Способ ионизации вещества электронами при работе на масс-спектрометре

Изобретение относится к исследованию и анализу веществ и соединений путем измерения их физических свойств с использованием метода масс-спектрометрии. Способ ионизации вещества электронами при работе на масс-спектрометре заключается в том, что ионизацию производят электронами с изменяемой энергией ионизации, для этого на катод масс-спектрометра подают переменное напряжение от 0 до 10 В с частотой от 5 до 50000 Гц, в результате чего получают и регистрируют отрицательные ионы, образованные при различных энергиях резонанса. Технический результат - расширение функциональных возможностей масс-спектрометрического метода анализа. 2 ил.

 

Изобретение относится к исследованию и анализу органических веществ и соединений веществ путем измерения их физических свойств с использованием метода масс-спектрометрии.

Известно, что при работе на масс-спектрометрах с электронной ионизацией применяется исторически сложившаяся постоянная энергия ионизирующих электронов - 70 эВ и регистрируются положительные ионы [Лебедев А.Т. Масс-спектрометрия для анализа объектов окружающей среды. М.: Техносфера, 2013. - 632 с.]. Это позволяет получать воспроизводимые на различных приборах масс-спектры, использовать широко распространенные библиотеки масс-спектров, автоматизировать процесс сравнения данных.

Однако энергия ионизации в 70 эВ избыточна для ионизации молекул. Образуемый масс-спектр положительных ионов зачастую имеет ряд недостатков:

- интенсивные пики молекулярных ионов (более 50% от интенсивности основного пика) регистрируются только у 26% соединений, а у 24% и 37% соединений интенсивность пика молекулярного иона не превышает 1% и 5% от основного пика соответственно, что затрудняет идентификацию неизвестных соединений [Самохин А.С., Ревельский И.А. Интенсивность пика молекулярного иона в масс-спектрах электронной ионизации. // МАСС-СПЕКТРОМЕТРИЯ 9 (1)' 2012, с. 58-60];

- наличие малоинформативного масс-спектра, содержащего только 2-3 пика ионов при анализе соединений веществ с молекулярной массой менее 100 Да.

Для надежной идентификации органических соединений в этих случаях требуется применение дополнительных методов получения информации.

Современные масс-спектрометры способны регистрировать и отрицательные ионы. В научном обзоре [Мазунов В.А., Щукин П.В., Хатымов Р.В., Муфтахов М.В. Масс-спектрометрия отрицательных ионов в режиме резонансного захвата электронов. Учебный обзор. // МАСС-СПЕКТРОМЕТРИЯ 3 (1)' 2006, с. 11-32. - ближайший аналог] сделаны выводы о том, что важным преимуществом метода масс-спектрометрии отрицательных ионов резонансного захвата электронов (далее - МС ОИ РЗЭ) является его способность к обнаружению молекулярных М- и/или псевдомолекулярных ионов (М-Н)- даже в случае отсутствия аналогичных пиков ионов М+ и (М-Н)+ в масс-спектрах положительных ионов. Кроме того, метод МС ОИ РЗЭ более чувствителен при идентификации соединений, содержащих электрофильные группы [Тахистов В.В., Пономарев Д.А. Органическая масс-спектрометрия. - СПб.: ВВМ, 2005, 344 с.]. Закономерности и механизмы фрагментации положительных ионов (при энергии электронов 70 эВ) и отрицательных ионов (при энергии электронов до 10 эВ) существенно различаются. Несмотря на одинаковый способ ионизации - ионизация электронами, можно говорить о двух различных аналитических методах.

Программное обеспечение современных масс-спектрометров позволяет устанавливать только фиксированную энергию ионизации, что существенно ограничивает возможности метода МС ОИ РЗЭ. Для определения энергии резонансов молекул и осколочных ионов оператору необходимо проводить серию анализов с последовательным изменением энергии электронов от 0 до 10 эВ с шагом от 0.2 до 1 эВ, что достаточно трудоемко и требует значительного времени.

Задача настоящего изобретения заключается в совершенствовании способа ионизации органических соединений для регистрации отрицательных ионов резонансного захвата электронов.

Решение поставленной задачи предполагает технический результат, заключающийся в повышении достоверности и объективности получаемых масс-спектров исследуемых веществ, расширении функциональных возможностей метода масс-спектрометрии.

Указанная задача решается тем, что в способе ионизации вещества электронами при работе на масс-спектрометре, заключающемся в регистрации отрицательных ионов резонансного захвата электронов, ионизацию производят электронами с изменяемой энергией ионизации, для этого на катод масс-спектрометра подают переменное напряжение в заданном диапазоне в пределах от 0 до 10 В с частотой от 5 до 50000 Гц, в результате чего получают и регистрируют отрицательные ионы, образованные при различных энергиях резонанса.

Отличительным признаком изобретения является то, что ионизация молекул органических соединений происходит электронами, имеющими различную энергию ионизации в заданном диапазоне, в пределах от 0 до 10 эВ. При этом энергия меняется в течение короткого интервала времени. Данное отличие является существенным, так как известных технических решений, обладающих сходными признаками, не обнаружено.

