Ротор турбины

Изобретение относится к роторам турбин газотурбинных двигателей авиационного и наземного применения. Ротор турбины содержит диск турбины, на ободе которого верхним байонетным соединением установлен дефлектор диска, ступица которого выполнена с цилиндрическим упругим элементом и с щелевой полостью относительно цилиндрического упругого элемента диска. На хвостовике цилиндрического упругого элемента дефлектора выполнены направленные к оси ротора турбины радиальные выступы. На упругом элементе диска выполнены направленные от оси ротора турбины радиальные выступы, образующие совместно с радиальными выступами дефлектора нижнее байонетное соединение, зафиксированное в окружном направлении контровочным замком. Контровочный замок выполнен с осевым пластинчатым выступом, с возможностью пластической деформации пластинчатого выступа в радиальном направлении на торцевую поверхность хвостовика цилиндрического упругого элемента дефлектора. Радиальная высота контровочного замка равна радиальной высоте щелевой полости между упругими элементами диска и дефлектора, а контровочный замок выполнен Т-образным в плане, и число радиальных выступов дефлектора в нижнем байонетном соединении кратно или равно числу осевых выступов дефлектора в верхнем байонетном соединении. Изобретение позволяет повысить надежность ротора турбины и снизить его массу. 5 ил.

 

Изобретение относится к роторам турбин газотурбинных двигателей авиационного и наземного применения.

Известен ротор турбины, включающий в себя диск турбины с установленным на его ободе при помощи байонетного соединения уплотнительным кольцом, зафиксированным в окружном направлении контровочным замком. Недостатком такой конструкции является низкая надежность из-за повышенной температуры полотна и ступицы диска (Патент RU №2517462, МПК F01D 5/30, опубл. 27.05.2014).

Наиболее близким к заявляемому изобретению является ротор турбины, в котором на диске установлен дефлектор, зафиксированный на ободе диска байонетным соединением, а относительно ступицы диска - болтовым соединением (Патент RU №2470170, МПК F02C 7/12, опубл. 20.12.2012).

Недостатком известной конструкции, принятой за прототип, является низкая надежность и повышенная масса конструкции из-за повышенных напряжений в болтовом соединении и наличия радиальных фланцев для установки болтового соединения.

Техническая задача, на решение которой направлено изобретение, заключается в повышении надежности и снижении массы конструкции.

Техническая задача решается тем, что в роторе турбины, содержащий диск турбины, на ободе которого верхним байонетным соединением установлен дефлектор диска, ступица которого выполнена с цилиндрическим упругим элементом и с щелевой полостью относительно цилиндрического упругого элемента диска, согласно изобретению на хвостовике цилиндрического упругого элемента дефлектора диска выполнены направленные к оси ротора турбины радиальные выступы, на цилиндрическом упругом элементе диска выполнены направленные от оси ротора турбины радиальные выступы, образующие совместно с радиальными выступами дефлектора нижнее байонетное соединение, зафиксированное в окружном направлении контровочным замком с осевым пластинчатым выступом, с возможностью пластической деформации пластинчатого выступа в радиальном направлении на торцевую поверхность хвостовика упругого элемента дефлектора, причем радиальная высота контровочного замка равна радиальной высоте щелевой полости между упругими элементами диска и дефлектора, а контровочный замок выполнен Т-образным в плане, и число радиальных выступов дефлектора в нижнем байонетном соединении кратно или равно числу осевых выступов дефлектора в верхнем байонетном соединении.

Выполнение на хвостовике цилиндрического упругого элемента дефлектора, направленного к оси ротора турбины радиальных выступов, образующих с направленными от оси ротора турбины радиальными выступами на упругом цилиндрическом элементе диска нижнее байонетное соединение, зафиксированное в окружном направлении контровочным замком, позволяет зафиксировать дефлектор относительно диска в окружном и в осевом направлениях, а также исключить из конструкции болтовое соединение между диском и дефлектором, что повышает надежность ротора турбины и снижает его массу.

Выполнение контровочного замка с осевым пластинчатым выступом, с возможностью пластической деформации пластинчатого выступа в радиальном направлении на торцевую поверхность хвостовика цилиндрического упругого элемента дефлектора, исключает осевое перемещение контровочного замка относительно хвостовика дефлектора к диску ротора, что повышает надежность ротора турбины.

Выполнение радиальной высоты контровочного замка, равной радиальной высоте щелевой полости между упругими элементами диска и дефлектора, исключает радиальное перемещение контровочного замка под действием центробежных сил при работе ротора турбины, что исключает дисбаланс ротора и повышает его надежность.

Выполнение контровочного замка Т-образным в плане обеспечивает осевую фиксацию контровочного замка в направлении от диска ротора - радиальными выступами хвостовика дефлектора, что обеспечивает надежную работу ротора турбины.

