Интеллектуальный преобразователь акустической эмиссии

Использование: для мониторинга технического состояния опасных производственных объектов и объектов во взрывоопасной зоне. Сущность изобретения заключается в том, что интеллектуальный преобразователь акустической эмиссии выполнен во взрывозащищенном исполнении и содержит пьезоэлемент, частотный фильтр, малошумящий усилитель с регулируемым коэффициентом усиления, преобразователь выходного сигнала, управляемый формирователь импульсов, барьер искрозащиты и узел питания и управления, при этом все компоненты интеллектуального преобразователя размещены в одном малогабаритном герметичном корпусе, а управляемый формирователь импульсов выполнен с возможностью формирования импульсов высокого напряжения с заданным уровнем и демпфированием колебаний, при этом интеллектуальный преобразователь поддерживает двухстороннюю связь с контрольно-измерительной аппаратурой по двухпроводной линии. Технический результат: обеспечение возможности разработки компактного преобразователя акустической эмиссии, выполненного во взрывозащищенном исполнении, способного формировать импульсы акустической эмиссии большой мощности и подключаемого к контрольно-измерительной аппаратуре по двухпроводной линии связи. 1 ил.

 

Изобретение относится к неразрушающему контролю технического состояния промышленных объектов, основанному на регистрации акустических волн с помощью контактных приемных преобразователей, а именно - к преобразователям акустической эмиссии, и может быть использовано, в частности, для контроля технического состояния сосудов, котлов, аппаратов и трубопроводов и т.п., в том числе для мониторинга технического состояния опасных производственных объектов и объектов во взрывоопасной зоне.

Известны преобразователи акустической эмиссии, содержащие встроенный усилитель [1], производимые ООО «ГлобалТест». Недостатками данных преобразователей являются отсутствие взрывозащищенного исполнения, невозможность изменения коэффициента усиления и формирования импульсов акустической эмиссии, в том числе для контроля акустического контакта с контролируемым объектом.

Известны преобразователи акустической эмиссии, содержащие встроенный предварительный усилитель, частотный фильтр и имеющие взрывозащищенное исполнение, а также содержащие встроенный предварительный усилитель, частотный фильтр и формирователь импульсов [2], производимые ЗАО "НПФ "Диатон".

Данные преобразователи, благодаря формирователю импульсов, позволяют проводить контроль акустического контакта с контролируемым объектом. Недостатком известных преобразователей является реализация только одного из указанных качеств, т.е. отсутствие совокупности взрывозащищенного исполнения и наличия формирователя импульсов. Кроме того, отсутствует возможность изменения коэффициента усиления встроенного усилителя и регулировки амплитуды излучаемых импульсов в преобразователях, где имеется формирователь импульсов. Все это ограничивает область применения указанных преобразователей акустической эмиссии.

Наиболее близким аналогом, принятым за прототип, является датчик акустической эмиссии (АЭ) и адаптер АЭ, выполненные во взрывозащищенном исполнении. При этом датчик АЭ содержит пьезоэлемент, а адаптер АЭ - частотный фильтр, малошумящий усилитель с регулируемым коэффициентом усиления, преобразователь выходного сигнала, управляемый формирователь импульсов, барьер искрозащиты и узел питания и управления [3]. Недостатком данного прототипа является то, что он представляет собой два самостоятельных устройства, соединенных между собой кабелем, вследствие чего имеющиеся требования взрывозащиты накладывают ограничение на максимальное напряжение электрического импульса, подаваемого адаптером АЭ на датчик АЭ, для формирования импульса акустической эмиссии. В связи с этим напряжение импульса не превышает 24 В, в то время как для уверенного детектирования импульсов акустической эмиссии другими преобразователями, находящимися на расстоянии нескольких метров от излучающего преобразователя, необходимо подавать на пьезоэлемент электрические импульсы напряжением не менее 50 В. Кроме того, подключение датчика АЭ к адаптеру АЭ осуществляется по трехпроводной линии, а адаптера АЭ к контрольно-измерительной аппаратуре - по четырехпроводной линии. При этом сравнительно высокое энергопотребление адаптера АЭ требует применения мощных взрывозащищенных блоков питания или барьеров искрозащиты. Все это негативно сказывается на стоимости при разработке многоканальных взрывозащищенных систем. Стоит добавить, что класс взрывозащиты указанного прототипа не является максимальным, что ограничивает сферу его применения.

Задачей предлагаемого изобретения является разработка компактного преобразователя акустической эмиссии, выполненного во взрывозащищенном исполнении, способного формировать импульсы акустической эмиссии большой мощности и подключаемого к контрольно-измерительной аппаратуре по двухпроводной линии связи.

