Многоканальная акустико-эмиссионная система диагностики конструкций

Многоканальная акустико-эмиссионная система предназначена для проведения технической диагностики и неразрушающего контроля крупногабаритных конструкций при проведении прочностных испытаний. Содержит акустический преобразователь (1), предварительный усилитель (2), управляющее устройство канала (8), управляемые фильтры верхних (23) и нижних (24) частот, основной усилитель (4), резистивный делитель (17), состоящий из резисторов (25), (26), (27), три двухпозиционных ключа (14), (15), (16), аналого-цифровой (6), цифроаналоговый (7) преобразователи, оперативное запоминающее устройство (9), цифровой сигнальный процессор (10), выход которого двунаправленной шиной соединен с входом контроллера Ethernet (22), другой вход которого соединен с сетевым коммутатором Ethernet (21). Выход основного усилителя (4) подключен к последовательно соединенным пиковому детектору (18), интегратору (20), сумматору (19), выход которого через третий двухпозиционный ключ (16) соединен с компаратором (5), выход которого соединен с входами оперативного запоминающего устройства (9) и цифрового сигнального процессора (10). Такое выполнение системы обеспечивает ее работу при изменении входных сигналов в широком динамическом диапазоне, а управляемые фильтры верхних и нижних частот позволяют подавить шумы и помехи. 2 ил.

 

Изобретение относится к технической диагностике и неразрушающему контролю и может быть использовано при прочностных испытаниях крупногабаритных конструкций, работающих в среде с высоким уровнем шумов и помех, например, при выполнении контроля узлов самолетов, мостовых конструкций, грузовых вагонов в вагоноремонтных депо.

Известно многоканальное акустико-эмиссионное устройство для контроля изделий, состоящее из 1…n блоков, каждый из которых содержит четыре измерительных канала, состоящих из последовательно соединенных акустического преобразователя, предварительного усилителя, фильтра, пикового детектора, выход которого соединен с инвертирующим входом компаратора, а также содержит цифроаналоговый преобразователь, выход которого подключен к неинвертирующему входу компаратора, а также коммутатор каналов, основной усилитель, аналого-цифровой преобразователь, оперативное запоминающее устройство и таймер. Кроме того, в устройстве последовательно соединены коммутатор каналов, основной усилитель, аналого-цифровой преобразователь, оперативное запоминающее устройство, выход которого соединен с первым входом устройства сопряжения, причем четыре входа коммутатора каналов соединены с выходами фильтров каналов и входами пиковых детекторов соответствующих каналов, а входы цифроаналоговых преобразователей четырех каналов блока объединены и соединены с первым выходом устройства сопряжения, выходы компараторов каждого канала подключены ко входам таймера, выход которого соединен со вторым входом оперативного запоминающего устройства, второй выход устройства сопряжения соединен с третьим входом таймера, а третий выход устройства сопряжения соединен с шиной компьютера (см. патент РФ №2150698, МПК: G01N 29/14, принятый за аналог).

Однако данное устройство обладает рядом недостатков:

- невозможность контроля протяженных и крупногабатиных объектов, так как измерительные блоки находятся в одном корпусе с центральным процессором, поскольку связаны с ним единой шиной, датчики подключаются к блокам отдельным кабелем ограниченной длины;

- низкое быстродействие, обусловленное невысоким быстродействием коммутирующих устройств, что приводит к погрешностям в измерении амплитуды, времени прихода и спектра сигналов АЭ;

- невозможность определения в реальном масштабе времени спектральных характеристик сигналов АЭ, а, следовательно, и типа дефекта, поскольку вся обработка и расчет производятся в одном центральном процессоре.

