Способ получения 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов

Изобретение относится к способу получения 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1):

где R - цикло-C3H5, цикло-C5H9, цикло-C6H11, цикло-C5H9O, цикло-C7H13, цикло-C8H15, норборнил-, в котором циклоалкиламин (циклопропил-амин, или циклопентил-амин, или циклогексил-амин, или тетрагидропиранил-амин, или циклогептил-амин, или циклооктил-амин, или норборнил-амин) подвергают взаимодействию с 1,6,9-триокса-3,12-дитиациклотридеканом в присутствии катализатора SmCl3⋅6H2O при мольном соотношении циклоалкиламин : 1,6,9-триокса-3,12-дитиациклотридекан : SmCl3⋅6H2O = 1:1:(0.03-0.07) при комнатной температуре (~20°С) в среде растворителей этанол-хлороформ (1:1, объемное соотношение) в течение 2.5-3.5 ч. Технический результат: предложен способ получения 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1) с высоким выходом. 1 табл., 2 пр.

 

Предлагаемое изобретение относится к области органической химии, в частности, к способу получения 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1):

где R - цикло-C3H5, цикло-C5H9, цикло-C6H11, цикло-C5H9O, цикло-C7H13, цикло-C8H15, норборнил-.

O,S,N-содержащие макрогетероциклы находят применение в качестве селективных комплексообразователей [Tian М., Ihmels Н. Chem. Commun., 2009, 3175], ионофоров [Granzhan A., Ihmels Н., Tian М. Arkivoc, 2015, vi, 494], эффективных сорбентов для выделения и очистки драгоценных металлов [Хираока М. Краун-соединения: свойства и применение. М.: Мир, 1986; Akhmetova V.R., Rakhimova Е.В., Vagapov R.A., Minnebaev A.B., Kopylova E.V., Buslaeva T.M., Kunakova R.V. Trends in Heterocycl. Chem., 2011, 15, 9, 33], перспективны в качестве селективных лигандов при экстракции и разделении катионов металлов [Yordanov А.Т., Roundhill D.M. Coordination Chemistry Reviews, 1998, 170, 1, 93-124; Gloe K., Graubaum H., Wust M., Rambusch Т., Seichter W. Coordination Chemistry Reviews, 2001, 222, 1, 103], используются для транспорта ионов через мембраны [Bushlmann Р., Pretsch Е., Bakker Е. Chemical Reviews, 1998, 98, 4, 1593] и в фоточувствительных системах [Valeur В., Leray I. Coordination Chemistry Reviews, 2000, 205, 1, 3], выступают в роли межфазных катализаторов, моделирующих ферментативную активность [Feiters М.С. In comprehensive Supramolecular Chemistry. Pergamon Press, Oxford, 1996, 267].

Известен способ [Tanaka M., Nakamura M., Ikeda Т., Ikeda K., Ando H., Shibutani Y., Yajima S., Kimura K. The Journal of Organic Chemistry, 2001, 66, 21, 7008] получения N-(2-нитрофенил)-1,4-диокса-7,13-дитиа-10-азациклопентадекана (2) взаимодействием 2-фторнитробензола с 1,4-диокса-7,13-дитиа-10-азациклопентадеканом в присутствии карбоната цезия.

Известным способом не могут быть получены 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1).

Известен способ [ Т., D., R., Ros-Lis J.V., Royo S., F., Soto J., Costero A.M., Gil S., Parra M. Tetrahedron Letters, 2009, 3885] получения 10-фенил-1,4-диокса-7,13-дитиа-10-азациклопентадекана (3) реакцией дигалогенпроизводного с 3,6-диокса-1,8-октандитиолом в присутствии катализатора на основе цезия.

Известным способом не могут быть получены 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1).

Известен способ [N.N. Makhmudiyarova, L.V. Mudarisova, E.S. Meshcheryakova, A.G. Ibragimov, U.M. Dzhemilev. Tetrahedron, 2015, 259] получения 6-(галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов (4) реакцией N,N-бис(метоксиметил)-N-галогенфениламинов с 3,6-диокса-1,8-октандитиолом в присутствии катализатора на основе меди.

