Способ прогнозирования динамики изменения количественного и качественного состояния парка радиотехнических систем специального назначения

Изобретение относится к способу автоматизированного прогнозирования динамики изменения количественного и качественного состояния парка радиотехнических систем специального назначения (РТС СН). Технический результат заключается в автоматизации и повышении точности прогнозирования. В способе вводят необходимые исходные данные, ранжируют множество образцов рассматриваемого парка РТС СН по приоритетности, формируют начальную структуру динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования, определяют параметры сценария изменения ресурсных и финансовых ограничений на управляющее воздействие в течение периода прогнозирования, рассчитывают необходимое для обеспечения требуемой точности количество реализаций, производят агентное имитационное моделирование изменения технического состояния образцов рассматриваемого парка РТС СН, учитывающее стохастичность и взаимосвязанности многоэтапных процессов изменения технического состояния образцов РТС СН, на основе статистических данных рассчитывают прогнозные значения показателей динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования. 1 ил.

 

Изобретение относится к области программно-целевого планирования и управления развитием сложных технико-экономических систем и может быть использовано при разработке и обосновании предложений в долгосрочные программы и планы развития парка радиотехнических систем специального назначения (РТС СН).

Изобретение позволяет с более высокой точностью определять прогнозируемые значения показателей динамики изменения количественного и качественного состояния парка РТС СН в течение определенного периода планирования при заданных ограничениях на управляющее воздействие с учетом стохастичности и взаимосвязанности многоэтапных процессов изменения технического состояния образцов РТС СН.

Техническим результатом изобретения является повышение точности определения прогнозных значений показателей динамики изменения количественного и качественного состояния парка РТС СН, и соответственно повышение эффективности программно-целевого планирования и управления развитием парка РТС СН в целом.

Из уровня техники известно множество способов прогнозирования состояния сложных технико-экономических систем, в том числе и специального назначения.

Известна система стратегического прогноза технического состояния объектов, преимущественно компьютерно-вычислительных систем [1]. В ее состав входят блок данных по контролируемому объекту; система коррекции по цели прогноза и цели обратной связи; система формирования свойств контролируемого объекта на основе новых признаков; блок оценки развития свойств объектов, который, в частности, может состоять из объединенных в один электронный блок системы оценки развития свойств контролируемого объекта и системы оценки развития свойств совокупности объектов, аналогичных контролируемому объекту; блок, моделирующий воздействующую на контролируемый объект среду и блок-модель актуализации свойств о контролируемом объекте.

Недостатком этого технического решения является относительно узкие функциональные возможности, поскольку она предназначена преимущественно для компьютерно-вычислительных систем и не позволяет осуществлять долгосрочный прогноз изменения состояния парка РТС СН, так как не учитываются особенности жизненного цикла РТС СН, при этом для достижения технического результата необходимо проведение сопоставления характеристик объекта с характеристиками объектов, аналогичных контролируемому объекту, в режиме реального времени, что практически невозможно при рассмотрении сложных технических систем, состоящих из множества элементов.

Известна компьютерная система стратегического прогноза изменения характеристик технических систем с использованием предварительных математических моделей, раскрытая в описании к заявке WO 2005109253 А1, опубликованной 17.11.2005, МПК (ред. IРС1-7) G06F 17/50. В ее состав входят контрольно-управляющий блок, а также подключенный к нему ряд средств ввода/вывода, таких как монитор, принтер, мышь, клавиатура и т.п. В состав контрольно-управляющего блока входят центральный процессор, микросхема памяти - блок данных по контролируемому объекту и схема интерфейса, сопрягающая упомянутые средства ввода/вывода с центральным процессом.

Недостатком описанной выше компьютерной системы прогноза изменения характеристик технических систем является необходимость привлечения квалифицированного оператора, который может программно формализовать сложные взаимосвязи между динамикой изменения совокупности свойств комплектующих контролируемой технической системы и измеряемыми на текущий момент параметрами данной технической системы. В связи с этим процесс стратегического прогноза при помощи данной системы требует значительных трудо- и времязатрат.

Известна программа прогнозирования технического состояния вооружения, военной и специальной техники [2], в которой производится расчет данных, позволяющих определить момент выхода значения параметров, характеризующих техническое состояние объекта ВВСТ за пределы области допустимых значений.

Расчет проводится при помощи девяти методов прогнозирования: нейросетевого метода; метода покоординатного спуска; метода градиентного спуска; метода Нелдера-Мида; методом Хука-Дживса; при помощи генетического алгоритма; методом Бройдена-Флетчера-Гольдфарба-Шанно; методом главных компонент; на основе надежной линейной модели (RLM). Полученные в результате вычислений данные позволяют определить момент выхода значения параметров, характеризующих техническое состояние объекта за пределы области допустимых значений.

