Система измерения угла скручивания

Изобретение предназначено для определения угла скручивания контролируемого объекта относительно некоторой базы в различных отраслях промышленности, в частности в телескопо- и ракетостроении. Система измерения угла скручивания содержит установленные на блоке контроля контрольный элемент и триппель-призму, объектив, диафрагму, подсвеченную через конденсор источником излучения, приемник излучения, выполненный в виде ПЗС-матрицы, и блок обработки информации. При этом система снабжена дополнительной триппель-призмой, установленной на блоке контроля, при этом вершины триппель-призм расположены симметрично относительно оптической оси системы, и дополнительной диафрагмой, установленной на базе, причем диафрагмы расположены симметрично относительно оптической оси системы, а расстояния между вершинами триппель-призм и центрами диафрагм равны друг другу, кроме того, объектив проецирует центры диафрагм в вершины триппель-призм с увеличением, равным единице. Технический результат - повышение коэффициента передачи по углу скручивания и увеличение точности работы всей системы. 1 ил.

 

Предлагаемое изобретение относится к оптическому и оптико-электронному приборостроению и может быть использовано для определения угла скручивания контролируемого объекта относительно некоторой базы в различных отраслях промышленности, в частности, в телескопо- и ракетостроении.

Системы углового контроля, как правило, строятся с использованием фотоэлектрических автоколлиматоров и отражающих элементов, устанавливаемых жестко на объектах контроля.

Известны также автоколлимационная система контроля [1], где в качестве отражателя также использован тетраэдр, и трехосная система углового контроля [2], где качестве отражающего элемента используются зеркала.

Эти системы могут обеспечить довольно высокий коэффициент передачи по углу скручивания, но при больших расстояниях между контролируемым объектом и базой расстояние между автоколлиматорами, установленными на базе, становится чрезвычайно большим, что, как правило, очень трудно реализовать в условиях узкой трассы, внутри которой должна быть реализована измерительная система.

Известны устройства пространственной ориентации объектов [3, 4], в которых в качестве отражающего элемента используются блоки прямоугольных призм. Они обеспечивают высокую точность измерения угла скручивания, но их оптические схемы сложны и трудоемки.

Наиболее близким техническим решением к заявляемому изобретению является оптико-электронная система измерения угла скручивания на основе анаморфирования [5].

Эта система имеет в своем составе устанавливаемый на базе автоколлиматор, содержащий марку (диафрагму), расположенную в фокальной плоскости объектива и подсвечиваемую через конденсор источником излучения, светоделительный кубик, приемник излучения, выполненный в виде ПЗС-матрицы, информация с которой обрабатывается компьютером. На контролируемом объекте располагается контрольный элемент, состоящий из анаморфотной системы и триппель-призмы.

К недостаткам известной системы следует отнести:

- низкий коэффициент передачи по углу скручивания;

- существенное влияние поворота вокруг оси У контрольного блока, приводящего к увеличению погрешности измерения угла скручивания.

Основной задачей, на решение которой направлено предполагаемое изобретение, является повышение коэффициента передачи по углу скручивания и увеличение точности работы всей системы.

Для решения поставленной задачи предлагается система измерения угла скручивания, которая, как и прототип, содержит установленные на блоке контроля контрольный элемент и триппель-призму, объектив, диафрагму, подсвеченную через конденсор источником излучения, приемник излучения, выполненный в виде ПЗС-матрицы, и блок обработки информации.

В отличие от прототипа система снабжена дополнительной триппель-призмой, установленной на блоке контроля, при этом вершины триппель-призм расположены симметрично относительно оптической оси системы, и дополнительной диафрагмой, установленной на базе, причем диафрагмы расположены симметрично относительно оптической оси системы, а расстояния между вершинами триппель-призм и центрами диафрагм равны друг другу, кроме того, объектив проецирует центры диафрагм в вершины триппель-призм с увеличением, равным единице.

Сущность предполагаемого изобретения заключается в наличии в данной системе двух триппель-призм, установленных на контрольном элементе, и двух диафрагм, установленных на базе и проектируемых в вершины триппель-призм с помощью объектива, имеющего увеличение, равное единице, что позволяет получить коэффициент передачи по углу скручивания, равный двум.

Таким образом, совокупность указанных выше признаков предлагаемой системы измерения угла скручивания позволяет решить поставленную задачу.

Предполагаемое изобретение иллюстрируется чертежом, где на фиг. 1 - представлена общая оптическая схема системы измерения угла скручивания.