Поставленная задача в интеллектуальном преобразователе акустической эмиссии, выполненном во взрывозащищенном исполнении и содержащем пьезоэлемент, частотный фильтр, малошумящий усилитель с регулируемым коэффициентом усиления, преобразователь выходного сигнала, управляемый формирователь импульсов, барьер искрозащиты и узел питания и управления, достигается тем, что все компоненты интеллектуального преобразователя размещены в одном малогабаритном герметичном корпусе, а управляемый формирователь импульсов выполнен с возможностью формирования импульсов высокого напряжения с заданным уровнем и демпфированием колебаний, при этом интеллектуальный преобразователь поддерживает двухстороннюю связь с контрольно-измерительной аппаратурой по двухпроводной линии.

Анализ отличительных признаков показал, что:

- размещение всех компонентов интеллектуального преобразователя в одном малогабаритном герметичном корпусе позволяет получить электрические импульсы напряжением несколько сотен вольт на выходе управляемого формирователя импульсов акустической эмиссии и обеспечить максимальный класс взрывозащиты;

- формирование импульсов высокого напряжения, которые благодаря функции демпфирования колебаний преобразуются в единичные импульсы синусоидальной формы, позволяет получить с помощью пьезоэлемента сигналы акустической эмиссии высокой мощности, которые уверенно детектируются другими преобразователями, находящимися на расстоянии несколько десятков метров, причем регулировка уровня напряжения электрических импульсов, а следовательно, и мощности импульсов акустической эмиссии, позволяет проводить диагностику промышленных объектов различных размеров, исключая повторное детектирование одного и того же сигнала на небольших объектах, что повышает качество диагностирования их технического состояния.

- реализация двухсторонней связи с контрольно-измерительной аппаратурой по двухпроводной линии, где цифровая команда интеллектуальному преобразователю передается путем изменения напряжения питания, а аналоговые данные от него передаются путем изменения тока потребления преобразователя, позволила снизить стоимость кабельных трасс, а также значительно упростить их монтаж, при этом обеспечить надежную работу интеллектуальных преобразователей на удалении свыше 100 м от места расположения контрольно-измерительной аппаратуры.

Таким образом, предложенная совокупность отличительных признаков, обеспечивающая полученный результат, представляется новой на существующем этапе развития науки и техники и превосходит существующий мировой уровень. Изобретение соответствует изобретательскому уровню, поскольку достигаемый результат определяется не только суммой отличительных признаков, но и результатом их тесного взаимодействия между собой.

Сущность заявляемого изобретения поясняется структурной схемой интеллектуального преобразователя акустической эмиссии, представленной на фиг. 1.

Пьезоэлемент 1 соединен с частотным фильтром 2, выход которого подключен к входу малошумящего усилителя с регулируемым коэффициентом усиления 3, который связан с преобразователем выходного сигнала 4. Выход преобразователя выходного сигнала 4 подключен через барьер искрозащиты 5 к двухпроводной линии связи 6. Выход барьера искрозащиты 5 со стороны преобразователя выходного сигнала 4 подключен к узлу питания и управления 7 и управляемому формирователю импульсов 8. Узел питания и управления 7 подключен к малошумящему усилителю с регулируемым коэффициентом усиления 3 и управляемому формирователю импульсов 8, выход которого подключен к пьезоэлементу 1.

Интеллектуальный преобразователь акустической эмиссии работает следующим образом.

В режиме приема сигнал акустической эмиссии преобразуется пьезоэлементом 1 в электрический сигнал, который через частотный фильтр 2, ослабляющий шумы вне полосы пропускания, поступает на вход малошумящего усилителя с регулируемым коэффициентом усиления 3, где усиливается на заданный коэффициент. Усиленный сигнал поступает на вход преобразователя выходного сигнала 4, который в соответствии с ним модулирует ток потребления интеллектуального преобразователя, тем самым передавая аналоговый сигнал по двухпроводной линии связи 6. Барьер искрозащиты 5 обеспечивает безопасные токи и напряжения в схеме интеллектуального преобразователя и не допускает появления искры.

В режиме формирования импульсов акустической эмиссии узел питания и управления 7 устанавливает минимальное усиление малошумящего усилителя с регулируемым коэффициентом 3, после чего формирует короткие периодические импульсы, поступающие на вход управляемого формирователя импульсов акустической эмиссии 8. Управляемый формирователь импульсов акустической эмиссии 8 формирует единичные электрические импульсы, максимальное напряжение которых пропорционально длительности входных импульсов и может достигать нескольких сотен вольт. Эти импульсы поступают на вход пьезоэлемента 1, который благодаря обратному пьезоэффекту преобразует их в импульсы акустической эмиссии.