Недостатком указанного технического решения является узкая область ее применения и недостаточные функциональные возможности для прогнозирования динамики изменения состояния множества образцов РТС СН, так как прогнозирование изменения состояния одного объекта осуществляется на основе аналитических методов, при этом не учитываются ограничения на управляющее воздействие.

Известен способ прогнозирования износостойкости твердосплавных режущих инструментов [3], предназначенный для повышения точности и снижение трудоемкости при прогнозировании износостойкости твердосплавных режущих инструментов. Сущность данного способа заключается в том, что осуществляют проведение испытания на изменение величины исходного параметра от свойств поверхностной и объемной структуры, сформированной в процессе изготовления твердосплавного режущего материала, проведение эталонных испытаний на износостойкость в процессе резания материалов, вызывающих интенсивный адгезионный износ при оптимальной или близкой к ней скорости резания, построение эталонной - корреляционной зависимости «износостойкость-исходный параметр», статистический контроль только величины исходного параметра у текущей партии твердосплавных режущих инструментов, прогнозирование износостойкости для текущей партии твердосплавных режущих инструментов на основании зависимости.

Известен способ эксплуатационного контроля технического состояния и прогнозирования ресурса подшипников электродвигателей [4], предназначенный для упрощения эксплуатационного контроля технического состояния и прогнозирования ресурса подшипников электродвигателей.

Известен способ прогнозирования и оценки безопасности достижимых состояний защищенных информационных систем [5], предназначенный для получения сведений о безопасности системы не только в ее текущем состоянии, но и прогнозировать дальнейшее выполнение требований безопасности, предъявляемых к системе, заранее получать и учитывать сведения о безопасности или небезопасности всех будущих состояний системы. В основе способа лежит анализ системного состояния, модели безопасности и условий безопасности. Получают полное множество состояний, достижимых из текущего состояния системы по правилам модели безопасности, и выделяют в нем подмножества безопасных и небезопасных состояний путем оценки выполнения в них заданных условий безопасности.

Известен способ прогнозирования состояния автомобильных дорог с асфальтобетонными покрытиями и назначения обоснованных сроков ремонтных работ [6], предназначенный для повышения эффективности прогнозирования состояния автомобильных дорог с асфальтобетонными покрытиями и назначение обоснованных сроков ремонтных работ.

Известен способ прогнозирования фазового состояния судна [7], предназначенный для повышения точности прогнозирования фазового состояния судна в заранее заданный момент времени. Способ основан на использовании фазовых координат судна: угловой скорости и угла дифферента и программных возмущающих и управляющих сил, действующих на судно. Их подают на вход электронной модели движения судна, работающей в ускоренном масштабе времени.

Вышеизложенные способы обладают низкой точностью и не находят широкого практического применения из-за относительно узкой области применения, которая обусловленная допущением о том, что многоэтапный процесс изменения технического состояния образцов РТС СН на эксплуатационном этапе жизненного цикла может быть описан системой аналитических уравнений, которые связывают выходной результат со входными данными, что не позволяет учитывать результаты принятия управленческих решений на промежуточных этапах многоэтапного процесса изменения технического состояния образцов РТС СН.

Известен способ прогнозной оценки эффективности многоэтапных процессов [8], технический результат, при реализации которого заключается в обеспечении автоматизированного расчета прогнозного значения показателя эффективности многоэтапных процессов.

В способе записывают в запоминающее устройство необходимые исходные данные, анализируют соответствие вариантов решений и ситуаций, определяют вероятность своевременного и правильного принятия решений, проводят классификацию вариантов исходного состояния, результатов реализации промежуточных этапов и результатов реализации конечного этапа многоэтапного процесса, задают априорную вероятность наступления ситуаций, соответствующих классам исходного состояния многоэтапного процесса, определяют вероятности наступления ситуаций, соответствующих классам промежуточных состояний многоэтапного процесса и классам конечного состояния многоэтапного процесса, а также для многоэтапного процесса рассчитывают априорную вероятность достижения целей, формируют прогнозные признаки классов исходного состояния, получают информацию о значениях прогнозных признаков классов состояния, рассчитывают апостериорную вероятность реализации исходного состояния и прогнозное значение показателя эффективности.

Недостатком указанного технического решения является узкая область ее применения и недостаточные функциональные возможности для прогнозирования динамики изменения состояния множества образцов РТС СН, так как расчет апостериорной вероятности реализации исходного состояния и прогнозного значения показателя эффективности осуществляется на основе математического аппарата теории вероятности.

Известен способ прогнозирования технического состояния образцов ВВСТ в войсках с учетом реализованных мероприятий Государственной программы вооружения (ГПВ) на предыдущих шагах, которая используется для обоснования опорных вариантов ГПВ в части серийных поставок, ремонта и модернизации ВВТ [9, 10]. Данный способ является наиболее близким аналогом заявленного изобретения и выбран в качестве прототипа.