Основным достоинством изобретения является возможность получения новой информации о структуре соединений, отличной от полученной при электронной ионизации с энергией электронов 70 эВ и регистрации положительных ионов, при работе на одном масс-спектрометре. К дополнительным достоинствам можно отнести сокращение материальных затрат на аналитическое оборудование в аналитической лаборатории.

При идентификации органических соединений на основе совместного использования методов газовой хроматографии, масс-спектрометрии и МС ОИ РЗЭ был проведен сравнительный анализ масс-спектров положительных ионов при энергии ионизации 70 эВ и отрицательных ионов при энергиях ионизации от 0 до 10 эВ. Были сделаны следующие выводы:

1. Направления фрагментации положительно и отрицательно заряженных ионов различны;

2. У большинства исследованных соединений совместным применением методов зарегистрированы пики молекулярных (псевдомолекулярных) ионов.

3. Для отрицательно заряженных ионов характерен разрыв одной (двух) связей с отщеплением алкильного радикала;

Фигуры 1, 2 показывают взаимодополнение аналитической информации, полученной методом масс-спектрометрии электронной ионизации и МС ОИ РЗЭ, полученной при ионизации электронами с энергией от 0 до 10 эВ.

Новый способ ионизации органического соединения электронами с различной энергией, меняющейся в заданном диапазоне, в пределах от 0 до 10 эВ, на одном приборе позволяет повысить надежность и достоверность идентификации органических соединений и расширить функциональные возможности масс-спектрометрии.

Дополнительные материалы, поясняющие сущность изобретения

Условия анализа: газохроматографический масс-спектрометрический комплекс: газовый хроматограф Кристалл 5000.2 с масс-спектрометрическим детектором ʺКристаллʺ; слабополярная капиллярная колонка HP-5MS длиной 30 м, внутренним диаметром 0.25 мм, толщиной слоя неподвижной жидкой фазы 0.25 мкм; скорость газа-носителя (гелия) - 1.1 см3/мин; соотношение сброса в испарителе - 1:10; температура в испарителе - 250°С; температура переходной линии в хроматограф - 255°С; температура колонки - режим линейного программирования от 40°С до 250°С со скоростью 10°С/мин., с выдержкой 1 мин при начальной температуре и 8 минут при конечной температуре; объем пробы - 1 мкл; условия ионизации - электронная ионизация, энергия ионизации от 0 до 10 эВ при регистрации отрицательных ионов, 70 эВ при регистрации положительных ионов.

Способ ионизации вещества электронами при работе на масс-спектрометре, заключающийся в регистрации отрицательных ионов резонансного захвата электронов, отличающийся тем, что ионизацию производят электронами с изменяемой энергией ионизации, для этого на катод масс-спектрометра подают переменное напряжение в заданном диапазоне в пределах от 0 до 10 В с частотой от 5 до 50000 Гц, в результате чего получают и регистрируют отрицательные ионы, образованные при различных энергиях резонанса.



 

Похожие патенты:

Изобретение относится к исследованию макромолекул для определения массы макромолекул, включая белки, большие пептиды, длинные ДНК-фрагменты и полимеры. .

Изобретение относится к области генерирования пучков ускоренных заряженных частиц и может быть использовано в квантовой электронике, плазмохимии и т.п. .

Изобретение относится к экспериментальной физике, предназначено для анализа поверхности твердого тела и позволяет расширить функциональные возможности прибора посредством дополнительной регистрации оптического излучения, возникающего при взаимодействии первичного ионного пучка с поверхностью образца.

Изобретение относится к электронике и может быть использовано в электронике и смежных отраслях. .

Изобретение относится к лазерной масс-спектрометрии и может быть использовано для многоэлементного анализа вещества . .

Изобретение относится к технике высокотемпературных исследований и может быть использовано в масс-спектрометрии, электронной спектрометрии и других:областях экспериментальной техники.

Изобретение относится к приборостроению , в частности к масс-спектрометрии, и может быть использовано для контроля процессов , протекающих с выделением газовой / / V фазы.

Изобретение относится к области медицины, а именно к клинической фармакологии, и может быть использовано для количественного определения ликарбазепина в плазме крови для решения задач лекарственного мониторинга антиконвульсанта второго поколения при лечении парциальной эпилепсии.

Изобретение относится к аналитической химии, а именно к газохроматографическому определению содержания формальдегида в воздухе рабочей зоны, помещений жилых и общественных зданий, атмосферном воздухе населенных мест, и может быть использовано в работе органов Управления Роспотребнадзора для оценки загрязнения окружающей среды, качества воздуха помещений.

Способ идентификации фосфорорганических примесей основан на идентификации целевой токсичный О-алкилалкилфторфосфонат по известным хроматографическим и спектральным характеристикам.

