Способ получения эффективных реагентов, обладающих высокой скоростью поглощения сероводорода и меркаптанов, стабильных при низких температурах

Изобретение относится к способу получения эффективных реагентов, обладающих высокой скоростью поглощения сероводорода и меркаптанов, стабильных при низких температурах. Способ предусматривает получение нейтрализатора на основе концентрата 41-55% раствора формальдегида, образующегося при окислении метанола, с добавлением любого основания, аминов или щелочи, при этом метанол добавляют дополнительно после получения 41-55% раствора формальдегида. Полученные реагенты в течение 4-х часов позволяют снизить массовую долю сероводорода ниже 100 млн-1. 1 табл., 5 пр.

 

Изобретение относится к нефтехимии и нефтепереработке, а именно к получению химических реагентов, нейтрализующих сероводород и меркаптаны.

Известен способ очистки углеводородного сырья от сероводорода и меркаптанов путем обработки органическим реагентом, состоящим из 40-60% смеси моно-, ди-, триэтаноламина и гидроксида аммония, 10-40% смеси бисамина (RU 2186737, 2002 год, и RU 2269567, 2011 год), формалина и водорастворимого спирта, или воды, или их смеси (RU 2196114, 2003 год).

Известен способ поглотителя сероводорода, состоящий из 3-30%-го раствора уротропина в техническом формалине или в смеси формалина и водного аммиака из расчета 0,8-3,5 моля формальдегида и 0,09-0,3 моля уротропина на 1 моль сероводородной и меркаптановой серы (RU 2269567, 2011 год).

Известен поглотитель сероводорода, полученный взаимодействием 37%-го водного раствора формальдегида и 98%-го моноэтаноламина в соотношении 10-12% водного раствора формальдегида и 28-30% моноэтаноламина (RU 2423172, 2011 год).

Данные способы не позволяют получить недорогой и эффективный поглотитель сероводорода и меркаптанов с высокой концентрацией альдегидных групп и низкотемпературной стабильностью. Наличие этаноламинов с концентрацией до 28-60% приводит к значительному удорожанию продукта, а использование 37%-го раствора формалина (или 25% р-р гидроксида аммония) из-за высокой обводненности не позволяет получить эффективный нейтрализатор, обладающий низкотемпературной стабильностью.

Наиболее близким аналогом является нейтрализатор по патенту RU 2517709 на основе смеси уротропина 1-12%, метанола 14-38% и остальное формалин (37-40%) р-ра формальдегида. Технический результат - получение недорогого нейтрализатора сероводорода. Недостатком данного аналога является невысокая эффективность нейтрализатора за счет низкой концентрации альдегидных групп в композиции.

Целью изобретения является разработка эффективного и недорогого нейтрализатора сероводорода, обладающего низкотемпературной стабильностью.

Цель достигается за счет способа получения эффективных реагентов, обладающих высокой скоростью поглощения сероводорода и меркаптанов, стабильных при низких температурах, который предусматривает получение нейтрализатора на основе концентрата 41-55% раствора формальдегида, образующегося при окислении метанола, с добавлением любого основания, аминов или щелочи, при этом метанол добавляют дополнительно после получения 41-55% раствора формальдегида.

Техническим результатом данного способа является удешевление нейтрализатора сероводорода за счет использования метанола или этанола, получение более эффективного нейтрализатора сероводорода с высокой концентрацией альдегидных групп. Удешевление нейтрализатора сероводорода за счет сокращения количества стадий синтеза. Для придания требуемой низкотемпературной стабильности метанол берут с избытком, либо добавляется спирт без значительной потери эффективности.

Способы получения нейтрализатора сероводорода поясняются следующими примерами.

Пример 1. В четырехгорлую колбу, снабженную механической мешалкой, термометром, обратным холодильником и капельной воронкой, загружается 80 г 50%-го раствора формальдегида, 19 г метанола и 1 г гидроксида натрия. Реакционная масса перемешивается в течение 2-4 часов до однородного состояния.

Пример 2. В четырехгорлую колбу, снабженную механической мешалкой, термометром, обратным холодильником и капельной воронкой, загружается 70 г раствора формальдегида (с концентрацией альдегида 52%), 20 г метанола и 10 г МДЭА. Реакционная масса перемешивается в течение 2-4 часов до однородного состояния.

Пример 3. В четырехгорлую колбу, снабженную механической мешалкой, термометром, обратным холодильником и капельной воронкой, загружается 70 г раствора формальдегида (с концентрацией альдегида 55%), 20 г метанола и 10 г МЭА. Реакционная масса перемешивается в течение 2-4 часов до однородного состояния.