Сущность способа заключается в том, что процесс изменения технического состояния ВВСТ моделируется на основе использования математического аппарата теории массового обслуживания. В рамках разработанной модели системы массового обслуживания получена система уравнений, описывающая средние численности образцов ВВСТ, находящихся в различных состояниях в процессе их эксплуатации в войсках. На основе полученной системы уравнений для заданного периода планирования определяются следующие параметры: динамика объемов закупки, ремонта и модернизации ВВТ; динамика численности ВВТ в составе группировки; динамика боевого потенциала группировки войск; динамика коэффициента исправности ВВТ; динамика коэффициента боеготовности ВВТ; динамика затрат на техническое обеспечение ВВТ группировки.

Основным недостатком способа, выбранного в качестве прототипа, является его низкая адекватность моделирования и точность прогнозирования, поскольку расчет прогнозируемых параметров базируется на использовании различных аналитических моделей математического аппарата теории массового обслуживания, которые не позволяют в полной мере учесть дискретность и стохастичность рассматриваемых динамических нестационарных процессов изменения технического состояния РТС СН. Кроме того, отсутствует учет различной приоритетность образцов при возникновении задачи принятия решения по распределению мероприятий управляющего воздействия в условиях ограниченности ресурсов.

В целом анализ известных способов прогнозирования динамики изменения количественного и качественного состояния парка РТС СН показал, что в известных способах не учтены обстоятельства, существенно влияющие на корректность и точность прогнозирования количественного и качественного состояния парка РТС СН в течение периода планирования:

1. Большое количество и дискретность переменных, характеризующих многоэтапный процесс изменения количественного и качественного состояния парка РТС СН.

2. Динамичность и неопределенность исходных данных по параметрам изменения системы ограничений на управляющее воздействие в течение периода прогнозирования.

3. Взаимозависимость и нестационарность многоэтапных стохастичных процессов изменения состояния образцов РТС СН в течение эксплуатационного периода жизненного цикла.

4. Различная приоритетность образцов РТС СН в условиях неопределенности ситуаций, возникающих при решении задачи распределения мероприятий управляющего воздействия при ограниченности ресурсов.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявляемого технического решения, отсутствуют. Ни один из самых близких аналогов и прототипов не обеспечивает точное прогнозирование показателей динамики изменения количественного и качественного состояния парка РТС СН, которые определяются индивидуальными особенностями процессов изменения технического состояния каждого образца парка РТС СН с учетом ресурсных и финансовых ограничений по управляющему воздействию на парк образцов РТС СН, а также зависимости вероятности наступления предельного состояния в процессе эксплуатации от срока службы образца, что соответствует критериям «новизны и полезности».

Результаты поиска известных технических решений в данной и смежных областях техники показали, что отличительные признаки заявленного способа и его реализации не следуют явным образом из уровня техники представленных аналогов и прототипов. Из уровня техники также не выявлена известность существенных признаков, предусматриваемых в заявленном изобретении, и достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

Целью изобретения является повышение точности определения прогнозных значений показателей динамики изменения количественного и качественного состояния парка РТС СН, и соответственно повышение эффективности программно-целевого планирования и управления развитием парка РТС СН в целом.

Для достижения цели предлагается способ, в котором вводят необходимые исходные данные, ранжируют множество образцов рассматриваемого парка РТС СН по приоритетности, формируют начальную структуру динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования, определяют параметры сценария изменения ресурсных и финансовых ограничений на управляющее воздействие в течение периода прогнозирования, рассчитывается необходимое для обеспечения требуемой точности количество реализаций, в рамках каждой реализации производится агентное имитационное моделирование изменения технического состояния образцов рассматриваемого парка РТС СН, на основе полученных с помощью имитационного моделирования статистических данных рассчитывают прогнозные значения показателей динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования.

При этом имитационное моделирование изменения технического состояния образцов РТС СН и операции расчета прогнозных значений показателей динамики изменения количественного и качественного состояния парка РТС СН производятся с использованием специализированного вычислительного устройства либо программного обеспечения персонального компьютера.

Реализация предлагаемого способа будет пояснена с помощью схемы, представленной на фиг. 1. На схеме изображен один из возможных вариантов системы, реализующий заявленный способ. В ее состав входят: блок исходных данных 1, включающий в себя тактико-технико-экономические характеристики образцов РТС СН 1.1, длительность периода прогнозирования 1.2, исходные данные по возможностям предприятий промышленности на начало периода прогнозирования 1.3, исходные данные по техническому состоянию образцов рассматриваемого парка РТС СН на начало периода прогнозирования 1.4, требуемая точность прогнозирования 1.5, исходные данные по финансовым огорчениям на начало периода прогнозирования 1.6; блок ранжирования множества образцов рассматриваемого парка РТС СН по приоритетности 2; блок формирования начальной структуры динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования 3; блок формирования сценариев 4, включающий в себя блок формирования сценариев изменения возможностей предприятий промышленности в течение периода прогнозирования 4.1, блок формирования сценариев изменения финансовых ограничений в течение периода прогнозирования 4.2; блок расчета необходимого количества реализаций для обеспечения требуемой точности прогнозирования 5; блок агентного имитационного моделирования изменения технического состояния образцов РТС СН в течение периода прогнозирования 6; блок расчета прогнозных значений показателей динамики изменения количественного и качественного состояния парка РТС СН 7.