Смена режимов работы осуществляется с помощью цифровых команд, передаваемых интеллектуальному преобразователю путем изменения напряжения питания.

Таким образом, предложенный интеллектуальный преобразователь акустической эмиссии существенно повышает достоверность диагностирования технического состояния объектов контроля благодаря широким функциональным возможностям, обеспечивает надежную работу на длинной линии за счет токовой линии связи, а также позволяет сократить затраты на кабельные трассы и их монтаж. Данное изобретение реализовано в ряде стационарных систем акустико-эмиссионной диагностики шаровых резервуаров для хранения сжиженных углеводородных газов, а также регенераторов секции каталитического крекинга на опасных производственных объектах нефтехимического комплекса Российской Федерации. Опыт эксплуатации интеллектуальных преобразователей акустической эмиссии на реальных объектах полностью подтвердил эффективность примененных технических решений.

Список литературы

1. http://globaltest.ru/page/pr_akusticp/.

2. http://www.diatontest.ru/sensors.htm.

3. http://www.dynamics.ru/products/controllers-moduls-sensors/datchik-ae-5702/ и http://www.dynamics.ru/products/controllers-moduls-sensors/adapter-ae4809/.

Интеллектуальный преобразователь акустической эмиссии, выполненный во взрывозащищенном исполнении и содержащий пьезоэлемент, частотный фильтр, малошумящий усилитель с регулируемым коэффициентом усиления, преобразователь выходного сигнала, управляемый формирователь импульсов, барьер искрозащиты и узел питания и управления, отличающийся тем, что все компоненты интеллектуального преобразователя размещены в одном малогабаритном герметичном корпусе, а управляемый формирователь импульсов выполнен с возможностью формирования импульсов высокого напряжения с заданным уровнем и демпфированием колебаний, при этом интеллектуальный преобразователь поддерживает двухстороннюю связь с контрольно-измерительной аппаратурой по двухпроводной линии.



 

Похожие патенты:

Использование: для неразрушающего контроля с применением метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что регистрация импульсов акустической эмиссии осуществляется без применения порогового ограничения при оценке параметров импульсов акустической эмиссии и шума во временных интервалах определенной длительности, регистрация импульсов акустической эмиссии осуществляется на основании комбинированного критерия, если выполняется одна из двух статистических гипотез - гипотеза о равенстве нулю момента шестого порядка и гипотеза о различии дисперсий отсчетов сигнала акустической эмиссии, рассчитанные в соседних временных окнах, время начала импульса акустической эмиссии определяется внутри выделенного временного интервала методом кумулятивных сумм.

Использование: для контроля силовых элементов конструкций. Сущность изобретения заключается в том, что многоканальная акустико-эмиссионная система контроля силовых элементов конструкций состоит из N-каналов, каждый из которых содержит последовательно соединенные преобразователь акустической эмиссии, установленный на объекте контроля в местах максимальной концентрации напряжений, аналого-цифровой преобразователь (АЦП), блок вычисления известных акустико-эмиссионных критериев, а также устройство отображения информации, при этом в каждый из каналов дополнительно введены блок вычисления инвариантов временных интервалов импульсов акустической эмиссии и два блока вычисления инвариантов числа импульсов акустической эмиссии, входы которых объединены с входом блока вычисления известных акустико-эмиссионных критериев, а выходы соединены с соответствующими входами устройства отображения информации.

Использование: для обнаружения и контроля кавитации внутри устройства регулирования потока, такого как регулирующий клапан. Сущность изобретения заключается в том, что система и устройство для обнаружения и контроля кавитации внутри устройства регулирования потока, такого как регулирующий клапан, содержит датчик акустической эмиссии, соединенный с устройством регулирования потока таким образом, чтобы получать акустические сигналы, обусловленные кавитацией.

Использование: для акустических измерений на промышленных предприятиях. Сущность изобретения заключается в том, что акустическая измерительная система для объекта производственного процесса содержит: акустический передатчик, установленный на объекте производственного процесса, причем упомянутый акустический передатчик включает в себя первый акустический датчик; устройство контроля процесса, предоставляющее значение, представляющее акустический сигнал вблизи объекта производственного процесса, на основании, частично, сигнала от первого акустического датчика; второй акустический датчик, предоставляющий акустическое значение; и компонент снижения шума, который использует акустическое значение от второго акустического датчика для воздействия на значение, предоставляемое устройством контроля процесса, так что значение, предоставляемое устройством контроля процесса, в большей степени представляет акустический сигнал, создаваемый объектом производственного процесса.