Известным способом не могут быть получены 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1).

Таким образом, в литературе отсутствуют сведения по получению 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1).

Предлагается новый способ получения 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1).

Сущность способа заключается во взаимодействии циклоалкиламина (циклопропил-амин, или циклопентил-амин, или циклогексил-амин, или тетрагидропиранил-амин, или циклогептил-амин, или циклооктил-амин, или норборнил-амин) с 1,6,9-триокса-3,12-дитиациклотридеканом в присутствии катализатора SmCl3⋅6H2O, взятыми в мольном соотношении циклоалкиламин: 1,6,9-триокса-3,12-дитиациклотридекан: 8 SmCl3⋅6H2O = 1:1:(0.03-0.07), предпочтительно 1:1:0.05, при комнатной температуре (~20°С) и атмосферном давлении в среде растворителей этанол-хлороформ (1:1, объемное соотношение) в течение 2.5-3.5 ч. Выход 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов (1) составляет 77-96%. Реакция протекает по схеме:

6-Циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1) образуются только лишь с участием циклоалкиламина и 1,6,9-триокса-3,12-дитиациклотридекана, взятых в стехиометрических количествах. При другом соотношении исходных реагентов снижается селективность реакции. Без катализатора SmCl3⋅6H2O реакция идет с выходом, не превышающим 30%. Проведение реакции в присутствии катализатора SmCl3⋅6H2O больше 7 мол. % не приводит к существенному увеличению выхода целевого продукта (1). Использование в реакции катализатора SmCl3⋅6H2O менее 3 мол. % снижает выход (1), что связано с уменьшением каталитически активных центров в реакционной массе. Реакции проводили при комнатной температуре ~20°С. При более высокой температуре (например, 60°С) увеличиваются энергозатраты, при меньшей температуре (например, 0°С) снижается скорость реакции. Опыты проводили в среде растворителей этанол-хлороформ (1:1, объемное соотношение), т.к. в них хорошо растворяются исходные реагенты и целевые продукты.

Существенные отличия предлагаемого способа

В известном способе реакция идет с участием в качестве исходных реагентов N,N-бис(метоксиметил)-N-галогенфениламинов и 3,6-диокса-1,8-октандитиола в присутствии катализатора CuCl с образованием 6-(галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов (4). Известный способ не позволяет получать 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1).

В предлагаемом способе в качестве исходных реагентов применяются циклоалкиламины и 1,6,9-триокса-3,12-дитиациклотридекан. Реакция осуществляется в присутствии катализатора SmCl3⋅6H2O.

Предлагаемый способ обладает следующими преимуществами

Способ позволяет получать с высокой селективностью индивидуальные 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1), синтез которых в литературе не описан.

Способ поясняется следующими примерами

ПРИМЕР 1. Синтез 1,6,9-триокса-3,12-дитиациклотридекана: смесь 6 мл 37% водного раствора формалина и 3.2 мл 3,6-диокса-1,8-октандитиола перемешивают 3 ч при 20°С, экстрагируют CHCl3, упаривают и выделяют 1,6,9-триокса-3,12-дитиациклотридекан.

ПРИМЕР 2. В круглодонную колбу, установленную на магнитной мешалке, помещают 57 мг (1 ммоль) циклопропиламина в 5 мл этанола, 18 мг (0.05 ммоль) SmCl3⋅6H2O и 224 мг (1 ммоль) 1,6,9-триокса-3,12-дитиациклотридекана в 5 мл хлороформа. Реакционную смесь перемешивают при температуре ~20°С в течение 3 ч, колоночной хроматографией на SiO2 выделяют 6-циклопропил-1,11-диокса-4,8-дитиа-6-азациклотридекан с выходом 86%.

Другие примеры, подтверждающие способ, приведены в таблице 1.