Сущность заявляемого способа заключается в следующем.

В современной научной литературе и учебных пособиях достаточно полно изложены системные проблемы создания сложных радиотехнических комплексов, теоретические основы анализа и синтеза оптимальных систем [11], а также отражен ряд важных научно-технических и прикладных вопросов технической эксплуатации современных и перспективных радиотехнических систем специального назначения (РТС СН) [12].

Множество образцов РТС СН, которые необходимы для обеспечения действий отдельного войскового формирования, называют парком РТС СН данного войскового формирования. Техническая оснащенность действий войск определяется состоянием парка РТС СН каждого отдельного войскового формирования. [12]

Для оценки состояния парка РТС СН принято использовать следующие характеристики [12]:

1. Обеспеченность РТС СН (количественная характеристика парка).

2. Техническая готовность (качественная характеристика парка).

3. Обеспеченность ВТИ (эксплуатационная характеристика парка).

4. Местоположение (пространственная или географическая характеристика парка).

Для оценки количественного и качественного состояния парка РТС СН в момент времени используются следующие показатели:

показатель укомплектованности парка РТС СН (KОСН(ti)) - процентное соотношение общего числа образцов (NОБЩ(ti)) к требуемому числу образцов (NTP(ti)) в рассматриваемый момент времени ti.

показатель оснащенности парка РТС СН (KО(ti)) - процентное соотношение числа современных образцов (NCOBР(ti)) к общему числу образцов в рассматриваемый момент времени ti:

показатель исправности парка образцов РТС СН (KИ(ti)) - процентное соотношение числа исправных образцов РТС (NИСПР(ti)) к общему числу образцов в рассматриваемый момент времени ti:

где NИСПР(ti) - количество исправных образцов РТС СН в момент времени ti.

В основе определения параметров динамики изменения количественного и качественного состояния парка РТС СН лежит расчет вышеуказанных показателей для каждого момента периода прогнозирования.

Расчет значений прогнозируемых показателей состояния парка РТС СН лежит использование результатов агентного имитационного моделирования динамики изменения состояния парка РТС СН, сущность которого заключается в получении выборок определенного объема данных из генеральной совокупности, на основе которых определяются числовые характеристики оцениваемых показателей. Каждый из рассчитываемых показателей носит вероятностный характер и рассчитывается как математическое ожидание случайной величины.

Несмещенная оценка математического ожидания и дисперсии (D*) оцениваемых показателей рассчитывается следующим образом:

где - значение оцениваемого показателя в nр-м опыте; Np - общее количество реализаций опытов.

Необходимое количество реализаций для расчета математического ожидания с ошибкой, не превышающей ε, определяется из соотношения:

где D* - дисперсия величины оцениваемого показателя.

Наличие стохастичности в рассматриваемом процессе обусловлено особенностями функционирования образцов РТС СН, сущность которых заключается в том, что наступление предельного состояния образца является случайным событием. Предельное состояние - это состояние объекта, при котором его дальнейшая эксплуатация недопустима либо нецелесообразна. Признаки или совокупность признаков предельного состояния устанавливаются нормативно-технической и конструкторской документацией. Момент наступления предельного состояния образца РТС СН является случайной величиной, которая зависит от многих факторов. Наступление предельного состояния обусловлено процессами деградации и старения техники, которые усиливаются либо уменьшаются в зависимости от природных и климатических условий эксплуатации, квалификации и подготовки эксплуатирующего личного состава, соблюдения требований по техническому обслуживанию и т.д.

Имитация наступления предельного состояния образца РТС СН осуществляется путем генерации последовательности случайных чисел по заданному закону распределения вероятности наступления предельного состояния того типа образов РТС СН. Законы распределения вероятности наступления предельного состояния для различных типов образов РТС определяются заранее на основании данных об эксплуатации рассматриваемых образцов. Методы генерации последовательности случайных чисел по заданному закону распределения случайных величин описаны в [11].

Осуществление способа происходит следующим образом.

В блоке 1 осуществляется ввод основных исходных данных: исходные данные по тактико-технико-экономическим характеристиками РТС СН; длительность периода прогнозирования; исходные данные по возможностям предприятий промышленности на начало периода прогнозирования; исходные данные по техническому состоянию образцов рассматриваемого парка РТС СН; требуемая точность прогнозирования; исходные данные по финансовым ограничениям на начало периода прогнозирования.

