Способ обработки магниевого сплава системы mg-al-zn методом ротационной ковки

Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов, и может быть использовано для получения изделий, применяемых в качестве конструкционных материалов в авиации, ракетной технике, транспорте и т.д. Способ обработки магниевого сплава системы Mg-Al-Zn включает предварительную термообработку путем гомогенизирующего отжига при температуре 450-500°C и ротационную ковку, причем ротационную ковку осуществляют ступенчато в интервале температур 400-350°C с суммарной истинной степенью деформации 2,5-3, при этом ковку на каждой ступени осуществляют при температуре на 25°C ниже предыдущей ступени до получения структуры, состоящей из зерен со средним размером меньше 5 мкм, насыщенных двойниками деформации. Техническим результатом изобретения является повышение прочности сплава на основе магния системы Mg-Al-Zn с одновременным повышением его пластичности. 1 пр.

 

Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов.

Магний и его сплавы обладают низким удельным весом, высокой удельной прочностью, хорошо поглощают механические вибрации, в результате чего они нашли широкое применение в качестве конструкционных материалов в авиации, ракетной технике и транспорте. Вместе с тем, магний и его сплавы обладают рядом недостатков, к которым относятся низкая технологичность из-за невысокой пластичности, особенно при комнатной температуре.

Алюминий и цинк являются наиболее распространенными легирующими элементами в магниевых сплавах, однако упрочняющее действие этих элементов сохраняется только до температур 150-200°C. Для повышения удельной прочности и технологичности таких сплавов прибегают к измельчению их зеренной структуры методами интенсивной пластической деформации (ИПД), в частности равноканальным угловым прессованием (РКУП) и кручением под высоким давлением (КВД). Вместе с тем, отмеченные методы ИПД не всегда вписываются в технологическую цепочку производства, в отличие от метода ротационной ковки, обеспечивающего при этом большую, чем при РКУП скорость деформировании.

Известны, в частности, способы обработки магниевых сплавов ротационной ковкой со скоростью деформации по меньшей мере 10 сек-1 при увеличении температуры вплоть до 90% от температуры плавления материала (US 9561538 В2, C22F 3/17, 07.02.2017; US 20160045949 A1, B21J 7/16, 18.02.2016). Эти способы позволяют повысить прочность сплава за счет создания мелкозернистой структуры. Однако пластичность сплава при указанной обработке остается невысокой.

Известен также способ обработки магниевого сплава для получения проволоки, включающий предварительный нагрев магниевого сплава при температуре от 120 до 200°C в течение 1-15 мин и проведение ротационной ковки со скоростью, поддерживаемой в интервале между 6 и 10 м/мин (CN 101745592 A, C22F 1/06, 23.06.2010). Способ высокопродуктивен, прост в исполнении и не требует специального оборудования. Предел текучести полученного в результате обработки сплава на 25-53%, а предел прочности на 18-23% выше чем при использовании экструзии. Указанный способ принят в качестве наиболее близкого аналога для сравнения с методом, предлагаемым в настоящей заявке.

Задачей изобретения является создание способа обработки магниевого сплава системы магний-алюминий-цинк, позволяющего с помощью стандартного оборудования получить продукт, обладающий оптимальным сочетанием механических свойств.

Техническим результатом изобретения является повышение прочности сплава на основе магния системы Mg-Al-Zn с одновременным повышением пластичности.

Технический результат достигается тем, что в способе обработки магниевого сплава системы Mg-Al-Zn, включающем предварительную термообработку сплава и ротационную ковку, предварительную термообработку проводят путем гомогенизирующего отжига при температуре 450-500°C, а ротационную ковку осуществляют ступенчато в интервале температур 400-350°C с суммарной истинной степенью деформации 2,5-3, при этом ковку на каждой ступени осуществляют при температуре на 25°C ниже предыдущей ступени до получения структуры, состоящей из зерен со средним размером меньше 5 мкм, насыщенных двойниками деформации.

Сущность изобретения заключается в следующем.

Проведение гомогенизирующего отжига в интервале температур 450-500°C позволяет получить в сплаве системы Mg-Al-Zn достаточно однородную структуру, в результате пластичность сплава повышается, что позволяет значительно интенсифицировать последующую обработку ротационной ковкой.

Проведение ротационной ковки на первой ступени при максимальной температуре приводит к образованию структуры с незначительной неоднородностью и образованием двойников деформации, преимущественно в крупных зернах, что приводит к незначительному увеличению прочности при сохранении пластичности на прежнем уровне.

Проведение следующих этапов деформации при температуре на 25°C ниже температуры деформации первого этапа с суммарной истинной степенью деформации 2,5-3 приводит к поэтапному измельчению зерен и увеличению в них плотности двойников деформации. Вместе с тем, из-за активизации призматического скольжения и максимального рассеяния текстуры одновременно увеличивается пластичность сплава.

Следует отметить, что поэтапное снижение температуры на величину, большую 25°C, при каждом последующем шаге ротационной ковки повышает прочность сплава, но снижает его пластические характеристики. К таким же результатам приводит снижение нижнего значения интервала температур проведения ротационной ковки. Ротационная ковка с суммарной истинной степенью деформации ниже 2,5 не обеспечивает необходимых значений прочности сплава, поскольку она не позволяет достичь измельчения зерна до уровня 5 мкм с достаточно высокой плотностью насыщения зерен двойниками деформации.

Пример

Обработке подвергали прутки из промышленного магниевого сплава МА2-1пч, содержащего, мас. %: 4,4 Al, 0,9 Zn, 0,4 Mn.

Гомогенизирующий отжиг проводили при температуре 460°C в течение 6 часов.