Выполнение числа радиальных выступов хвостовика дефлектора в нижнем байонетном соединении, кратным или равным числу осевых выступов дефлектора в верхнем байонетном соединении, обеспечивает равномерный подвод охлаждающего воздуха на рабочие лопатки ротора турбины, что повышает его надежность.

На фиг. 1 представлен продольный разрез ротора турбины.

На фиг. 2 представлен элемент I ротора турбины в увеличенном виде.

На фиг. 3 показано размещение контровочного замка в щелевой полости между упругими элементами диска и дефлектора при сборке.

На фиг. 4 показан вид А элемента I ротора турбины.

На фиг. 5 показан вид Б элемента I ротора турбины.

Ротор 1 турбины (без позиции) состоит из диска 2 турбины, на ободе 3 которого верхним байонетным соединением 4 установлен дефлектор 5 диска 2. Вернее байонетное соединение 4 образовано осевыми выступами 6 дефлектора 5 и осевыми выступами 7 обода 3 диска 2. На ободе 3 диска 2 установлены также рабочие лопатки 8, на охлаждение которых поступает охлаждающий воздух 9 из воздушной полости 10 между диском 2 и полотном 11 дефлектора 5.

Ступица 12 дефлектора 5 диска 2 выполнена с цилиндрическим упругим элементом 13 и с щелевой полостью 14 относительно цилиндрического упругого элемента 15 диска 2 турбины, причем на внутренней поверхности 16 хвостовика 17 цилиндрического упругого элемента 13 дефлектора 5 выполнены направленные к оси 18 ротора 1 турбины радиальные выступы 19. На внешней поверхности 20 цилиндрического упругого элемента 15 диска 2 выполнены направленные от оси 18 ротора 1 турбины радиальные выступы 21, образующие совместно с радиальными выступами 19 дефлектора 5 нижнее байонетное соединение 22. В окружном направлении нижнее байонетное соединение 22 фиксируется контровочным замком 23, который выполнен с осевым пластинчатым выступом 24, с возможностью пластической деформации осевого пластинчатого выступа 24 в радиальном направлении на торцевую поверхность 25 хвостовика 17 цилиндрического упругого элемента 13 дефлектора 5.

Радиальная высота h контровочного замка 23 равна радиальной высоте Н щелевой полости 14 между цилиндрическими упругими элементами 13 и 15 дефлектора 5 и диска 2 соответственно.

Для фиксации контровочного замка 23 в осевом направлении радиальными выступами 19 дефлектора 5, контровочный замок 23 выполнен Т-образным в плане, с окружными выступами 26 и 27.

Для обеспечения сборки ротора 1 турбины и обеспечения равномерного по окружности подвода охлаждающего воздуха 9 на рабочие лопатки 8, число радиальных выступов 19 дефлектора 5 в нижнем байонетном соединении 22 равно числу осевых выступов 6 дефлектора 5 в верхнем байонетном соединении 4 дефлектора 5 с диском 2 и равно числу рабочих лопаток 8.

При сборке ротора 1 турбины контровочный замок 23 предварительно размещается в щелевой полости 14, а после совмещения радиальных выступов 19 и 21 нижнего байонетного соединения 22 сдвигается в осевом направлении от диска 2 и фиксируется в осевом направлении путем пластической деформации пластинчатого выступа 24 на торцевую поверхность 25 хвостовика 17 дефлектора 5. Осевой контакт радиальных выступов 19 и 21 нижнего байонетного соединения 22 при сборке обеспечивается за счет сил упругости полотна 11 дефлектора 5, а при работе ротора 1 турбины к силам упругости полотна 11 добавляется усилие от избыточного давления охлаждающего воздуха 9 в воздушной полости 10 между диском 2 и дефлектором 5.

Таким образом, выполнение предлагаемого изобретения с вышеуказанными отличительными признаками, в совокупности с известными признаками позволяет зафиксировать дефлектор относительно диска в окружном и в осевом направлениях, исключить из конструкции болтовое соединение между диском и дефлектором, осевое перемещение контровочного замка относительно хвостовика дефлектора к диску ротора, радиальное перемещение контровочного замка под действием центробежных сил и дисбаланс ротора турбины, повысить надежность ротора турбины и снизить его массу.

Ротор турбины, содержащий диск турбины, на ободе которого верхним байонетным соединением установлен дефлектор диска, ступица которого выполнена с цилиндрическим упругим элементом и с щелевой полостью относительно цилиндрического упругого элемента диска, отличающийся тем, что на хвостовике цилиндрического упругого элемента дефлектора диска выполнены направленные к оси ротора турбины радиальные выступы, на цилиндрическом упругом элементе диска выполнены направленные от оси ротора турбины радиальные выступы, образующие совместно с радиальными выступами дефлектора нижнее байонетное соединение, зафиксированное в окружном направлении контровочным замком с осевым пластинчатым выступом, с возможностью пластической деформации пластинчатого выступа в радиальном направлении на торцевую поверхность хвостовика цилиндрического упругого элемента дефлектора, причем радиальная высота контровочного замка равна радиальной высоте щелевой полости между упругими элементами диска и дефлектора, а контровочный замок выполнен Т-образным в плане, и число радиальных выступов дефлектора в нижнем байонетном соединении кратно или равно числу осевых выступов дефлектора в верхнем байонетном соединении.