В блоке 2 проводится ранжирование множества образцов рассматриваемого парка РТС СН по приоритетности.

В блоке 3 производится формирование начальной структуры динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования.

В блоке 4 производится формирование сценариев изменения ресурсных возможностей предприятий в течение периода прогнозирования (блок 4.1) и формирование сценариев изменения финансовых ограничений в течение периода прогнозирования (блок 4.2).

В блоке 5 производится расчет необходимого количества реализаций для обеспечения требуемой точности прогнозирования.

В блоке 6 реализуется агентное имитационное моделирование изменения технического состояния образцов РТС СН в течение периода прогнозирования.

В блоке 7 производится расчет прогнозных значений показателей динамики изменения количественного и качественного состояния парка РТС СН.

Поскольку за счет использования метода сценариев при определении параметров системы ограничений на управляющее воздействие на парк РТС СН в течение периода прогнозирования снижается неопределенность исходных данных, и за счет того, что применение агентного имитационного моделирования позволяет учесть наиболее важные факторы и особенности взаимозависимых многоэтапных стохастичных процессов изменения состояния образцов РТС СН адекватность моделирования процессов и, соответственно, точность прогнозирования будет выше, чем в случае реализованного в прототипе способа, в котором происходит использование аналитических моделей математического аппарата теории массового обслуживания.

Таким образом, за счет снижения динамичности и неопределенности исходных данных, а также за счет повышения адекватности моделирования взаимозависимых и нестационарных многоэтапных стохастичных процессов изменения состояния образцов РТС СН в течение эксплуатационного периода жизненного цикл повышается точность определения прогнозных значений показателей динамики изменения количественного и качественного состояния парка РТС СН, и соответственно повышение эффективности программно-целевого планирования и управления развитием парка РТС СН в целом.

Предлагаемое техническое решение промышленно применимо, так как основано на операциях, широко распространенных в автоматизированных вычислительных системах и системах управления, и может быть реализовано как в виде устройства со специализированными блоками, так и на основе персонального компьютера с соответствующим программным обеспечением для осуществления предусмотренных функций.

Источники информации

1. Патент RU 2326431 С2, МПК G06F 17/00 (2006.01), G06F 11/30 (2006.01), 2008.

2. Программа для ЭВМ №2015614167, 20.05.2015.

3. Патент RU 2617137 С1, МПК G01N 3/58 (2006.01), 2017.

4. Патент RU 2622493 С1, МПК G01M 13/00 (2006.01), 2016.

5. Патент RU 2394271 С1, МПК G06F 21/00 (2006.01), 2010.

6. Патент RU 2405882 С1, МПК Е01С 21/00 (2006.01), G01M 7/00 (2006.01), 2010.

7. Патент RU 2221726 С1, МПК В63В 39/14 (2000.01), В63Н 25/00 (2000.01), G05D 1/00 (2000.01), 2004.

8. Патент RU 2632124 С1, МПК G06F 17/00 (2006.01), 2017.

9. Буравлев А.И., Пьянков А.А. Модель технического обеспечения войск // электронный научный журнал «Вооружение и экономика», №1(10) 2010 г.

10. Буравлев А.И., Пьянков А.А. Модель управления техническим обеспечением войск // электронный научный журнал «Вооружение и экономика», №4(16), 2011 г.

11. Шайдуров Г.Я. Основы теории и проектирования радиотехнических систем: учеб. пособие / Г.Я. Шайдуров. - Красноярск: Сибирский федеральный университет, 2010. - 283 с.

12. Основы технической эксплуатации радиотехнических систем специального назначения: учебник / В.Н. Ратушняк [и др.]; под ред. К.А. Малыкова. - Красноярск: Сибирский федеральный университет, 2015.-334 с.

13. Дональд Кнут. Искусство программирования, том 2. Получисленные алгоритмы. - The Art of Computer Programming, vol.2. Seminumerical Algorithms. - 3-е изд. - M.: «Вильямс», 2007. - С. 11-165.

