45,0-15,0; трехосновной сульфат свинца 2,0; стеарат кальция 2,0; бутадиен-нитрильный каучук БНКС-33 35,0; трихорэтилфосфат или трихлорпропилфосфат 10,0-40,0.

Изобретение относится к области полимерных термопластичных композиций, предназначенных для изготовления изделий с повышенным уровнем бензомаслостойкости - уплотнителей, ремней, конвейерных лент, шлангов, и деталей с повышенной озоно- и атмосферостойкостью.
Наверх