Известна многоканальная акустико-эмиссионная система диагностики конструкций, состоящая из 1…n каналов, каждый из которых содержит последовательно соединенные акустический преобразователь, предварительный усилитель, фильтр, основной усилитель, компаратор, выход которого соединен с таймером, устройство сопряжения, цифроаналоговый преобразователь, выход которого подключен к неинвертирующему входу компаратора, а также содержит аналого-цифровой преобразователь, выход которого соединен с первым входом оперативного запоминающего устройства. Кроме того, в системе основной усилитель программируемый, а его выход подключен к инвертирующему входу компаратора и аналого-цифровому преобразователю, выход оперативного запоминающего устройства соединен с первым входом сигнального процессора, выход которого подключен к устройству сопряжения, а выход устройства сопряжения соединен с локальной сетью, которая, в свою очередь, соединена с компьютером, выход таймера подключен ко входу устройства управления, причем первый выход устройства управления соединен со входом генератора, выход которого через ключ соединен с акустическим преобразователем, второй выход устройства управления соединен с управляющим входом оперативного запоминающего устройства, третий выход устройства управления соединен со вторым входом сигнального процессора, при этом устройство управления также выполнено с возможностью подачи команды на увеличение запоминающего устройства, третий выход устройства управления соединен со вторым входом сигнального процессора, при этом устройство управления также выполнено с возможностью подачи команды на увеличение порога срабатывания, который с помощью цифроаналогового преобразователя устанавливается на входе компаратора (см. патент РФ № 2217741, МПК: G11N 29/14, принятый за прототип).

Недостатком данного устройства является наличие помех из-за отсутствия программного управления полосой пропускания фильтров нижних и верхних частот и невозможности более точно синхронизировать работу каналов, что значительно снижает эффективность работы устройства.

Техническая задача - повышение эффективности работы за счет защиты от помех и расширения динамического диапазона.

Поставленная задача решается за счет того, что многоканальная акустико-эмиссионная система диагностики конструкций, состоящая из 1…n каналов, каждый из которых содержит последовательно соединенные акустический преобразователь, предварительный усилитель, фильтр, основной усилитель, компаратор, аналого-цифровой преобразователь, цифроаналоговый преобразователь, устройство управления, оперативное запоминающее устройство, цифровой сигнальный процессор, центральный процессор компьютера, генератор калибровочных импульсов, ключ, первый вход которого соединен с выходом акустического преобразователя и входом предварительного усилителя, снабжена тремя дополнительными двухпозиционными ключами, резистивным делителем напряжения, пиковым детектором, аналоговым сумматором, аналоговым интегратором, сетевым коммутатором, контроллером Ethernet, причем фильтр состоит из последовательно соединенных управляемых фильтров верхних и нижних частот, резистивный делитель состоит из трех последовательно включенных резисторов, при этом второй вход ключа соединен с входом первого двухпозиционного ключа и выходом предварительного усилителя, а один конец первого резистора подключен к первому входу первого двухпозиционного ключа, управляющий вход которого соединен с первым выходом устройства управления канала, а второй конец третьего резистора соединен с общей шиной, к последовательному соединению первого и второго резисторов подключен первый вход второго двухпозиционного ключа, второй ход которого подключен к последовательному соединению второго и третьего резисторов, выход второго двухпозиционногоключа соединен с первым входом управляемого фильтра верхних частот, управляющий вход второго двухпозиционного ключа соединен со вторым выходом устройства управления канала, третий выход которого соединен со вторым входом управляемого фильтра верхних частот, выход которого соединен с первым входом управляемого фильтра нижних частот, второй вход которого соединен с четвертым выходом устройства управления канала, а выход управляемого фильтра нижних частот соединен с первым входом программируемого основного усилителя, второй вход которого соединен с пятым выходом устройства управления канала, а выход основного усилителя соединен с последовательно соединенными пиковым детектором, аналоговым интегратором, выход которого соединен с первым входом аналогового сумматора, второй вход которого соединен с выходом цифроаналогового преобразователя и первым входом третьего двухпозиционного ключа, а вход цифроаналогового преобразователя соединен с шестым выходом устройства управления канала, второй вход третьего двухпозиционного ключа соединен с выходом аналогового сумматора, а управляющий вход третьего двухпозиционного ключа соединен с инвертирующим входом аналогового компаратора, неинвертирующий вход которого соединен с входом пикового детектора, выходом основного усилителя и входом аналого-цифрового преобразователя, выход которого двунаправленными шинами соединен с последовательно соединенными оперативным запоминающим устройством, цифровым сигнальным процессором и контроллером Ethernet, первый и второй выход сетевого коммутатора соединен со вторым и третьим входами контроллера Ethernet, а его третий выход соединен с центральным процессором компьютера, причем, управляющие аналоговые входы оперативного запоминающего устройства и цифрового сигнального процессора объединены и соединены с выходом аналогового компаратора, первый аналоговый выход цифрового сигнального процессора соединен с входом оперативного запоминающего устройства, второй аналоговый выход цифрового сигнального процессора соединен с входом генератора калибровочных импульсов, выход которого соединен со вторым входом первого двухпозиционного ключа, цифровой выход цифрового сигнального процессора двунаправленной шиной соединен с первым входом устройства управления канала, а аналоговый выход контроллера Ethernet соединен со вторым входом устройства управления канала.