Ротационную ковку осуществляли на ротационно-ковочной машине РКМ 31 на прутках диаметром 20 мм в три этапа с постепенным понижением температуры ковки на 25°C в интервале температур 400-350°C с одновременным увеличением истинной степени деформации до суммарной величины 2,77 с получением конечного диаметра прутков 5 мм. На первом этапе ротационную ковку проводили при температуре 400°C с истинной степенью деформации 0,58 до получения прутка диаметром 15 мм, на втором этапе - при температуре 375°C с суммарной истинной степенью деформации 1,39 до получения диаметра прутка 10 мм, на третьем этапе - при температуре 350°C с суммарной истинной степенью деформации 2,77 до конечного диаметра прутка 5 мм.

После гомогенизирующего отжига сплав имел однородную структуру со средним размером зерна порядка 19 мкм. Предел прочности сплава составлял 280 МПа, предел текучести - 220 МПа и относительное удлинение - 10,2%.

После первой стадии ротационной ковки при 400°C предел прочности и предел текучести незначительно повысились (до 310 МПа и 230 МПа, соответственно), при этом удлинение сохранилось на уровне не подвергнутого деформационному упрочнению сплава, порядка 10%.

Ротационная ковка на второй стадии при температуре на 25°C ниже первой (375°C) привела к еще большему повышению прочности (до 340 МПа) с незначительным снижением пластичности до 8%. Наконец, третья стадия ротационной ковки при температуре, сниженной до 350°C, повысила прочностные характеристики сплава до 380 МПа (предел прочности) и до 330 МПа (предел текучести), причем одновременно повысилась пластичность сплава, относительное удлинение составило 12,6%. Микроструктурный анализ обработанного по предложенной технологии сплава показал, что он имеет структуру с размером зерен порядка 3 мкм и высокой плотностью двойников деформации с шириной двойников 1,5±0,1 мкм. Рентгеноструктурный анализ текстуры показал значительную активизацию призматического скольжения, что привело к повышению пластичности ультрамелкозернистого магниевого сплава.

Таким образом, предложенная технология обработки магниевых сплавов системы Mg-Al-Zn многостадийной ротационной ковкой позволяет получить изделия из магниевых сплавов с высоким сочетанием прочностных и пластических свойств.

Способ обработки магниевого сплава системы Mg-Al-Zn, включающий предварительную термообработку сплава и ротационную ковку, отличающийся тем, что предварительную термообработку проводят путем гомогенизирующего отжига при температуре 450-500°С, а ротационную ковку осуществляют ступенчато в интервале температур 400-350°С с суммарной истинной степенью деформации 2,5-3, при этом ротационную ковку на каждой ступени осуществляют при температуре на 25°С ниже температуры предыдущей ступени до получения структуры, состоящей из зерен со средним размером меньше 5 мкм, насыщенных двойниками деформации.



 

Похожие патенты:

Изобретение относится к получению магниевых сплавов и может быть использовано для производства биоразлагаемых имплантатов. Способ получения магниевого сплава, обладающего улучшенными механическими и электрохимическими свойствами включает получение магния высокой чистоты путем вакуумной дистилляции, получение заготовки сплава путем синтеза магния с высокочистыми Zn и Al в количестве от 1,5 до 7,0 мас.% Zn и от 0,5 до 3,5 мас.% Al, остальное - магний и примеси, включающие Fe, Si, Mn, Со, Ni, Cu, Zr, Y, Sc или редкоземельные элементы, имеющие порядковые номера 21, от 57 до 71 и от 89 до 103, Be, Cd, In, Sn и/или Pb, а также P, способствующие разнице электрохимического потенциала и/или образованию выделений и/или интерметаллических фаз, с суммарным содержанием, не превышающим 0,0063 мас.%, при этом содержание легирующих добавок Zn равно или больше содержания легирующих добавок Al; гомогенизацию сплава путем отжига при температуре между 250°С и 350°С в течение от 1 до 60 часов и охлаждение под воздействием воздуха и на водяной бане; по меньшей мере единичную формовку гомогенизированного сплава в интервале температур между 250°С и 350°С; в некоторых случаях термическую обработку в диапазоне температур между 200°С и 350°С с выдержкой в течение от 5 минут до 6 часов.

Изобретение относится к области металлургии, а именно к магниевым сплавам, и может быть использовано для изготовления биоразлагаемого имплантата. Биоразлагаемый имплантат содержит магниевый сплав, содержащий: Zn в количестве от 3 до 5 мас.

Изобретение относится к области металлургии, в частности к механико-термической обработке магниевых сплавов, и может быть использовано в прокатном производстве магниевых деформируемых сплавов.

Изобретение относится к области машиностроения и авиастроения, где могут быть применены магниевые сплавы в качестве легкого конструкционного материала для изготовления кронштейнов, несущих деталей внутреннего набора, таких как детали кресел, пульта управления, системы управления.

Изобретение относится к области металлургии, в частности к изготовлению металлической фольги, и может быть использовано для изготовления элементов химических источников тока, магниевых аккумуляторов и диффузоров высококачественных динамиков.
Изобретение относится к конструктивному элементу из магниевого сплава с сильно выраженной металлической текстурой. .

Изобретение относится к области технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к области металлургии, в частности к технологии термомеханической обработки алюминиевых или магниевых сплавов при получении из них изделий с нано- и микрокристаллической структурой.

Изобретение относится к области металлургии, в частности к листу из магниевого сплава. .

Изобретение относится к термообработке магниевых сплавов, которые могут быть упрочнены дисперсионным твердением. .
Наверх