 

Похожие патенты:

Изобретение относится к авиационному двигателестроению, в частности к малоразмерным газотурбинным двигателям летательных аппаратов. Газотурбинная силовая установка летательного аппарата содержит расположенные в корпусе воздухозаборный канал с полым центральным обтекателем, стойками и антиобледенительным устройством, двигатель с выходным валом, планетарный редуктор с механизмом переключения и стартер-генератор, расположенный в полости центрального обтекателя и выполненный в виде обратимой электрической машины, статор которой закреплен на корпусе, а ротор - через планетарный редуктор подключен к выходному валу двигателя.

Изобретение относится к системам управления расходом воздуха, охлаждающего турбину преимущественно двухконтурного турбореактивного двигателя с воздухо-воздушным теплообменником в наружном контуре, и может быть успешно использовано в турбоэнергомашиностроении в газотурбинных приводах газоперекачивающих агрегатов компрессорных станций и магистральных газопроводов.

Способ и устройство воздушного охлаждения моторного отсека газоперекачивающего агрегата, применяемые в напорной системе вентиляции-охлаждения приточного типа с двумя напорными вентиляторами, один из которых находится в резерве.

Изобретение относится к области авиационной техники, в частности к способам управления газотурбинным двигателем. В известном способе управления газотурбинным двигателем, включающим изменение расхода охлаждающего воздуха подаваемого на турбину в зависимости от режимов работы двигателя, воздух подают от источника питания в коллектор охлаждающего воздуха, сообщенный через воздухопровод с агрегатом управления и с охлаждаемым трактом турбины через дросселирующие сечения перекрывающих устройств, выполненных в виде равномерно расположенных по окружности двигателя двухпозиционных клапанов, регулирование подачи воздуха к клапанам от агрегата управления через командный коллектор для их открытия / закрытия, по предложению, клапаны разделяют, по меньшей мере, на две группы, каждая из которых соединена командным коллектором с агрегатом управления, при этом управление открытием / закрытием каждой из групп клапанов производят отдельно или совместно в зависимости от режимов работы двигателя.

Газогенератор газотурбинного двигателя включает в себя осевой компрессор, камеру сгорания, турбину высокого давления с охлаждаемыми рабочими и диском основным с выполненными на его фланце отверстиями и несущим на себе диск покрывной с образованием между ними кольцевой полости.

Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит сопловой аппарат турбины с сопловыми лопатками, диск с рабочими лопатками, многоканальный воздуховод.

Способ охлаждения двухконтурного турбореактивного двигателя заключается в сжатии воздуха, используемого при охлаждении, в компрессоре с последующим его охлаждением в теплообменнике, установленном во втором контуре двигателя.

Изобретение относится к авиационной технике, а именно к системе охлаждения двух турбин высокого давления турбореактивного двухконтурного двигателя самолета. Система охлаждения двух турбин высокого давления турбореактивного двухконтурного двигателя включает в себя корпус турбины, первую турбину высокого давления с лопатками и вторую турбину высокого давления.

Газогенератор высокотемпературного газотурбинного двигателя содержит центробежное колесо-крыльчатку, диффузор-выпрямитель, отделенный от последнего полостью радиального кольцевого зазора и имеющий в нижней своей части кольцевой фланец, корпус силовой задний, камеру сгорания и турбину высокого давления.

Изобретение относится к паровым и газовым турбинам. Турбина с нагревом проточной части, по меньшей мере, включает в себя корпус с каналом для газа или жидкости нагрева проточной части, ротор, рабочие лопатки; входной патрубок для газа или жидкости нагрева проточной части, выходной патрубок для газа или жидкости нагрева проточной части; входной патрубок рабочего тела, выходной патрубок рабочего тела, подшипниковый узел, концевое уплотнение.

Лопатка турбины содержит перо, проходящее над полкой, и хвостовик, проходящий под полкой. Хвостовик лопатки турбины имеет форму проходящего в радиальном направлении стержня, выполнен из композитного материала и содержит первую плоскую или цилиндрическую поверхность, ориентированную в осевом направлении.

Лопатка турбины содержит перо, проходящее над полкой, и хвостовик, проходящий под полкой. Хвостовик лопатки турбины имеет форму проходящего в радиальном направлении стержня, выполнен из композитного материала и содержит первую плоскую или цилиндрическую поверхность, ориентированную в осевом направлении.