На фиг. 1 представлена функциональная схема многоканальной акустико-эмиссионной системы диагностики конструкций, состоящей из n одноканальных акустико-эмиссионных устройств, на фиг. 2 - временная диаграмма работы 4-битного манчестерского кода.

Одноканальное акустико-эмиссионное устройство содержит:

1 - акустический преобразователь;

2 - предварительный усилитель;

3 - фильтр;

4 - основной усилитель;

5 - компаратор;

6 - аналого-цифровой преобразователь;

7 - цифроаналоговый преобразователь;

8 - устройство управления канала;

9 - оперативное запоминающее устройство;

10 - цифровой сигнальный процессор;

11 - центральный процессор компьютера;

12 - генератор калибровочных импульсов;

13 - ключ;

14 - первый двухпозиционный ключ;

15 - второй двухпозиционный ключ;

16 - третий двухпозиционный ключ;

17 - резистивный делитель;

18 - пиковый детектор;

19 - аналоговый сумматор;

20 - аналоговый интегратор;

21 - сетевой коммутатор;

22 - контроллер Ethernet;

23 - управляемый фильтр верхних частот;

24 - управляемый фильтр нижних частот;

25, 26, 27 - последовательно включенные первый второй, третий резисторы;

28 - общий провод.

Многоканальная акустико-эмиссионная система диагностики конструкций, состоит из 1…n каналов, каждый из которых содержит последовательно соединенные акустический преобразователь 1, предварительный усилитель 2, фильтр 3, основной усилитель 4, компаратор 5, аналого-цифровой преобразователь 6, цифроаналоговый преобразователь 7, устройство управления 8, оперативное запоминающее устройство 9, цифровой сигнальный "процессор 10, центральный процессор компьютера 11, генератор калибровочных импульсов 12, ключ 13, первый вход которого соединен с выходом акустического преобразователя 1 и входом предварительного усилителя 2, три дополнительных двухпозиционных ключа 14, 15, 16, резистивный делитель напряжения 17, пиковый детектор 18, аналоговый сумматор 19, аналоговый интегратор 20, сетевой коммутатор 21, контроллер Ethernet 22. Фильтр 3 состоит из последовательно соединенных управляемых фильтров верхних 23 и нижних 24 частот. Резистивный делитель 17 состоит из трех последовательно включенных резисторов 25, 26, 27, при этом второй вход ключа 13 соединен с входом ключа 14 и выходом предварительного усилителя 2, а один конец первого резистора 25 подключен к первому входу ключа 14, управляющий вход которого соединен с первым выходом устройства управления 8 канала, а второй конец третьего резистора 27 соединен с общей шиной 28, к последовательному соединению резисторов 25 26 подключен первый вход двухпозиционного ключа 15, второй вход которого подключен к последовательному соединению второго 26 и третьего 27 резисторов, выход ключа 15 соединен с первым входом управляемого фильтра верхних частот 23, управляющий вход ключа 15 соединен со вторым выходом устройства «управления канала 8, третий выход которого соединен со вторым входом управляемого фильтра верхних частот 23, выход которого соединен с первым входом управляемого фильтра нижних частот 24, второй вход которого соединен с четвертым выходом устройства управления канала 8, а выход управляемого фильтра нижних частот 24 соединен с первым входом программируемого основного усилителя 4, второй вход которого соединен с пятым выходом устройства управления канала 8, выход основного усилителя 4 соединен с последовательно соединенными пиковым детектором 18, аналоговым интегратором 20, выход которого соединен с первым входом аналогового сумматора 19, второй вход которого соединен с выходом цифроаналогового преобразователя 7 и первым входом третьего двухпозиционного ключа 16, а вход цифроаналогового преобразователя 7 соединен с шестым выходом устройства управления канала 8, второй вход третьего двухпозиционного ключа 16 соединен с выходом аналогового сумматора 19, а управляющий вход третьего двухпозиционного ключа 16 соединен с инвертирующим входом аналогового компаратора 5, неинвертирующий вход которого соединен с входом пикового детектора 18, выходом основного усилителя 4 и входом аналого-цифрового преобразователя 6, выход которого двунаправленными шинами соединен с последовательно соединенными оперативным запоминающим устройством 9, цифровым сигнальным процессором 10 и контроллером Ethernet 22, первый и второй выход сетевого коммутатора Ethernet 21 соединен с вторым и третьим входами контроллера Ethernet 22, а его третий выход соединен с центральным процессором компьютера 11, причем управляющие аналоговые входы оперативного запоминающего устройства 9 и цифрового сигнального процессора 10 объединены и соединены с выходом аналогового компаратора 5, первый аналоговый выход цифрового сигнального процессора 10 соединен с входом оперативного запоминающего устройства 9, второй аналоговый выход цифрового сигнального процессора 10 соединен с входом генератора калибровочных импульсов 12, выход которого соединен со вторым входом первого двухпозиционного ключа 14, а цифровой выход цифрового сигнального процессора 10 двунаправленной шиной соединен с входом устройства управления канала 8, а аналоговый выход контроллера Ethernet 22 соединен со вторым входом устройства управления канала 8. Резисторы делителя выходного сигнала предварительного усилителя 25, 26, 27 подбираются таким образом, чтобы коэффициент деления в одном положении ключа был близок к 1, а в другом - был порядка 20.