Использование: для неразрушающего контроля днищ вертикальных стальных резервуаров при акустико-эмиссионном методе неразрушающего контроля. Сущность изобретения заключается в том, что на днище резервуара устанавливают пъезоакустические преобразователи, создают упругую деформацию локального участка днища, регистрируют сигналы акустической эмиссии, при этом создание упругой деформации локального участка днища производят локальным охлаждением поверхности твердым диоксидом углерода, сублимация которого происходит при минус 72°C, что максимально исключает фиксацию ложных акустических сигналов.

Изобретение относится к области ультразвукового контроля изделий, имеющих плоскую или цилиндрическую поверхность. Для расширения области применения на нижней поверхности корпуса устройства имеется продольный паз, стенки которого являются опорами и боковыми стенками локальной ванны, торцевыми стенками которой являются сменные планки.

Использование: для неразрушающего контроля металлокомпозитных баков высокого давления по акустико-эмиссионным сигналам. Сущность изобретения заключается в том, что в процессе нагружения баков путем постепенного увеличения внутреннего давления измеряют параметры акустико-эмиссионных сигналов, по которым определяют уровень накопленных повреждений, и по достижению параметрами критических значений принимают решение о пригодности бака к эксплуатации, при этом проводят тарировочные испытания эталонного бака до уровня не более 1,25 от заданного рабочего давления с непрерывным контролем потоков акустико-эмиссионных сигналов в композиционном материале и соответствующих им внутренних давлений в баке, проводят выделение узкополосных и широкополосных акустико-эмиссионных сигналов, соответствующих процессам разрушения матрицы и волокон композиционного материала, путем вычисления средних квадратических отклонений амплитуд узкополосных и широкополосных акустико-эмиссионных сигналов, определения критериальных параметров, соответствующих квантилям эмпирических функций распределения средних квадратических отклонений амплитуд узкополосных и широкополосных акустико-эмиссионных сигналов, уровень которых выбирается не ниже уровня средних квадратических отклонений шумового потока акустико-эмиссионных сигналов и не выше медианного значения распределения, выбора уровня порога дискриминации исходя из критериальных параметров так, чтобы порог дискриминации соответствовал не менее 75% от разницы критериальных параметров широкополосных и узкополосных акустико-эмиссионных сигналов, полученных на этапе тарировочных испытаний, нагружение каждого последующего бака производят до момента достижения критериальным параметром порога дискриминации, а решение об уровне квалификации бака принимают на основании сравнения внутренних давлений в партии баков, соответствующих порогам дискриминации.

Использование: для мониторинга степени деградации структуры материала и определения остаточной прочности изделия. Сущность изобретения заключается в том, что выполняют акустико-эмиссионный (АЭ) контроль с использованием локационных групп преобразователей активной эмиссии, предусилителей и системы сбора-обработки регистрируемых массивов импульсов активной эмиссии, при этом в режиме реального времени осуществляют градацию массивов импульсов активной эмиссии по уровню относительной энергии и усредненной частоте выбросов, формируют нижний, средний и верхний кластеры в поле указанных параметров, и вычисляют процентное содержание импульсов в каждом кластере, отражающее микро-, мезо- и макроструктурные разрушения материала, причем в качестве информативных и устойчивых акустико-эмиссионных параметров для кластерного разделения сигналов используют показатель относительной энергии импульса, измеряемого в децибелах и соответствующего количеству выбросов в единицах, по которым при сопоставлении с результатами тестовых испытаний материала на разрушение определяют степень деградации и остаточной прочности изделия в зоне акустико-эмиссионного контроля, причем границы формируемых кластеров устанавливают по результатам предварительного тестирования материала изделия исходя из природы источников излучения импульсов и используемого уровня порога дискриминации сигналов.
Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют регистрацию и обработку сигналов акустической эмиссии, при этом осуществляют сканирование изделия линейным индуктором, через который пропускают импульсный электрический ток плотностью, обеспечивающей отсутствие нагревания индуктора и достаточной для инициирования сигнала акустической эмиссии, при этом линейный индуктор жестко связан с пьезопреобразователем датчика акустической эмиссии на расстоянии не более диаметра пьезопреобразователя.

Использование: для неразрушающего контроля металлических конструкций с использованием метода акустической эмиссии. Сущность изобретения заключается в том, что выполняют установку акустических преобразователей на конструкцию с образованием пьезоантенны и акустического преобразователя имитатора в зону, ограниченную пьезоантенной, выполняют калибровку конструкции, определяют скорость распространения сигналов акустической эмиссии на конструкции и определяют минимальную длительность двух временных «окон» по минимальному разбросу времен прихода и разности их времен прихода на акустические преобразователи, при этом времена прихода сигналов акустической эмиссии на датчики пьезоантенны определяются по максимальному значению отношения энергии сигнала во втором временном «окне» к энергии сигнала в первом временном «окне» и вычислению по ним координат дефектов.
Наверх