Изобретение относится к фармации, а именно к фармацевтической химии.Способ определения концентрации микофеноловой кислоты в плазме крови человека отличается тем, что хроматографическое разделение компонентов матрицы проводят с использованием хроматографической колонки Phenomenex Kinetex C18 (30×4,6 мм, 2,6 мкм) при скорости потока 0,4 мл/мин и следующих условиях градиентного элюирования: сначала анализа и до 1 мин анализа содержание ацетонитрила в подвижной фазе составляет 40%, содержание воды - 60%; с 1 мин до 1,5 мин анализа содержание ацетонитрила линейно повышается до 65%, содержание воды линейно понижается до 35%; с 1,5 мин до 2,0 мин анализа содержание ацетонитрила линейно повышается до 90%, содержание воды линейно понижается до 10%; с 2,0 мин до 2,5 мин анализа содержание ацетонитрила составляет 90%, содержание воды - 10%; с 2,5 мин до 3,0 мин анализа содержание ацетонитрила линейно понижается до 65%, содержание воды линейно повышается до 35%; с 3,0 мин до 3,5 мин анализа содержание ацетонитрила линейно понижается до 40%, содержание воды линейно повышается до 60%; с 3,5 мин до конца анализа содержание ацетонитрила составляет 40%, содержание воды - 60%.

Изобретение относится к области аналитической химии и может быть использовано для установления безопасности детских игрушек из пластизоля на основе поливинилхлорида (ПВХ) по анализу равновесной газовой фазы над пробами игрушек и оцифровке запаха изделия с помощью химических сенсоров.

Изобретение относится к способу определения мельдония в биологической жидкости (моче), который может найти применение в клинической диагностике и допинговом контроле.

Изобретение относится к медицине, а именно к педиатрии, и касается способа ранней диагностики наследственной тирозинемии 1 типа (HT1). Сущность способа заключается в том, что детям первых 3-х месяцев жизни, у которых имеет место сочетание симптомокомплекса, состоящего из лихорадки неясного генеза, отеков, желтухи и диспепсического синдрома, а у детей в возрасте 4 месяцев и старше - гепато- или гепатоспленомегалии и клинических проявлений острого рахита, проводят исследование крови с оценкой уровня гемоглобина и количества эритроцитов, количества тромбоцитов, уровня АЛТ, ACT, билирубина и его фракций, уровня щелочной фосфатазы, кальция, фосфора, АФП, коагулограммы.

Изобретение относится к области аналитической химии, а именно к способам установления географического региона произрастания кофейных зерен на основе определения изотопного состава углерода хлорогеновой кислоты и кофеина, выделенных из образцов обжаренных кофейных зерен.

Изобретение относится к исследованию или анализу материалов путем определения их химических или физических свойств и может быть использовано для хромато-масс-спектрометрической идентификации контролируемых токсичных химикатов в сложных смесях в рамках мероприятий по выполнению Конвенции о запрещении производства, накопления и применения химического оружия, а также его уничтожении.

Изобретение относится к области масс-спектрометрии. Способ образования бескапельного непрерывного стабильного ионного потока при электрораспылении растворов анализируемых веществ в источниках ионов с атмосферным давлением характеризуется отсутствием образования капель в начале процесса электрораспыления, что существенно упрощает процесс получения непрерывного стабильного и монодисперсного потока заряженных частиц в широком диапазоне объемных скоростей потоков распыляемой жидкости и, соответственно, стабильным ионным током анализируемых веществ, поступающих в анализатор, а также долговременной работой источника ионов без разборки и чистки.

Изобретение относится к области медицины, а именно к клинической фармакологии, и может быть использовано для количественного определения леводопы в плазме крови для решения задач лекарственного мониторинга при лечении пациентов, страдающих болезнью Паркинсона. Способ определения леводопы в плазме крови включает анализ крови на ее наличие путем очистки плазмы крови, проведения хромато-масс-спектрометрии с использованием матрицы в виде плазмы крови с леводопой и внутреннего стандарта метилдопы, при этом разделение продуктов экстракции проводят на обращенно-фазной хроматографической колонке, а в качестве элюента применяют муравьиную кислоту и ацетонитрил, с последующим расчетом концентрации леводопы, при этом очистку проводят методом твердофазной экстракции на активированном оксиде аллюминия, разделение продуктов экстракции проводят на обращенно-фазной хроматографической колонке 4,6×250 мм с фенилгексилом в качестве неподвижной фазы, концентрацию леводопы рассчитывают по формуле: С=4,384714×AR, где С - концентрация леводопы (мкг/мл), AR - отношение площади хроматографического пика леводопы к площади пика внутреннего стандарта. 6 ил., 1 табл.

Изобретение относится к исследованию и анализу веществ и соединений путем измерения их физических свойств с использованием метода масс-спектрометрии. Способ ионизации вещества электронами при работе на масс-спектрометре заключается в том, что ионизацию производят электронами с изменяемой энергией ионизации, для этого на катод масс-спектрометра подают переменное напряжение от 0 до 10 В с частотой от 5 до 50000 Гц, в результате чего получают и регистрируют отрицательные ионы, образованные при различных энергиях резонанса. Технический результат - расширение функциональных возможностей масс-спектрометрического метода анализа. 2 ил.

Наверх