Работа устройства происходит следующим образом.

Центральный процессор компьютера 11 через сетевой коммутатор 21 посылает в блоки каналов управляющие пакеты данных. Цифровой сигнальный процессор 10 считывает управляющие данные из контроллера Ethernet 22 и посылает соответствующие команды в устройство управления канала 8. При этом устройство управления канала 8 вырабатывает соответствующие сигналы, управляющие его режимом работы. В регистры цифроаналогового преобразователя 7 записываются значения пороговых напряжений, в программируемый усилитель 4 записывается код, соответствующий коэффициенту усиления канала. Также устройство управления канала 8 формирует сигнал управления третьим двухпозиционным ключом 16 (формирующим режим «плавающего» порога селекции), сигнал управления первым двухпозиционным ключом 14 (формирующим сигнал управления делителем 17 предварительного усилителя 2), сигналы управления фильтрами верхних 23 и нижних 24 частот. Затем центральный процессор компьютера 11 через сетевой коммутатор 21 посылает в блоки каналов широковещательную команду на запуск измерения. Процессор 10 считывает команду из контроллера Ethernet 22, запускает запись измерительной информации в оперативное запоминающее устройство 9, запускает в устройстве управления канала 8 счетчик времени прихода, тактируемый сигналом синхронизации, который генерируется контроллером Ethernet 22. Сигнал акустической эмиссии от акустического преобразователя 1 поступает на вход предварительного усилителя 2, усиливается на 40 дБ и далее проходит на вход делителя выходного сигнала 17 предварительного усилителя 2. Затем сигнал через первый двухпозиционный ключ 14 делителя выходного сигнала 17 предварительного усилителя 2 поступает на вход фильтров верхних 23 и нижних частот 24. После фильтрации сигнал поступает на вход программируемого усилителя 4 и после усиления оцифровывается с помощью аналого-цифрового преобразователя 6, а также приходит на вход аналогового компаратора 5. В случае превышения порога селекции компаратор 5 срабатывает, и в устройстве управления каналом 8, запускается таймер на отсчет времени записи сигнала акустической эмиссии, и фиксируется время прихода сигнала по счетчику. Результаты измерения записываются в буферное оперативное запоминающее устройство 9 с выхода аналого-цифрового преобразователя 6. По сигналу таймера времени, запись сигнала в оперативное запоминающее устройство 9 останавливается, и информация считывается для предварительной обработки сигнальным процессором 10. Готовность к приему следующего сигнала акустической эмиссии определяется по отсутствию превышения порогов в течение 100 мкс. Как только уровень сигнала становится ниже порогового, сигнальный процессор 10 запускает работу каналов системы на прием следующего сигнала.