Все опыты проводили при комнатной температуре (~20°С) в среде растворителей этанол-хлороформ (1:1, объемное соотношение), т.к. в них растворяются исходные и целевые продукты.

Спектральные характеристики

6-циклопропил-1,11-диокса-4,8-дитиа-6-азациклотридекана1(1Контроль реакции осуществляли методом ТСХ на пластинах Sorbfil (ПТСХ-АФ-В) проявляли парами I2. Для колоночной хроматографии использовали силикагель КСК (100-200 мкм). Спектры ЯМР 1D (1Н, 13С) и 2D (COSY, HSQC, НМВС) сняты на спектрометре Bruker Avance 400 (100.62 МГц для 13С и 400.13 МГц для 1Н) по стандартным методикам фирмы Bruker, внутренний стандарт Me4Si, растворитель - CDCl3.)

Элюент толуол-этилацетат-ацетон 4:1:1, Rf 0.7, nD18 1.5548.

Спектр ЯМР 1H (CDCl3, δ, м.д.): 0.38 уш.с (2Н, СН2, На-15,16), 0.51 уш.с (2Н, СН2, Hb-15,16), 2.16 уш.с (1Н, СН, Н-14), 2.68 уш.с (4Н, СН2, Н-3,9), 3.56 уш.с (8Н, СН2, Н-2,10,12,13), 4.08 уш.с (4Н, СН2, Н-5,7).

Спектр ЯМР 13С (CDCl3, δ, м.д.): 7.80 (С-15, С-16), 31.37 (С-3, С-9), 33.86 (С-14), 56.33 (С-5, С-7), 70.24 (С-2, С-10), 71.22 (С-12, С-13).

Спектральные характеристики 6-циклопентил-1,11-диокса-4,8-дитиа-6-азациклотридекана

Элюент хлороформ-ацетон 1:2, Rf 0.7, nD18 1.5323.

Спектр ЯМР 1Н (CDCl3, δ, м.д.): 1.32-1.38 м (2Н, СН2, На-15,18), 1.50-1.57 м (2Н, СН2, На-16,17), 1.62-1.70 м (2Н, СН2, Hb-16,17), 1.82-1.88 м (2Н, СН2, Hb-15,18), 2.71 т (4Н, СН2, Н-3,9; J 14 и 7 Гц), 3.06-3.09 м (1Н, СН, Н-14), 3.59-3.66 м (8Н, СН2, Н-2,10,12,13), 4.12 уш.с (4Н, СН2, Н-5,7).

Спектр ЯМР 13С (CDCl3, δ, м.д.): 23.57 (С-16, С-17), 30.99 (С-15, С-18), 31.07 (С-3, С-9), 55.41 (С-5, С-7), 61.83 (С-14), 70.26 (С-2, С-10), 71.39 (С-12, С-13).

Спектральные характеристики 6-циклогексил-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Элюент толуол-этилацетат-ацетон 4:1:1, Rf 0.65, nD18 1.5288. Спектр ЯМР 1Н (CDCl3, δ, м.д.): 1.08-1.13 м (1Н, СН2, На-17), 1.25-1.35 м (4Н, СН2, На-15,16,18,19), 1.58-1.63 м (1Н, СН2, Hb-17), 1.75-1.85 м (4Н, СН2, Hb-15,16,18,19), 2.64 т (4Н, СН2, Н-3,9; J 10 и 5 Гц), 2.70-2.75 м (1Н, СН, Н-14), 3.65 уш. с (4Н, СН2, Н-12,13), 3.80 т (4Н, СН2, Н-2,10; J 10 и 5 Гц), 4.52 уш. с (4Н, СН2, Н-5,7).

Спектр ЯМР 13С (CDCl3, δ, м.д.): 25.95 (С-16, С-17, С-18), 29.46 (С-3, С-9), 31.54 (С-15, С-19), 56.66 (С-5, С-7), 58.86 (С-14), 70.30 (С-12, С-13), 73.94 (С-2, С-10).

