Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров



Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров
Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров
Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров
Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров

Владельцы патента RU 2663310:

Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)

Изобретение относится к области измерительной техники для исследования параметров многокомпонентных газовых сред и состояния хранящихся в этих газовых средах объектов, являющихся источником опасных газообразных продуктов, и может быть использовано для прогнозирования изменения и оценки состояния объектов, находящихся под воздействием указанных сред. Заявленный способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров включает отбор проб анализируемой многокомпонентной газовой среды из герметизированного контейнера с электромеханическими приборами, определение качественного и количественного состава анализируемой многокомпонентной газовой среды хроматографическим методом, сравнение регистрируемого качественного и количественного состава газовой среды с имеющейся базой данных критических значений концентраций компонентов газовой среды. Электромеханические приборы, выделяющие газообразные продукты, помещают в герметизированный контейнер, который размещают в защитном контейнере, каждый из которых снабжен независимым клапаном для отбора газовых проб, затем осуществляют отбор проб анализируемой многокомпонентной газовой среды через заданные промежутки времени через указанные независимые клапаны в герметизированном и защитном контейнерах. Осуществляют хроматографическое определение изменения концентрации опасных компонентов путем последовательного введения отобранных газовых проб в колонку каждого из хроматографов, входящего в систему хроматографов, каждый из которых оснащен соответствующими детекторами и разделительными колонками, селективно определяющими индивидуальную концентрацию опасного компонента, а оценку изменения состояния электромеханических приборов, выделяющих газообразные продукты, производят на основании анализа регистрируемых хроматографически концентраций, которые сравниваются с имеющейся базой данных (БД) критических значений концентраций опасных компонентов и соответствующих им видов потери работоспособности электромеханических приборов. При этом если текущее значение концентраций опасных компонентов достигает критических значений, то констатируют соответствующее этим критическим значениям повреждение электромеханических приборов, если текущее значение концентраций опасных компонентов ниже критических значений, констатируют стабильность работы электромеханических приборов. Технический результат - обеспечение возможности оценки степени безопасности состояния газовой среды за счет определения изменений качественного и количественного состава анализируемой многокомпонентной газовой среды в герметизированном контейнере с электромеханическими приборами и установления связи этих изменений с отклонениями от штатного состояния электромеханических приборов или риска возникновения аварийной или предаварийной ситуации в герметизированных контейнерах. 2 табл., 1 ил.

 

Предлагаемое изобретение относится к области измерительной техники для исследования параметров многокомпонентных газовых сред и состояния хранящихся в этих газовых средах объектов, являющихся источником опасных газообразных продуктов, и может быть использовано для прогнозирования изменения и оценки состояния объектов, находящихся под воздействием указанных сред.

Известен в качестве прототипа способ исследования параметров многокомпонентных газовых сред (патент РФ №2383012, МПК G01N 27/12, опубл. 27.02.2010), применяемый в микроэлектронике, согласно которому проводят анализ и контроль состава газовой среды, анализ изменения параметров состояния газовой среды и наличия исследуемого газового компонента в ней по динамике изменения параметров давления и концентраций компонентов газовой среды путем сравнения текущих оптических показателей многокомпонентной газовой среды (по регистрируемым спектрам оптических характеристик газовой среды) с показателями эталонных газовых проб.

К недостаткам известного способа относится отсутствие возможности составления оценки состояния многокомпонентной газовой среды и хранящихся в ней электромеханических приборов и установления связи этих изменений с отклонениями от штатного состояния и многокомпонентной газовой среды и электромеханических приборов.

Задачей авторов изобретения является разработка способа исследования в режиме реального времени изменения состояния многокомпонентной газовой среды и электромеханических приборов в ней, обеспечивающего возможность определения качественного и количественного состава анализируемой газовой среды в герметизированном контейнере (ГК) с электромеханическими приборами и установления связи этих изменений с отклонениями от штатного состояния электромеханических приборов или риска возникновения аварийной или предаварийной ситуации.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в обеспечении возможности оценки степени безопасности состояния газовой среды за счет определения изменений качественного и количественного состава анализируемой многокомпонентной газовой среды в герметизированном контейнере с электромеханическими приборами и установления связи этих изменений с отклонениями от штатного состояния электромеханических приборов или риска возникновения аварийной или предаварийной ситуации в герметизированных контейнерах.