Если напряжение в точке соединения резисторов 25 и 26 превышает допустимый пороговый предел Uпор, то основной усилитель 4 перейдет в режим насыщения, при работе в котором акустико-эмиссионная система будет пропускать информацию, поступающую на ее вход с выхода предварительного усилителя 2. В этот момент устройство управления 8 по второму выходу переключает управляющий вход второго двухпозиционного ключа 15 в точку последовательного соединения второго 26 и третьего 27 резисторов. При этом сигнал, поступающий на вход основного усилителя 4, уменьшится в (1+R2/R3) раз, после чего усилитель 4, а, следовательно, и акустико-эмиссионная система снова переходит в линейный режим работы.

Подавление помех в акустико-эмиссионной системе осуществляется при помощи программно-управляемых частотных фильтров 23 и 24. Для этого сначала определяются спектральные характеристики шумового сигнала, а затем подбирается оптимальная полоса пропускания фильтра 3. Подавление помех также осуществляется схемой «плавающего» порога селекции, которая увеличивает пороговый уровень с повышением уровня шумов.

Для работы в режиме автокалибровки один из каналов переключается в режим имитатора. Для этого сигнальный процессор 10 подает команду в устройство управления каналом 8, которое переводит первый двухпозиционный ключ 14 в режим «имитатор». При этом ключ 13 замыкается и акустический преобразователь 1 через двухпозиционный ключ 14 подключается к выходу генератора калибровочных импульсов 12. При этом канал готов к работе в режиме имитатора сигналов акустической эмиссии. Генератор калибровочных импульсов 12 по команде сигнального процессора 10 генерирует высоковольтный импульс, поступающий на акустический преобразователь 1. При этом остальные каналы системы работают в режиме приема.

Общая синхронизация каналов осуществляется с помощью общего тактового генератора в контроллере Ethernet 22. При этом по этой же линии периодически проходит команда общего сброса счетчиков времени прихода в устройстве управления канала 8. В контроллере Ethernet 22 и в устройстве управления канала 8 16-разрядные счетчики времени прихода тактируются частотой 1 МГц. За 4 такта до переполнения счетчика в контроллере Ethernet 22, по линии синхронизации одновременно на все каналы генерируется 4-х битный манчестерский код, который дешифрируется в устройстве управления 8 каждого канала (фиг. 2). При правильной дешифрации во всех каналах одновременно формируется сигнал сброса счетчика времени прихода, и формируется сигнал прерывания для цифрового сигнального процессора 10, который считает число кадров (кадр - полный цикл 16-разрядного счетчика времени прихода, равный 65,535 мс). Полное время прихода сигнала состоит из 16-разрядного значения счетчика и 32-разрядного значения счетчика кадров (281 474 976, 710655 сек). В случае сбоя 4-битного кода сброса, счетчик времени прихода канала сбросится по переполнению 16 разрядов. При этом будет исключен грубый сбой счетчика.

Заявляемое устройство по сравнению с прототипом позволяет исключать помехи и адаптировать акустико-эмиссионную систему на прием полезных сигналов от дефектов испытываемой конструкции, расширить динамический диапазон системы, предотвратить ее переход в режим насыщения, что важно при работе с имитатором и для регистрации сигналов при разрушении конструкции. Кроме того, исключаются сбои в работе системы, синхронизируется работа измерительных каналов, а, следовательно, более точно определяется разность времен прихода сигналов акустической эмиссии на акустические преобразователи, что повышает точность локации дефектов. Все достигнутые преимущества при построении многоканальной акустико-эмиссионой системы диагностики повышают надежность контроля дефектов конструкции в режиме реального времени.