Спектральные характеристики 6-тетрагидро-2Н-пиран-4-ил-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Элюент гексан-бензол-этанол 1:1:1, Rf 0.8, nD18 1.4530.

Спектр ЯМР 1Н (CDCl3, δ, м.д.): 1.64-1.78 м (4Н, СН2, Н-15,19), 2.65 т (4Н, СН2, Н-3,9; J 10 и 5 Гц), 2.95-3.02 м (1H, СН, Н-14), 3.37-3.42 м (2Н, СН2, На-16,18), 3.65 уш. с (4Н, СН2, Н-12,13), 3.81 т (4Н, СН2, Н-2,10; J 10 и 5 Гц), 3.98-4.03 м (2Н, СН2, Hb-16,18), 4.53 уш.с (4Н, СН2, Н-5,7). Спектр ЯМР 13С (CDCl3, δ, м.д.): 29.51 (С-3, С-9), 31.71 (С-15, С-19), 56.38 (С-14), 56.44 (С-5, С-7), 67.45 (С-16, С-18), 70.28 (С-12, С-13), 73.98 (С-2, С-10).

Спектральные характеристики 6-циклогептил-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Элюент хлороформ-ацетон 1:2, Rf 0.8, nD18 1.4015.

Спектр ЯМР 1Н (CDCl3, δ, м.д.): 1.37-1.45 м (2Н, СН2, На-16,19), 1.47-1.58 м (4Н, СН2, Н-17,18; 2Н, СН2, На-15,20), 1.65-1.75 м (2Н, СН2, Hb-16,19), 1.78-1.88 м (2Н, СН2, Hb-15,20), 2.63 т (4Н, СН2, Н-3,9; J 10 и 5 Гц), 2.90-2.98 м (1Н, СН, Н-14), 3.64 уш.с (4Н, СН2, Н-12,13), 3.79 т (4Н, СН2, Н-2,10; J 10 и 5 Гц), 4.45 уш.с (4Н, СН2, Н-5,7).

Спектр ЯМР 13С (CDCl3, δ, м.д.): 25.11 (С-16, С-19), 27.65 (С-17, С-18), 29.55 (С-3, С-9), 33.16 (С-15, С-20), 56.55 (С-5, С-7), 60.74 (С-14), 70.32 (С-12, С-13), 73.69 (С-2, С-10).

Спектральные характеристики 6-циклооктил-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Элюент хлороформ-ацетон 1:2, Rf 0.7, nD18 1.4079.

Спектр ЯМР 1Н (CDCl3, δ, м.д.): 1.46-1.53 м (5Н, СН2, На-16,17,18,19,20), 1.57-1.66 м (5Н, СН2, Hb-16,18,20; На-15,21), 1.69-1.78 м (4Н, СН2, Hb-15,17,19,21), 2.64 т (4Н, СН2, Н-3,9; J 10 и 5 Гц), 3.02-3.07 м (1Н, СН, Н-14), 3.65 уш.с (4Н, СН2, Н-12,13), 3.80 т (4Н, СН2, Н-2,10; J 10 и 5 Гц), 4.45 уш.с (4Н, СН2, Н-5,7).

Спектр ЯМР 13С (CDCl3, δ, м.д.): 25.11 (С-17, С-19), 26.06 (С-18), 26.69 (С-16, С-20), 29.63 (С-3, С-9), 31.87 (С-15, С-21), 56.63 (С-5, С-7), 59.15 (С-14), 70.37 (С-12, С-13), 73.58 (С-2, С-10).

Спектральные характеристики 6-бицикло[2.2.1]гепт-2-ил-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Элюент гексан-бензол-этанол 1:1:1, Rf 0.65, nD18 1.4622.