Указанные задача и новый технический результат обеспечивается тем, что в способе контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров, включающем отбор проб анализируемой газовой среды из герметизированного контейнера, определения качественного и количественного состава анализируемой газовой среды, согласно изобретению, электромеханические приборы, выделяющие газообразные продукты, помещают в герметизированный контейнер, который размещают в защитном контейнере, каждый из которых снабжен независимым клапаном для отбора газовых проб, затем осуществляют отбор проб анализируемой многокомпонентной газовой среды через заданные промежутки времени через указанные независимые клапаны в герметизированном и в защитном контейнерах, затем осуществляют хроматографическое определение изменения концентрации опасных компонентов путем последовательного введения отобранных газовых проб в колонку каждого из хроматографов, входящего в систему хроматографов, каждый из которых оснащен соответствующими детекторами и разделительными колонками, селективно определяющими индивидуальную концентрацию опасного компонента, а оценку изменения состояния электромеханических приборов, выделяющих газообразные продукты, производят на основании анализа регистрируемых хроматографически концентраций, которые сравниваются с имеющейся базой данных (БД) критических значений концентраций опасных компонентов и соответствующих им видов потери работоспособности электромеханических приборов, при этом, если текущее значение концентрации опасных компонентов достигает критических значений, то констатируют соответствующее этим критическим значениям повреждение электромеханических приборов, если текущее значение концентраций опасных компонентов ниже критических значений, констатируют стабильность работы электромеханических приборов.

Предлагаемый способ поясняется следующим образом.

На фиг. 1 представлен общий вид конструкции, на которой опробован предлагаемый способ, где 1 - защитный контейнер; 2 - герметизированный контейнер; 3 - электромеханические приборы, выделяющие газообразные продукты; 4 - клапаны для отбора проб газовой среды; 5 - сосуд для отбора проб газовой среды; 6 - газовый хроматограф для определения неорганических компонентов; 7 - кран-дозатор; 8 - разделительные колонки; 9 - детектор; 10 - ПЭВМ, 11 - газовый хроматограф для определения органических компонентов.

В защитном контейнере (1) размещен герметизированный контейнер (2) с электромеханическими приборами (3), выделяющими газообразные продукты. Через заданные промежутки времени в предварительно отвакуумированный сосуд (5) производят отбор проб газовой среды из защитного контейнера (1) и герметизированного контейнера (2) через клапаны (4), расположенные на корпусах контейнеров (2, 3). Анализируемый газ из сосуда (5) вводится в краны-дозаторы (7) газовых хроматографов (6, 11) и через разделительные колонки (8) переносится в детекторы (9), где происходит формирование электрических сигналов, которые обрабатываются в ПЭВМ (10) по заложенной в него программе в виде отдельных пиков, соответствующих содержанию анализируемых газовых компонентов.

Предварительно была наработана БД по наблюдениям за изменением концентрации какого-либо из изученных компонентов газовой среды, на основе чего предусмотрено сформулировать прогноз по соответствующему этому изменению повреждению (либо разгерметизация, либо разрушение коррозионное, либо разрушение хранящихся объектов, либо нарушение целостности).

Существует необходимость учета изменившихся параметров исследуемой газовой среды и их связи с изменениями или отклонениями от штатного состояния приборов или хранящихся объектов или риска возникновения аварийной или предаварийной ситуаций в ГК.

При решении этой задачи предусматривается наблюдение в режиме реального времени за изменениями:

- концентраций выделяющихся газообразных продуктов и твердых материалов;

- скорости выделения газообразных продуктов исследуемых объектов.

Для измерения концентраций выделяющихся газообразных продуктов и твердых материалов производят регулярный (с заданной кратностью) отбор проб газовой среды и проводят газохроматографический качественный и количественный анализ проб.

На основе измеренных параметров и характеристик в виде сигналов или значений результатов измерений (концентрации) и соответствующих расчетов по математическим формулам (скорости выделения) строятся графики или формируются БД текущих значений, сравниваются с накопленной БД (системы методических наблюдений при неизменных состояниях системы или при выявленных отклонениях исследуемой системы от штатного состояния), в конечном итоге результаты сравнения анализируют на предмет безопасного состояния и приближения к риску возникновения различного рода неблагоприятного состояния (или возгорание, или отказ автоматики, или наличие механических разрушений, или разгерметизация).

Полученные и обработанные в ПЭВМ (10) данные сравниваются с имеющейся базой данных критических значений и соответствующих им видов потери работоспособности электромеханических приборов, при этом, если текущее значение концентрации опасных компонентов достигает критических значений, то констатируют соответствующее этим значениям повреждение электромеханических приборов, если текущее значение концентраций опасных компонентов ниже критических значений, констатируют стабильность работы электромеханических приборов.