Многоканальная акустико-эмиссионная система диагностики конструкций, состоящая из 1…n каналов, каждый из которых содержит последовательно соединенные акустический преобразователь, предварительный усилитель, фильтр, основной усилитель, компаратор, аналого-цифровой преобразователь, цифроаналоговый преобразователь, устройство управления, оперативное запоминающее устройство, цифровой сигнальный процессор, центральный процессор компьютера, генератор калибровочных импульсов, ключ, первый вход которого соединен с выходом акустического преобразователя, отличающаяся тем, что она снабжена тремя дополнительными двухпозиционными ключами, резистивным делителем напряжения, пиковым детектором, аналоговым сумматором, аналоговым интегратором, сетевым коммутатором, контроллером Ethernet, причем фильтр состоит из последовательно соединенных управляемых фильтров верхних и нижних частот, резистивный делитель состоит из трех последовательно включенных резисторов, при этом второй вход ключа соединен с входом первого двухпозиционного ключа и выходом предварительного усилителя, один конец первого резистора подключен к первому входу первого двухпозиционного ключа, управляющий вход которого соединен с первым выходом устройства управления канала, а второй конец третьего резистора соединен с общей шиной, к последовательному соединению первого и второго резисторов подключен первый вход второго двухпозиционного ключа, второй вход которого подключен к последовательному соединению второго и третьего резисторов, выход второго двухпозиционного ключа соединен с первым входом управляемого фильтра верхних частот, управляющий вход второго двухпозиционного ключа соединен со вторым выходом устройства управления канала, третий выход которого соединен со вторым входом управляемого фильтра верхних частот, выход которого соединен с первым входом управляемого фильтра нижних частот, второй вход которого соединен с четвертым выходом устройства управления канала, а «выход управляемого фильтра нижних частот соединен с первым входом программируемого основного усилителя, второй вход которого соединен с пятым выходом устройства управления канала, а выход основного усилителя соединен с последовательно соединенными пиковым детектором, аналоговым интегратором, выход которого соединен с первым входом аналогового сумматора, второй вход которого соединен с выходом цифро-аналогового преобразователя и первым входом третьего двухпозиционного ключа, а вход цифро-аналогового преобразователя соединен с шестым выходом устройства управления канала, второй вход третьего двухпозиционного ключа соединен с выходом аналогового сумматора, а управляющий вход третьего двухпозиционного ключа соединен с инвертирующим входом аналогового компаратора, неинвертирующий вход которого соединен с входом пикового детектора, выходом основного усилителя, входом аналого-цифрового преобразователя, выход которого двунаправленными шинами соединен с последовательно соединенными оперативным запоминающим устройством, цифровым сигнальным процессором и контроллером Ethernet, первый и второй выход сетевого коммутатора соединен с вторым и третьим входами контроллера Ethernet, а его третий выход соединен с центральным процессором компьютера, причем управляющие аналоговые входы оперативного запоминающего устройства и цифрового сигнального процессора объединены и соединены с выходом аналогового компаратора, первый аналоговый выход цифрового сигнального процессора соединен с входом оперативного запоминающего устройства, второй аналоговый выход цифрового сигнального процессора соединен с входом генератора калибровочных импульсов, выход которого соединен со вторым входом первого двухпозиционного ключа, а цифровой выход цифрового сигнального процессора двунаправленной шиной соединен с первым входом устройства управления канала, а аналоговый выход контроллера Ethernet соединен со вторым входом устройства управления канала.



 

Похожие патенты:

Использование: для мониторинга технического состояния опасных производственных объектов и объектов во взрывоопасной зоне. Сущность изобретения заключается в том, что интеллектуальный преобразователь акустической эмиссии выполнен во взрывозащищенном исполнении и содержит пьезоэлемент, частотный фильтр, малошумящий усилитель с регулируемым коэффициентом усиления, преобразователь выходного сигнала, управляемый формирователь импульсов, барьер искрозащиты и узел питания и управления, при этом все компоненты интеллектуального преобразователя размещены в одном малогабаритном герметичном корпусе, а управляемый формирователь импульсов выполнен с возможностью формирования импульсов высокого напряжения с заданным уровнем и демпфированием колебаний, при этом интеллектуальный преобразователь поддерживает двухстороннюю связь с контрольно-измерительной аппаратурой по двухпроводной линии.