Спектр ЯМР 1Н (CDCl3, δ, м.д.): 1.07-1.14 м (3Н, СН2, На-16,19,20), 1.41-1.50 м (2Н, СН2, На-18; Hb-20), 1.52-1.63 м (3Н, СН2, Hb-16,18,19), 2.26 уш.с (1Н, СН, Н-17), 2.43 уш.с (1Н, СН, Н-15), 2.63-2.68 м (4Н, СН2, Н-3,9; 1H, СН, Н-14), 3.65 уш.с (4Н, СН2, Н-12,13), 3.78-3.82 м (4Н, СН2, Н-2,10), 4.45 д (2Н, СН2, На-5,7; J 14 Гц), 4.48 д (2Н, СН2, Hb-5,7; J 14 Гц).

Спектр ЯМР 13С (CDCl3, δ, м.д.): 27.53 (С-19), 28.64 (С-20), 29.65 (С-3, С-9), 35.25 (С-16), 36.43 (С-17), 37.21 (С-18), 39.58 (С-15), 57.81 (С-5, С-7), 64.45 (С-14), 70.38 (С-12, С-13), 73.85 (С-2, С-10).

Способ получения 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1):

где R - цикло-C3H5, цикло-C5H9, цикло-C6H11, цикло-C5H9O, цикло-C7H13, цикло-C8H15, норборнил-,

отличающийся тем, что циклоалкиламин (циклопропил-амин, или циклопентил-амин, или циклогексил-амин, или тетрагидропиранил-амин, или циклогептил-амин, или циклооктил-амин, или норборнил-амин) подвергают взаимодействию с 1,6,9-триокса-3,12-дитиациклотридеканом в присутствии катализатора SmCl3⋅6H2O при мольном соотношении циклоалкиламин : 1,6,9-триокса-3,12-дитиациклотридекан : SmCl3⋅6H2O = 1:1:(0.03-0.07) при комнатной температуре (~20°С) в среде растворителей этанол-хлороформ (1:1, объемное соотношение) в течение 2.5-3.5 ч.



 

Похожие патенты:

Изобретение относится к соединению общей формулы где R1 означает фенил, незамещенный или замещенный одним или несколькими заместителями, выбранными из группы, включающей алкил, алкоксигруппу, галоген, -(СН 2)оОН, -С(O)Н, CF 3, CN, S-алкил, -S(O)1,2-алкил, -C(O)NR R , -NR R ; R2 и R3 означают независимо друг от друга водород, галоген, алкил, алкоксигруппу, OCHF2, OCH2F, OCF 3 или CF3 и R4 и R5 означают независимо друг от друга водород, -(CH2)2SCH 3, -(СН2)2S(O) 2СН3, -(CH2 )2S(O)2NHCH 3, -(CH2)2NH 2, -(CH2)2NHS(O) 2CH3 или -(СН2 )2NHC(O)СН3, R' означает водород, алкил, -(CH2) оОН, -S(O)2-алкил, -S(O)-алкил, -S-алкил; R означает водород или алкил; о означает 0, 1, 2 или 3; а также к применению соединений формулы I для приготовления лекарственных препаратов для лечения шизофрении, для лечения позитивных и негативных симптомов шизофрении и к лекарственному средству для лечения шизофрении.

Изобретение относится к биарильным соединениям или замещенным пиридинам формулы (I), где Х обозначает N или CR8, где R8 обозначает водород, галоген, фенил, алкил, алкокси, алкоксикарбонил, карбокси, формил или -NR4R5, где R4 и R5 обозначают водород, алкил, алкенил, циклоалкил, фенил, нафтил; R1a и R1в обозначают трифторметил, алкил, алкенил, алкинил, циклоалкил, алканоил; R2 обозначает алкил, алкенил, алкинил, циклоалкил; R3 обозначает гидрокси, трифторацетил, алканоил, алкенил; Аr обозначает ароматическое или гетероароматическое кольцо, например фенил, нафтил, пиридил, фуранил, тиофенил.