Система измерения угла скручивания состоит из закрепляемого на базе кронштейна 1, на котором установлены два источника излучения 2 и 2', два конденсор 3 и 3', две диафрагмы 4 и 4', две светоделительные пластины 5 и 5', зеркальная призма 6, приемник излучения, выполненный в виде ПЗС-матрицы 7 и блок обработки информации 8, закрепляемого на контролируемом объекте кронштейна 9 с установленными на нем двумя триппель-призмами 10 и 10' и закрепленного на изделии 11 кронштейна 12 с установленным на нем объективом 13. При этом расстояние между вершинами триппель-призм 10 и 10' и диафрагм 4 и 4' вдоль оптической оси системы (Z) равно четырем фокусным расстояниям объектива 13 (L=4fоб), а сам объектив 13 находится между ними (L1=2fоб).

Вершины триппель-призм 10 и 10' расположены симметрично относительно оптической оси (Z) системы измерения угла скручивания. Аналогично расположены центры диафрагм 4 и 4'.

Так, например, если L=10 м, то fоб.=2,5 м и L1=5 м. Расстояния вдоль оси У L2 и L3 между вершинами триппель-призмам 10 и 10' и центрами диафрагм 4 и 4' соответственно друг другу и выбираются из необходимости обеспечить требуемую точность работы системы измерения угла скручивания.

Работа системы измерения угла скручивания осуществляется следующим образом.

Источники излучения 2 и 2' с помощью конденсоров 3 и 3' проектируются в плоскость диафрагм 4 и 4' соответственно. Диафрагм 4 и 4' представляют собой круглые отверстия диаметром 0,2-0,5 мм и находятся на двойном фокусном расстоянии от объектива 13. Излучение от диафрагм 4 и 4' проходит через светоделительные пластины 5 и 5' соответственно и попадает на объектив 13, который с увеличением, равным единице, проецирует их в вершины триппель-призм 10 и 10' соответственно. Отраженное от триппель-призм 10 и 10' излучение снова попадает на объектив 13, который с помощью полупрозрачных светоделительных пластин 5 и 5' и зеркальной призмы 6 строит два изображения диафрагм 4 и 4' в плоскости ПЗС-матрицы 7. Информация с приемника излучения, выполненного в виде ПЗС-матрицы 7, поступает в блок обработки информации 8, где и осуществляется вычисление величины угла скручивания контролируемого объекта.

Так, например, если расстояние между вершинами триппель-призм 10 и 10' l2=l3=100 мм, то при скручивании контролируемого объекта вокруг оси Z на угол ϕ=1" их вершины сместятся друг относительно друга вдоль оси X на величину δ1:

δ1=l2⋅ϕ=1⋅105⋅1⋅10-6=0,5 мкм, где l2 - в микрометрах, а ϕ - в радианах.

При этом изображения диафрагм 4 и 4' сместятся на ПЗС-матрице 7 вдоль оси X друг относительно друга на удвоенную величину δ2=1 мкм, что при определенных размерах пикселя ПЗС-матрицы и будет определено с высокой точностью.

В блоке обработки информации 8 вычисление угла скручивания ϕ осуществляется по формуле:

Необходимо отметить, что при поворотах контролируемого объекта вокруг осей X и У изображения диафрагм 4 и 4' на ПЗС-матрице будут смещаться вдоль осей У и X на одинаковую величину и поэтому не будет оказывать влияния на определение угла скручивания.

Никакого существенного влияния на точность измерения скручивания не будет оказывать и возможные смещения и наклоны объектива 13.

Таким образом, в предлагаемой системе измерения угла скручивания достигается высокий коэффициент передачи по углу скручивания, равный двум, а поворот контролируемого объекта вокруг осей X и У не влияют на точность измерения угла скручивания.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. США, патент на изобретение №4721386, МПК: G01В 11/26, 1988 г.

2. РФ, патент на полезную модель №167011, МПК: G01В 11/26, 2016 г.

3. РФ, патент на изобретение №2182311, МПК: G01В 11/26, 2001 г.

4. РФ, патент на изобретение №2408840, МПК: G01В 11/26, 2011 г.

5. Коняхин И.А., Мерсон А.Д. Оптико-электронная система измерения угла скручивания на основе анаморфирования. Известия вузов. Приборостроение. 2008. Т. 51 №9 с. 10-14. – прототип.

Система измерения угла скручивания, содержащая установленные на блоке контроля контрольный элемент и триппель-призму, объектив, диафрагму, подсвеченную через конденсор источником излучения, приемник излучения, выполненный в виде ПЗС-матрицы, и блок обработки информации, отличающаяся тем, что система снабжена дополнительной триппель-призмой, установленной на блоке контроля, при этом вершины триппель-призм расположены симметрично относительно оптической оси системы, и дополнительной диафрагмой, установленной на базе, причем диафрагмы расположены симметрично относительно оптической оси системы, а расстояния между вершинами триппель-призм и центрами диафрагм равны друг другу, кроме того, объектив проецирует центры диафрагм в вершины триппель-призм с увеличением, равным единице.