Таким образом, при использовании предлагаемого способа обеспечивается возможность оценки степени безопасности состояния газовой среды за счет определения изменений качественного и количественного состава анализируемой многокомпонентной газовой среды в герметизированном контейнере с электромеханическими приборами и установления связи этих изменений с изменениями или отклонениями от штатного состояния электромеханических приборов или риска возникновения аварийной или предаварийной ситуации в герметизированных контейнерах.

Возможность промышленной реализации предлагаемого способа подтверждается следующим примером.

Пример 1. Предлагаемый способ осуществлен в лабораторных условиях на установке, изображенной на фиг. 1.

В защитном контейнере (1) размещен герметизированный контейнер из нержавеющей стали (2) с электромеханическими приборами, выделяющими газообразные продукты (3). Через 6 месяцев после установки приборов в контейнер и герметизации контейнеров в предварительно отвакуумированный стеклянный баллон объемом 0,5 л (5) производят отбор пробы газовой среды из защитного контейнера (1) и герметизированного контейнера (2) через клапаны (4), расположенные на корпусах контейнеров (2, 3). Анализ ведут с использованием газохроматографического метода. Анализируемый газ из стеклянного баллона (5) вводится в краны-дозаторы (7) газовых хроматографов «GC-2014» (6) и «Цвет-800» (11) и через насадочные разделительные колонки (8) переносится в детекторы (9), где происходит формирование электрических сигналов, которые обрабатываются в ПЭВМ (10) по программе «Цвет-аналитик» в виде отдельных пиков, соответствующих содержанию анализируемых газовых компонентов (кислород, водород, гелий, оксид углерода, диоксид углерода - на хроматографе «GC-2014» (6); ацетон, этанол, бензол, диэтиловый эфир - на хроматографе «Цвет-800» (11)). Полученные значения концентраций приведены в таблице 1 (представлены измерения значений концентраций опасных неорганических компонентов, произведенные на хроматографе «GC-2014») и в таблице 2 (представлены измерения значений концентраций опасных органических компонентов, произведенные на хроматографе «ЦВЕТ-800»). При сравнении полученных значений с имеющейся базой данных критических значений установлено, что значение концентраций водорода, оксида углерода, диоксида углерода и органических компонентов (ацетон, этанол, бензол, диэтиловый эфир) не превышает критических значений. Выявление гелия в анализируемой газовой среде герметизированного контейнера (2,00% об.) свидетельствует о разгерметизации электромеханического прибора. Полученное значение концентрации кислорода (1,5% об.) прогнозирует увеличение скорости выделения водорода в газовую среду герметизированного контейнера, что приведет к гидридной коррозии деталей электромеханических приборов, находящихся в герметизированном контейнере.

Как это показал пример исполнения заявленного способа, при его реализации обеспечивается возможность оценки степени безопасности состояния газовой среды за счет определения изменений качественного и количественного состава анализируемой многокомпонентной газовой среды в герметизированном контейнере с электромеханическими приборами и установления связи этих изменений с изменениями или отклонениями от штатного состояния электромеханических приборов или риска возникновения аварийной или предаварийной ситуации в герметизированных контейнерах.

Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров, включающий наблюдение в режиме онлайн и регистрацию изменяющихся во времени параметров многокомпонентной газовой среды в герметичном контейнере, отбор проб анализируемой многокомпонентной газовой среды из герметизированного контейнера с электромеханическими приборами через заданные промежутки времени, определение текущего качественного и количественного состава анализируемой многокомпонентной газовой среды хроматографическим методом, сравнение регистрируемых параметров с имеющейся БД критических значений, отличающийся тем, что с целью обеспечения возможности контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров электромеханические приборы, выделяющие газообразные продукты, помещают в герметизированный контейнер, который размещают в защитном контейнере, каждый из которых снабжен независимым клапаном для отбора газовых проб, затем осуществляют отбор проб анализируемой многокомпонентной газовой среды через заданные промежутки времени через указанные независимые клапаны в герметизированном и защитном контейнерах, затем осуществляют хроматографическое определение изменения концентрации опасных компонентов путем последовательного введения отобранных газовых проб в колонку каждого из хроматографов, входящего в систему хроматографов, каждый из которых оснащен соответствующими детекторами и разделительными колонками, селективно определяющими индивидуальную концентрацию опасного компонента, а оценку изменения состояния электромеханических приборов, выделяющих газообразные продукты, производят на основании анализа регистрируемых хроматографически концентраций, которые сравниваются с имеющейся базой данных (БД) критических значений концентраций опасных компонентов и соответствующих им видов потери работоспособности электромеханических приборов, при этом если текущее значение концентрации опасных компонентов достигает критических значений, то констатируют соответствующее этим критическим значениям повреждение электромеханических приборов, если текущее значение концентраций опасных компонентов ниже критических значений, констатируют стабильность работы электромеханических приборов.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам проектирования разработки месторождений с системой поддержания пластового давления, и может быть использовано для обоснования и прогнозирования изменения компонентного состава и свойств пластового флюида в процессе эксплуатации залежи.