Способ автоматизированного прогнозирования динамики изменения количественного и качественного состояния парка радиотехнических систем специального назначения (РТС СН), заключающийся в том, что с помощью блока исходных данных вводят необходимые исходные данные, с помощью блока ранжирования множества образцов рассматриваемого парка РТС СН по приоритетности на основании данных, полученных от блока исходных данных, ранжируют множество образцов рассматриваемого парка РТС СН по приоритетности, с помощью блока формирования начальной структуры динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования на основании данных, полученных от блока ранжирования множества образцов рассматриваемого парка РТС СН по приоритетности, формируют начальную структуру динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования, с помощью блока формирования сценариев на основании данных, полученных от блока исходных данных, определяют параметры сценария изменения ресурсных и финансовых ограничений на управляющее воздействие в течение периода прогнозирования, с помощью блока расчета необходимого количества реализаций для обеспечения требуемой точности прогнозирования на основании данных, полученных от блока исходных данных, рассчитывается необходимое для обеспечения требуемой точности количество реализаций, с помощью блока агентного имитационного моделирования изменения технического состояния образцов РТС СН в течение периода прогнозирования на основании данных, полученных от блока расчета необходимого количества реализаций для обеспечения требуемой точности прогнозирования, также от блока формирования начальной структуры динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования, а также от блока формирования сценариев, в рамках каждой реализации производится агентное имитационное моделирование изменения технического состояния образцов рассматриваемого парка РТС СН, учитывающее стохастичность и взаимосвязанности многоэтапных процессов изменения технического состояния образцов РТС СН, с помощью блока расчета прогнозных значений показателей динамики изменения количественного и качественного состояния парка РТС СН на основе полученных с помощью имитационного моделирования, выполненного блоком агентного имитационного моделирования изменения технического состояния образцов РТС СН в течение периода прогнозирования, статистических данных рассчитывают прогнозные значения показателей динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования.



 

Похожие патенты:

Группа изобретений относится к средствам тестирования сетевых сервисов. Технический результат – повышение точности тестирования сервисов.

Изобретение относится к системе, способу и машиночитаемому носителю для формирования базы решений и последующего их внедрения. Технический результат заключается в автоматизации принятия и внедрения решений.

Изобретение относится к области автоматизированных систем программно-целевого планирования и управления сложных организационно-технических систем. Технический результат заключается в расширении арсенала средств того же назначения.

Изобретение относится к системам моделирования. Технический результат заключается в обеспечении проведения имитационных экспериментов, связанных с моделированием взаимодействия крупномасштабных социально-технических систем с оценкой ресурсных потенциалов и условий конкурентного взаимодействия, анализа, выделения наиболее рационального сценария.

Группа изобретений относится к области компьютерных технологий и может быть использована для автоматического восстановления устройства. Техническим результатом является повышение эффективности автоматического восстановления интеллектуального устройства.

Изобретение относится к средствам отслеживания состояния предметов. Техническим результатом является обеспечение надежного контроля за соответствием любого изменения состояния предмета или операции над предметом.

Изобретение относится к области информационных технологий. Технический результат направлен на повышение степени контроля достоверности передаваемых данных в сети связи.

Изобретение относится к компьютерным развлекательным сетям в реальном времени. Технический результат заключается в расширении арсенала средств того же назначения.

Изобретение относится к устройству записи данных для мониторинга и отслеживания отгрузки и транспортировки товаров, требующих поддержания конкретных значений параметров, и способу осуществления указанного мониторинга и отслеживания.

Изобретение относится к вычислительным технологиям для взимания платы. Технический результат заключается в минимизации среднего времени доступа к геообъектам для обеспечения взимания платы за транспортное средство.

Изобретение относится к системе пакетной продажи услуг или товаров. Технический результат заключается в автоматизации пакетной продажи услуг и/или товаров с использованием инфраструктуры платежных систем. Система содержит центр управления системой, подсистему формирования пакетов из товаров и/или услуг, подсистему управления доступом к товарам и/или услугам, базу данных с определением хотя бы одного пакета товаров и/или услуг, базу данных поставщиков товаров и/или услуг, объединяемых в пакеты, базу данных для хранения информации о фактически полученных услугах и/или товарах, переносные карты, идентифицирующие пользователя системы, сетевой интерфейс, связывающий центр управления с элементами системы, программное обеспечение, обеспечивающее функционирование системы, процессинг центра управления системой, обрабатывающий информацию, поступающую от подсистем, и осуществляющий управление движением денежных средств системы, сервер центра управления системой с расположенными на нем центральным процессором, средствами хранения баз данных, программным обеспечением, обслуживающим работу системы, сайт, размещенный на сервере центра управления системой, выполненный с возможностью продажи пакетов услуг и/или товаров по сети Интернет. 18 з.п. ф-лы, 4 ил., 4 табл.

Изобретение относится к системе управления трудовыми ресурсами предприятия. Технический результат заключается в автоматизации управления трудовыми ресурсами предприятия. Система содержит комплекс автоматизированных систем единого информационного пространства предприятия «Цифровое предприятие», состоящий из связанных между собой информационной системы управления персоналом, комплекса информационных систем управления производством, комплекса информационных систем управления предприятием, интеграционной платформы, модуля портального сервиса, серверного коммуникационного модуля, сетевого экрана, а также связанную с указанным комплексом информационную систему вуза «Электронный университет», состоящую из связанных между собой информационной системы управления учебным процессом, электронной библиотечной системы вуза, комплекса информационных подсистем вуза, интеграционной платформы вуза, модуля портального сервиса вуза, серверного коммуникационного модуля вуза и сетевого экрана вуза. 3 ил.