 

Похожие патенты:

Группа изобретений относится к измерительной технике и может быть использована для измерения абсолютных величин линейных перемещений в различных отраслях машиностроения.

Система управления направлением движения транспортного средства включает в себя два отдельных устройства привязки; лазерное сканирующее устройство, выполненное с возможностью испускать сигналы лазерного луча и сканировать секторную область лазерным лучом, с тем чтобы измерять расстояние по прямой соединительной линии для соединения лазерного сканирующего устройства с любым из по меньшей мере двух отдельных устройств привязки и угол между соответствующей прямой соединительной линией и корпусом транспортного средства у транспортного средства или угол между прямыми соединительными линиями; процессор, выполненный с возможностью обрабатывать и сохранять данные и определять, является или нет ориентация корпуса транспортного средства в реальном времени отклоняющейся от начальной ориентации корпуса транспортного средства сразу после того, как система начинает работать, в соответствии с результатами, считанными лазерным сканирующим устройством.

Автоколлиматор содержит отражающий элемент, установленный на объект контроля, фотоэлектрический автоколлиматор, содержащий источник излучения, светоделительную пластину, объектив, матричный фотоприемник (МФП), на который проектируются три изображения установленной в фокальной плоскости объектива круглой диафрагмы, получаемые после отражения от отражающего элемента светового пучка, и блок управления с вычислительным устройством, входы которого связаны с выходами МФП.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения положения вала электродвигателя. Абсолютный оптический однооборотный угловой энкодер содержит n оптопар, где n - разрядность энкодера, растровый диск с одной кодирующей дорожкой, состоящей из последовательно расположенных прозрачных и непрозрачных секторов, причем оптопары располагают с одинаковым шагом a, где a, равное 360/2n, - разрешающая способность энкодера, а кодирующую дорожку формируют в соответствии с двоичной последовательностью длиной m=2n, при этом каждой цифре последовательности соответствует угловой размер a, нулю ставится в соответствии непрозрачный сектор, единице прозрачный - или наоборот.

Изобретение относится к области измерительной техники. Датчик угла поворота, выполненный в виде фотоэлектрического автоколлиматора, содержит объектив, в фокальной плоскости которого установлен матричный приемник излучения, выходом подключенный к электронному блоку, светоделитель, расположенный перед матричным приемником излучения, осветитель с источником света, предназначенный для подсветки сигнальной маски с прозрачным штрихом, установленной перед светоделителем в фокальной плоскости объектива, и двойное зеркало, представляющее собой контролируемый объект - призму БР-180°, обращенную прозрачной входной гранью к объективу.

Группа изобретений относится к технической области контроля полых объектов. В способе измерения вертикальности на приводимом во вращение сосуде снимают по меньшей мере одно изображение сосуда таким образом, чтобы получить изображение левого края кольца, изображение правого края кольца, матричное изображение левого края (Img) пятки, плеча и/или основания горлышка, матричное изображение правого края (Imd) соответственно пятки, плеча и/или основания горлышка, анализируют: изображение левого края кольца и изображение правого края кольца, чтобы определить реальное положение кольца, матричное изображение левого и правого краев, чтобы определить левую точку позиционирования Tg и правую точку позиционирования Td, определяют на перпендикуляре к сегменту прямой, проходящей через левую и правую точки позиционирования, теоретическое положение кольца и выводят на основании изменений отклонения между реальным положением кольца и теоретическим положением кольца измерение вертикальности для сосуда.

Описано устройство для измерения угла гибки листа. Технический результат – повышение точности измерения.

Устройство для измерений мгновенных угловых перемещений качающейся платформы состоит из датчика измеряемого мгновенного плоского угла и неподвижного отсчетного устройства.

Приемное устройство для измерения положения лазерного луча линейной светочувствительной матрицей в плоскости матрицы, состоящее из линейной светочувствительной матрицы, ряда оптически прозрачных прилегающих к друг другу цилиндров, располагающихся параллельно указанной матрице, обеспечивающих разворот луча в линию, перпендикулярную матрице, длина цилиндров l не меньше высоты матрицы h (l≥h), а расстояние между ними r и светочувствительной матрицей зависит от радиуса R цилиндров r≤10⋅R.

Изобретение относится к области измерительной техники - метрологии - и может быть использовано при создании эталона единицы плоского угла нового поколения с улучшенными метрологическими показателями по сравнению с ныне действующими в РФ первичными эталонами.
Наверх