Использование: для неразрушающего контроля с применением метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что регистрация импульсов акустической эмиссии осуществляется без применения порогового ограничения при оценке параметров импульсов акустической эмиссии и шума во временных интервалах определенной длительности, регистрация импульсов акустической эмиссии осуществляется на основании комбинированного критерия, если выполняется одна из двух статистических гипотез - гипотеза о равенстве нулю момента шестого порядка и гипотеза о различии дисперсий отсчетов сигнала акустической эмиссии, рассчитанные в соседних временных окнах, время начала импульса акустической эмиссии определяется внутри выделенного временного интервала методом кумулятивных сумм.

Использование: для контроля силовых элементов конструкций. Сущность изобретения заключается в том, что многоканальная акустико-эмиссионная система контроля силовых элементов конструкций состоит из N-каналов, каждый из которых содержит последовательно соединенные преобразователь акустической эмиссии, установленный на объекте контроля в местах максимальной концентрации напряжений, аналого-цифровой преобразователь (АЦП), блок вычисления известных акустико-эмиссионных критериев, а также устройство отображения информации, при этом в каждый из каналов дополнительно введены блок вычисления инвариантов временных интервалов импульсов акустической эмиссии и два блока вычисления инвариантов числа импульсов акустической эмиссии, входы которых объединены с входом блока вычисления известных акустико-эмиссионных критериев, а выходы соединены с соответствующими входами устройства отображения информации.

Использование: для обнаружения и контроля кавитации внутри устройства регулирования потока, такого как регулирующий клапан. Сущность изобретения заключается в том, что система и устройство для обнаружения и контроля кавитации внутри устройства регулирования потока, такого как регулирующий клапан, содержит датчик акустической эмиссии, соединенный с устройством регулирования потока таким образом, чтобы получать акустические сигналы, обусловленные кавитацией.

Использование: для акустических измерений на промышленных предприятиях. Сущность изобретения заключается в том, что акустическая измерительная система для объекта производственного процесса содержит: акустический передатчик, установленный на объекте производственного процесса, причем упомянутый акустический передатчик включает в себя первый акустический датчик; устройство контроля процесса, предоставляющее значение, представляющее акустический сигнал вблизи объекта производственного процесса, на основании, частично, сигнала от первого акустического датчика; второй акустический датчик, предоставляющий акустическое значение; и компонент снижения шума, который использует акустическое значение от второго акустического датчика для воздействия на значение, предоставляемое устройством контроля процесса, так что значение, предоставляемое устройством контроля процесса, в большей степени представляет акустический сигнал, создаваемый объектом производственного процесса.

Использование: для неразрушающего контроля днищ вертикальных стальных резервуаров при акустико-эмиссионном методе неразрушающего контроля. Сущность изобретения заключается в том, что на днище резервуара устанавливают пъезоакустические преобразователи, создают упругую деформацию локального участка днища, регистрируют сигналы акустической эмиссии, при этом создание упругой деформации локального участка днища производят локальным охлаждением поверхности твердым диоксидом углерода, сублимация которого происходит при минус 72°C, что максимально исключает фиксацию ложных акустических сигналов.

Изобретение относится к области ультразвукового контроля изделий, имеющих плоскую или цилиндрическую поверхность. Для расширения области применения на нижней поверхности корпуса устройства имеется продольный паз, стенки которого являются опорами и боковыми стенками локальной ванны, торцевыми стенками которой являются сменные планки.