Изобретение относится к области вычислительной техники. Технический результат заключается в обеспечении нахождения минимума и нахождения максимума целевой функции. Технический результат достигается за счет устройства для решения задачи о назначениях, содержащего генератор тактовых импульсов (ГТИ), первый элемент И, группу из m счетчиков 31…3m, группу из m дешифраторов 41…4m, группу из m*n первых регистров 511…5mn, группу из m*n первых триггеров 611…6mn, группу из m*n блоков вторых элементов И 711…7mn, группу из m вторых регистров 81…8m, группу m первых сумматоров 91…9m, второй сумматор, первую схему сравнения, третий регистр, элемент задержки, и третий элемент И. 1 ил.

Изобретение относится к хранению и передачи данных, содержащихся на магнитной полосе. Техническим результатом является повышение безопасности при привязке устройства к определенному счету пользователя. Способ включает: определение при помощи приложения на устройстве мобильной связи соединения ПМП с устройством мобильной связи; направление при помощи приложения после определения соединения ПМП запроса об информации о привязке в адрес ПМП; генерирование при помощи ПМП произвольного числа RПМП; отправку при помощи ПМП в адрес приложения ответа на запрос; направление при помощи приложения запроса привязки на сервер; получение при помощи приложения ключа-токена привязки от сервера в ответ на запрос привязки, где ключ-токен привязки подписывается при помощи ключа, соответствующего ПМП, и содержащего персональный идентификационный номер (ПИН) и число; и направление ключа-токена привязки в адрес устройства ПМП; верификацию при помощи ПМП подписания ключа-токена привязки ключом ПМП и совпадения числа ключа-токена привязки с произвольным числом RПМП в ответе на запрос; и установление ПИН в ПМП после верификации ключа-токена привязки, посредством которого происходит привязка ПМП к учетной записи пользователя. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к способу отслеживания повторных посещений пользователя интернет-сайта. Технический результат заключается в повышении эффективности взаимодействия с посетителями интернет-сайта, путем использования системы уведомлений о повторных посещениях пользователей анализируемого интернет-сайта, которые заходили на него ранее и оставляли контактные данные.. Способ проверки данных о повторном посещении пользователем анализируемого интернет-сайта содержит код отслеживания на сайте для идентификации пользователей, в том числе источник перехода, посещенные страницы и оставленные контактные данные. Осуществляют распознавание контактных данных в заполненных формах на сайте, в том числе в формах, которые формируются на сайте сторонними сервисами; идентификацию возврата пользователя, по уникальной метке отслеживания в файле cookie. Уведомляют владельца о повторном заходе при помощи e-mail, смс или события для соответствующего пользователя в системе управления заказами и клиентами. 1 ил.

Изобретение относится к области контроля и оповещения. Технический результат заключается в решении проблемы недостаточной информации касательно поддержки надлежащих уровней DHA с помощью компьютерных систем. Описаны система и способ, которые устанавливают связь между главной системой контроля и оповещения пользователей об уровнях DHA и пользовательским устройством. Главная система автоматически регистрирует данные индивидуализированного рациона питания, полученные из пользовательского устройства. Данные индивидуализированного рациона питания имеют параметры, указывающие тип и количество пищевых продуктов или добавок, потребленных пользователем в течение определенного периода времени. Параметры анализируются с помощью заданного набора правил, указывающих концентрации DHA в выбранных пищевых продуктах и добавках, чтобы определить уровень потребления пользователем DHA с пищей относительно рекомендуемого потребления. В ответ на наличие заданного соотношения между потреблением пользователем с пищей относительно рекомендуемого потребления и исходным показателем главная система формирует оповещение и передает его пользователю посредством по меньшей мере одного заданного способа связи. 3 н. и 14 з.п. ф-лы, 11 ил.

Изобретение относится к области безопасности человека. Техническим результатом является повышение безопасности пользователя за счет предоставления контекста репутации места. Сервер содержит: интерфейс пользовательских данных; интерфейс данных о местоположении; интерфейс данных о происшествиях; и один или более логических элементов, включающих в себя аппаратное обеспечение вычислительной платформы, содержащей механизм репутации для: приема данных контекста пользователя, причем данные контекста содержат изменяемые факторы о пользователе и данные профиля пользователя, причем данные профиля содержат факторы о пользователе, которые являются относительно постоянными в сравнении с данными контекста; приема данных о местоположении, идентифицирующих целевое местоположение, с помощью интерфейса данных о месте; приема данных о локальных событиях, содержащих одно или более вызванных человеком исторических локальных событий относительно целевого местоположения; вычисления учитывающей контекст репутации безопасности человека для местоположения для указанного пользователя, на основе комбинирования данных контекста, данных профиля и данных событий; и уведомления пользователя об указанной репутации безопасности человека. 3 н. и 22 з.п. ф-лы, 10 ил.