Изобретение относится к газовой промышленности. Способ определения механических примесей в природном газе путем осаждения частиц из природного газа включает использование точки отбора проб, счетчика газового барабанного, устройства для осаждения частиц.

Изобретение предназначено для определения компонентного состава и динамики генерации углеводородов в катагенезе нефтегазоматеринских пород. Сущность: отбирают пробы осадочных пород в исследуемых геологических структурах.

Изобретение относится к определению концентрации кремния в воде, а именно к определению кремния в присутствии гуминовых веществ, и может быть использовано в технологии очистки подземных и поверхностных вод от кремния как для технических, так и для питьевых целей.

Изобретение относится к лесному хозяйству. Осуществляют отбор почек растений березы для анализа суммарных липидов и их жирнокислотного состава.

Изобретение относится к аналитическому приборостроению, а именно к способам организации средств для определения величины адсорбции адсорбтива дисперсными и пористыми материалами, устройствам для определения величины адсорбции адсорбтива дисперсными и пористыми материалами, способам определения величины адсорбции адсорбтива дисперсными и пористыми материалами динамическим методом тепловой десорбции.

Изобретение относится к пищевой промышленности, в частности к способам определения жирнокислотного состава молочного жира. Для этого применяют способ подготовки проб молока методом газовой хроматографии, включающий в себя подготовку исследуемого образца.

Изобретение относится к области химической промышленности. Установка состоит из блока гидрирования, блока гидрооблагораживания, блока фракционирования и блока циркуляции водорода.

Изобретение относится к биологии и токсикологической химии, а именно к способам определения 2,6-бис-[бис-(бета-оксиэтил)-амино]-4,8-ди-N-пиперидино-пиримидо(5,4-d)пиримидина в биологическом материале, и может быть использовано в практике санэпидстанций, химико-токсикологических, экспертно-криминалистических и ветеринарных лабораторий.

Изобретение относится к области пищевой промышленности, а именно к спиртовому производству, и может быть использовано для количественного определения мальтозы, глюкозы, фруктозы в полупродуктах спиртового производства.

Изобретение относится к области измерительной техники для исследования параметров многокомпонентных газовых сред и состояния хранящихся в этих газовых средах объектов, являющихся источником опасных газообразных продуктов, и может быть использовано для прогнозирования изменения и оценки состояния объектов, находящихся под воздействием указанных сред. Заявленный способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров включает отбор проб анализируемой многокомпонентной газовой среды из герметизированного контейнера с электромеханическими приборами, определение качественного и количественного состава анализируемой многокомпонентной газовой среды хроматографическим методом, сравнение регистрируемого качественного и количественного состава газовой среды с имеющейся базой данных критических значений концентраций компонентов газовой среды. Электромеханические приборы, выделяющие газообразные продукты, помещают в герметизированный контейнер, который размещают в защитном контейнере, каждый из которых снабжен независимым клапаном для отбора газовых проб, затем осуществляют отбор проб анализируемой многокомпонентной газовой среды через заданные промежутки времени через указанные независимые клапаны в герметизированном и защитном контейнерах. Осуществляют хроматографическое определение изменения концентрации опасных компонентов путем последовательного введения отобранных газовых проб в колонку каждого из хроматографов, входящего в систему хроматографов, каждый из которых оснащен соответствующими детекторами и разделительными колонками, селективно определяющими индивидуальную концентрацию опасного компонента, а оценку изменения состояния электромеханических приборов, выделяющих газообразные продукты, производят на основании анализа регистрируемых хроматографически концентраций, которые сравниваются с имеющейся базой данных критических значений концентраций опасных компонентов и соответствующих им видов потери работоспособности электромеханических приборов. При этом если текущее значение концентраций опасных компонентов достигает критических значений, то констатируют соответствующее этим критическим значениям повреждение электромеханических приборов, если текущее значение концентраций опасных компонентов ниже критических значений, констатируют стабильность работы электромеханических приборов. Технический результат - обеспечение возможности оценки степени безопасности состояния газовой среды за счет определения изменений качественного и количественного состава анализируемой многокомпонентной газовой среды в герметизированном контейнере с электромеханическими приборами и установления связи этих изменений с отклонениями от штатного состояния электромеханических приборов или риска возникновения аварийной или предаварийной ситуации в герметизированных контейнерах. 2 табл., 1 ил.

Наверх