Использование: для неразрушающего контроля металлокомпозитных баков высокого давления по акустико-эмиссионным сигналам. Сущность изобретения заключается в том, что в процессе нагружения баков путем постепенного увеличения внутреннего давления измеряют параметры акустико-эмиссионных сигналов, по которым определяют уровень накопленных повреждений, и по достижению параметрами критических значений принимают решение о пригодности бака к эксплуатации, при этом проводят тарировочные испытания эталонного бака до уровня не более 1,25 от заданного рабочего давления с непрерывным контролем потоков акустико-эмиссионных сигналов в композиционном материале и соответствующих им внутренних давлений в баке, проводят выделение узкополосных и широкополосных акустико-эмиссионных сигналов, соответствующих процессам разрушения матрицы и волокон композиционного материала, путем вычисления средних квадратических отклонений амплитуд узкополосных и широкополосных акустико-эмиссионных сигналов, определения критериальных параметров, соответствующих квантилям эмпирических функций распределения средних квадратических отклонений амплитуд узкополосных и широкополосных акустико-эмиссионных сигналов, уровень которых выбирается не ниже уровня средних квадратических отклонений шумового потока акустико-эмиссионных сигналов и не выше медианного значения распределения, выбора уровня порога дискриминации исходя из критериальных параметров так, чтобы порог дискриминации соответствовал не менее 75% от разницы критериальных параметров широкополосных и узкополосных акустико-эмиссионных сигналов, полученных на этапе тарировочных испытаний, нагружение каждого последующего бака производят до момента достижения критериальным параметром порога дискриминации, а решение об уровне квалификации бака принимают на основании сравнения внутренних давлений в партии баков, соответствующих порогам дискриминации.

Использование: для мониторинга степени деградации структуры материала и определения остаточной прочности изделия. Сущность изобретения заключается в том, что выполняют акустико-эмиссионный (АЭ) контроль с использованием локационных групп преобразователей активной эмиссии, предусилителей и системы сбора-обработки регистрируемых массивов импульсов активной эмиссии, при этом в режиме реального времени осуществляют градацию массивов импульсов активной эмиссии по уровню относительной энергии и усредненной частоте выбросов, формируют нижний, средний и верхний кластеры в поле указанных параметров, и вычисляют процентное содержание импульсов в каждом кластере, отражающее микро-, мезо- и макроструктурные разрушения материала, причем в качестве информативных и устойчивых акустико-эмиссионных параметров для кластерного разделения сигналов используют показатель относительной энергии импульса, измеряемого в децибелах и соответствующего количеству выбросов в единицах, по которым при сопоставлении с результатами тестовых испытаний материала на разрушение определяют степень деградации и остаточной прочности изделия в зоне акустико-эмиссионного контроля, причем границы формируемых кластеров устанавливают по результатам предварительного тестирования материала изделия исходя из природы источников излучения импульсов и используемого уровня порога дискриминации сигналов.
Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют регистрацию и обработку сигналов акустической эмиссии, при этом осуществляют сканирование изделия линейным индуктором, через который пропускают импульсный электрический ток плотностью, обеспечивающей отсутствие нагревания индуктора и достаточной для инициирования сигнала акустической эмиссии, при этом линейный индуктор жестко связан с пьезопреобразователем датчика акустической эмиссии на расстоянии не более диаметра пьезопреобразователя.

Изобретение относится к неразрушающим методам исследования твердых материалов и может быть использовано для контроля заданных параметров объектов и определения их физических характеристик. Предлагается способ определения макрорельефа поверхности и внутренних включений, дефектов объекта, и устройство, реализующее указанный способ, причем способ заключается в освещении объекта исследования лазерным излучением в иммерсионной среде и регистрации акустических волн, возникающих от лазерного воздействия двумя разнесенными акустическими приемниками, расположенными со стороны освещения, при одновременной регистрации акустических импульсов, прошедших через образец, также двумя акустическими приемниками. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к волноводам сигналов акустической эмиссии (АЭ), предназначенным для контроля и мониторинга опасных производственных объектов или их элементов при температурах, выходящих за допустимый диапазон температуры применения преобразователя АЭ. Универсальный волновод сигналов акустической эмиссии с накладными теплоотводящими элементами отличается тем, что теплорассеивающее устройство разборное и состоит из нескольких составных элементов, позволяющих: проводить его монтаж/демонтаж во время эксплуатации волновода; переориентировать устройство под новый объект контроля, температурный режим работы или другой волновод; обеспечить компактность транспортировки и хранения, а также технологичность при изготовлении и ремонтопригодность при эксплуатации. Технический результат заключается в возможности обеспечения компактности транспортировки и хранения, а также технологичности при изготовлении и ремонтопригодности при эксплуатации. 5 ил.
Наверх