Изобретение относится к области сетевых технологий. Технический результат заключается в повышении эффективности приема контента. Технический результат достигается за счет коммуникатора, выполненного с возможностью, когда внешнее устройство второго пользователя располагается в пределах предварительно определенного расстояния от аппаратуры, принимать идентификационную (ID) информацию внешнего устройства от внешнего устройства и передавать принятую ID информацию внешнего устройства на сервер предоставления контента; и контроллера, выполненного с возможностью запрашивать у сервера предоставления контента контент, ассоциированный как с первым пользователем, так и со вторым пользователем, из числа по меньшей мере одного из контентов, хранящегося в другой аппаратуре первого пользователя, контента, сохраненного первым пользователем на сервере предоставления контента, и контента, выгруженного первым пользователем на сервер службы социальной сети (SNS), на основе ID информации аппаратуры и принятой ID информации внешнего устройства, при этом коммуникатор принимает контент, ассоциированный с первым пользователем и вторым пользователем, от сервера предоставления контента в ответ на данный запрос. 3 н. и 11 з.п. ф-лы, 45 ил.

Предложен способ автоматизированного управления эксплуатацией беспилотного воздушного судна (БВС) при полетах в общем воздушном пространстве, объединяющий все этапы жизненного цикла, каждое (БВС) оборудовано бортовой автоматической системой управления, спутниковой навигационной системой, высокоточными синхронизированными часами, бортовым вычислителем и приемо-передающей радиостанцией для цифровой радиосвязи с базовой радиостанцией, со стационарным или подвижным пунктами управления, которые оборудованы автоматизированным рабочим местом оператора. Для каждого БВС создается цифровой паспорт технического состояния, включающий все этапы жизненного цикла, размещенный на портале технического состояния службы управления воздушным движением и обновляется в режиме онлайн, а служба управления использует эти данные для допуска или продолжения полета БВС на основе полученной информации о техническом состоянии и трафике полета БВС, обеспечивающего его безопасность, оценки технического состояния БВС для безаварийного полета, используя критерии оценки остаточного ресурса, причем эти оценки проводятся автоматически и учитывают все изменения, доработки и замены аппаратуры на БВС, с указанием места, времени и характера выполненных изменений и результаты контрольных испытаний этих изменений, а также вся история эксплуатации, хранящаяся на портале по конкретному БВС, а корректировка трафика полета для выполнения программы полета и исключения столкновений осуществляется автоматически, используя информацию, полученную по линии связи о трафиках полета других БВС, которые такую информацию сообщают по линии связи, а службы управления воздушным движением и внешние операторы осуществляют контроль за исполнением трафиков полета и корректируют трафики полетов БВС. 1 ил.

Изобретение относится к области автоматизированной оплаты услуг, преимущественно транспортных услуг, реализуемых с помощью компьютерных сетей. Техническим результатом является повышение быстродействия при предоставлении услуг. Система содержит: центральный комплекс управления, включающий множество личных кабинетов, выполненных с возможностью взаимодействия с пользователями услуг; множество детектируемых объектов, каждый из которых содержит идентификатор для связи с соответствующим личным кабинетом, который выполнен с возможностью внесения каждым пользователем услуг и хранения идентификатора каждого детектируемого объекта и значения доступного баланса для оплаты услуг; множество детекторов, выполненных с возможностью обнаружения детектируемых объектов, считывания соответствующих идентификаторов и разрешения или запрета предоставления услуг. Каждый детектор выполнен с возможностью непосредственной связи с центральным комплексом, содержащим учетный кабинет по меньшей мере одного поставщика услуг, выполненный с возможностью формирования перечней идентификаторов, которым доступны и запрещены услуги, и с возможностью их передачи в каждый детектор. 8 з.п. ф-лы, 1 ил.

Изобретение относится к способу автоматизированного прогнозирования динамики изменения количественного и качественного состояния парка радиотехнических систем специального назначения. Технический результат заключается в автоматизации и повышении точности прогнозирования. В способе вводят необходимые исходные данные, ранжируют множество образцов рассматриваемого парка РТС СН по приоритетности, формируют начальную структуру динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования, определяют параметры сценария изменения ресурсных и финансовых ограничений на управляющее воздействие в течение периода прогнозирования, рассчитывают необходимое для обеспечения требуемой точности количество реализаций, производят агентное имитационное моделирование изменения технического состояния образцов рассматриваемого парка РТС СН, учитывающее стохастичность и взаимосвязанности многоэтапных процессов изменения технического состояния образцов РТС СН, на основе статистических данных рассчитывают прогнозные значения показателей динамики изменения количественного и качественного состояния парка РТС СН в течение периода прогнозирования. 1 ил.

Наверх