Группа изобретений относится к области гашения вибраций рабочих лопаток бустера и компрессора авиационных газотурбинных двигателей пятого поколения. Место крепления рабочих лопаток роторов бустера и компрессора авиадвигателей пятого поколения, выполненное в виде кольцевого выступа на внешней и внутренней поверхности ротора бустера или ротора компрессора, в котором выполнена кольцевая профилированная канавка со стороны внешней поверхности бочки, в которой замками «ласточкин хвост» закреплены рабочие лопатки с платформами, в кольцевой канавке в двух диаметрально противоположных местах выполнены две выемки с такими шириной и длиной в тангенциальном направлении, чтобы в ней свободно мог разместиться замок лопатки, с глубиной, равной глубине кольцевой канавки, и в выемках и вырезах в платформах закреплены замки, ограничивающие смещение лопаток в тангенциальном направлении, причем кольцевая профилированная канавка выполнена с коническим дном, и ось конической поверхности дна совпадает с продольной осью ротора бустера или компрессора, а угол при вершине этого конуса выбран из условия создания требуемой величины натяга между замками лопаток и упругогистерезисным элементом, на который они опираются, и радиальное поперечное сечение кольцевой профилированной канавки имеет форму «ласточкиного хвоста», соединенного в основании с горизонтально расположенной трапецией с вертикальными боковыми стенками, причем высота трапеции, по которой она соединена с фигурой «ласточкин хвост», больше меньшего основания этой фигуры на величину, равную в мм где δ - величина натяга в мм между замками лопаток и упругогистерезисным элементом, ϕ - угол при вершине конуса дна кольцевой профилированной канавки, таким образом, что в одной из боковых стенок выступа места крепления рабочих лопаток образована кольцевая технологическая канавка с наибольшей высотой, измеренной в радиальном поперечном сечении, равной в ммh=δ+Н+0÷0,2,где Н - наибольшая высота поперечного радиального сечения кольцевой промежуточной проставки, и кольцевая промежуточная проставка выполнена из двух диаметрально противоположно расположенных полуколец с наружной цилиндрической поверхностью, с поперечным радиальным сечением в виде трапеции - усеченного клина, с наибольшей высотой Н, шириной, равной или меньшей ширины большего основания «ласточкиного хвоста» кольцевой профилированной канавки, и углом наклона клина - половиной угла конуса клина, равной .

Предложен ротор с лопатками, содержащий диск ротора, имеющий две передние поверхности и наружную периферийную поверхность, выемки, образованные на наружной периферийной поверхности и открывающиеся на одну из передних поверхностей.

Лопатка турбины содержит рабочую часть, ромбовидный или Т-образный хвостовик, расположенный в периферийном пазу, и закрывающую пластину между ними. Закрывающая пластина имеет переднюю поверхность, заднюю поверхность, первую поверхность прилегания и расположенную параллельно ей вторую поверхность прилегания.

Лопатка турбины содержит рабочую часть, ромбовидный или Т-образный хвостовик, расположенный в периферийном пазу, и закрывающую пластину между ними. Закрывающая пластина имеет переднюю поверхность, заднюю поверхность, первую поверхность прилегания и расположенную параллельно ей вторую поверхность прилегания.

Монтажное устройство для монтажа направляющей лопатки в лопаточном пазу турбины включает зажимной блок и нажимной блок. Зажимной блок выполнен с возможностью создания в лопаточном пазу силового замыкания в окружном направлении, причем окружным направлением в рабочем положении монтажного устройства является направление перпендикулярно оси вращения турбины, проходящее на постоянном расстоянии вокруг оси вращения.

Монтажное устройство для монтажа направляющей лопатки в лопаточном пазу турбины включает зажимной блок и нажимной блок. Зажимной блок выполнен с возможностью создания в лопаточном пазу силового замыкания в окружном направлении, причем окружным направлением в рабочем положении монтажного устройства является направление перпендикулярно оси вращения турбины, проходящее на постоянном расстоянии вокруг оси вращения.

Барабан ротора осевой турбомашины содержит стенку с профилем вращения вокруг оси вращения ротора, образующую пустотелый корпус и содержащую на своей наружной поверхности две кольцевые фиксирующие поверхности для ряда лопаток.

Барабан ротора осевой турбомашины содержит стенку с профилем вращения вокруг оси вращения ротора, образующую пустотелый корпус и содержащую на своей наружной поверхности две кольцевые фиксирующие поверхности для ряда лопаток.

Лопатка турбины содержит перо, проходящее над полкой, и хвостовик, проходящий под полкой. Хвостовик лопатки турбины имеет форму проходящего в радиальном направлении стержня, выполнен из композитного материала и содержит первую плоскую или цилиндрическую поверхность, ориентированную в осевом направлении.
Наверх