Изобретение относится к новым соединениям формулы I где n - 0, 1 или 2; R1 - водород, C1-C4 линейный или разветвленный алкил или бензил; Q формулы II где R2, R3 и R4 в отдельности - водород, алкил, алкокси-, алкилтио, алкоксикарбонил, галоген, тригалометил, циано, ацетил, формил, бензоил, нитро, алкоксиаминометил, фенил или фениламинокарбонил, где доли алкила или алкокси C1-C4 линейный или разветвленный, при условии, что по крайней мере один из R2, R3 или R4 должен быть не водородом; или формулы III где R5, R6 и R7 в отдельности - водород, C1-C4 алкокси, C1-C4 алкилтиорадикалы, галоген, тригалометил, циано, ацетил-, формил-, бензоил-, нитро, фенил-, или фениламинокарбонил, при условии, что по крайней мере один из R5, R6 или R7 должен быть не водородом; или формулы IV где R8, R9 и R10 в отдельности - гидроксил-, гало, C1-C12-алкил-, C5-C6-циклоалкилтригалометил-, фенил-, C1-C5-алкокси-, C1-C5-алкилтио- тетрагидропиранилокси-, фенокси, (C1-C4-алкил)карбонил-, фенилкарбонил-, C1-C4-алкилсульфинил-, C1-C4-алкилсульфонил-, карбокси- или соль щелочного металла, (C1-C4-алкокси)карбонил-, (C1-C4 алкил), аминокарбонил-, фениламинокарбонил-, толиламинокарбонил-, морфолинокарбонил-, амино-, нитро-, циано-, диоксоланил-, или (С1-С4алкокси)иминометил-, или формулы (V), где X - кислород или сера; V - азот, -СН-, или С(С1-С4 алкокси)- ; R" - водород или С1-С4 алкил.

Изобретение относится к способу получения 6-[4-гидрокси(тио,карбокси)фенил]-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1): . Технический результат: разработан новый способ получения соединений общей формулы (1), которые могут найти применение в качестве сорбентов и экстрагентов драгоценных металлов, а также селективных комплексообразователей, заключающийся во взаимодействии 4-аминофенола, или 4-аминотиофенола, или 4-аминобензойной кислоты с 1,6,9-триокса-3,12-дитиациклотридеканом в присутствии катализатора Sm(NO3)3⋅6H2O.

Изобретение относится к способу получения (1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)-хинолинов общей формулы (1): которые могут найти применение в качестве сорбентов и экстрагентов драгоценных металлов, а также селективных комплексообразователей.

Изобретение относится к способу получения алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоатов общей формулы I: Технический результат: получены новые алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоаты, которые могут найти применение в качестве селективных комплексообразователей, ионофоров и эффективных сорбентов для выделения и очистки драгоценных металлов.

Изобретение относится к способу получения 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1): в котором N,N-бис(метоксиметил)-N-арил(м-хлорфенил, n-хлорфенил, м-бромфенил, n-бромфенил, м-фторфенил, n-фторфенил)амины подвергают взаимодействию с 3,6-диокса-1,8-октандитиолом в присутствии катализатора CuCl при мольном соотношении N,N-бис(метоксиметил)-N-ариламин:3,6-диокса-1,8-октандитиол:CuCl=1:1:(0,03-0,07) в хлористом метилене в качестве растворителя, при комнатной температуре (~20°C) и атмосферном давлении в течение 6-8 ч.

Изобретение относится к способу получения 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы : где R - цикло-C3H5, цикло-C5H9, цикло-C6H11, цикло-C5H9O, цикло-C7H13, цикло-C8H15, норборнил-, в котором циклоалкиламин подвергают взаимодействию с 1,6,9-триокса-3,12-дитиациклотридеканом в присутствии катализатора SmCl3⋅6H2O при мольном соотношении циклоалкиламин : 1,6,9-триокса-3,12-дитиациклотридекан : SmCl3⋅6H2O 1:1: при комнатной температуре в среде растворителей этанол-хлороформ в течение 2.5-3.5 ч. Технический результат: предложен способ получения 6-циклоалкил-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы с высоким выходом. 1 табл., 2 пр.

Наверх