Пример 4. В четырехгорлую колбу, снабженную механической мешалкой, термометром, обратным холодильником и капельной воронкой, загружается 65 г раствора формальдегида (с концентрацией альдегида 55%), 30 г метанола и 5 г уротропина. Реакционная масса перемешивается в течение 2-4 часов до однородного состояния.

Пример 5. В четырехгорлую колбу, снабженную механической мешалкой, термометром, обратным холодильником и капельной воронкой, загружается 60 г раствора формальдегида (с концентрацией альдегида 55%), 30 г метанола и 10 г ТЭА. Реакционная масса перемешивается в течение 2-4 часов до однородного состояния.

Тестирование нейтрализаторов сероводорода проводилось на товарной нефти «УПВСН Андреевка» НГДУ «Нурлатнефть» с исходной массовой долей сероводорода 355 и 426 млн-1.

Все исследуемые реагенты в течение 4-х часов позволить снизить массовую долю сероводорода ниже 100 млн-1.

Способ получения эффективных реагентов, обладающих высокой скоростью поглощения сероводорода и меркаптанов, стабильных при низких температурах, характеризующийся тем, что он предусматривает получение нейтрализатора на основе концентрата 41-55% раствора формальдегида, образующегося при окислении метанола, с добавлением любого основания, аминов или щелочи, при этом метанол добавляют дополнительно после получения 41-55% раствора формальдегида.



 

Похожие патенты:

Изобретение относится к области органической химии и может быть использовано при получении средства для селективного удаления сероводорода и меркаптанов из газов, нефти и нефтепродуктов.

Настоящее изобретение относится к способу получения высокоэффективного нефтерастворимого поглотителя сероводорода. В предлагаемом способе осуществляют взаимодействие индивидуального вторичного амина и индивидуального ароматического альдегида или смесей индивидуальных ароматических альдегидов, при этом в качестве индивидуального вторичного амина используют диметиламин в газообразном виде.

Изобретение относится к подготовке товарной нефти, а именно к способу нейтрализации сероводорода и легких меркаптанов в товарной нефти подачей раствора гемиформаля трубчатым перфорированным диспергатором, представляющим собой перфорированную трубку с отверстиями, которая вводится в технологический трубопровод на участке после процесса обессоливания перед концевой сепарационной установкой.

Изобретение относится к способам окислительного обессеривания углеводородных топлив и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа некаталитического окислительного обессеривания углеводородных топлив, содержащих дибензотиофен, системой альдегид/молекулярный кислород, включающий проведение процесса окислительного обессеривания пропусканием кислородсодержащего газа в реакционную смесь.

Изобретение относится к способу удаления сероводорода из сырой нефти. Изобретение касается способа снижения количества сероводорода, присутствующего в сырой нефти, включающего добавление к сырой нефти поглощающей сероводород композиции, с целью улавливания сероводорода, обеспечения миграции уловленных сульфидов в водную фазу и удаления водной фазы из сырой нефти, в котором поглощающая сероводород композиция включает глиоксаль и катализатор, причем катализатор содержит четвертичную соль аммония, имеющую формулу 1: где каждый из R1, R2, R3 и R4 независимо представляет собой алкильную группу, содержащую от 1 до 30 атомов углерода, арильную группу, содержащую от 6 до 30 атомов углерода, или арилалкильную группу, содержащую от 7 до 30 атомов углерода, а Х представляет собой галогенид, сульфат, нитрат или карбоксилат.

Изобретение относится к химическим реагентам - нейтрализаторам сероводорода и может быть использовано в нефтегазодобывающей, нефтегазоперерабатывающей промышленности для нейтрализации сероводорода и легких меркаптанов в углеводородсодержащих средах.

Изобретение относится к нейтрализатору сероводорода, включающему гемиформаль(и) низшего алифатического спирта. .

Изобретение относится к подготовке товарной нефти, а именно к способу нейтрализации сероводорода и легких меркаптанов в товарной нефти подачей раствора гемиформаля трубчатым перфорированным диспергатором, представляющим собой перфорированную трубку с отверстиями, которая вводится в технологический трубопровод на участке после процесса обессоливания перед концевой сепарационной установкой.

Изобретение относится к способам очистки нефтяных фракций от сернистых соединений и может быть использовано в нефтеперерабатывающей промышленности. .

Изобретение относится к способам подготовки нефти к транспорту и может быть использовано в нефтегазодобывающей промышленности при подготовке сернистых нефтей, газоконденсатов с высоким содержанием сероводорода и меркаптанов.

Изобретение относится к способу получения акриловой кислоты из метанола и уксусной кислоты, который включает следующие операции: через первую реакционную зону А, в которую загружен по меньшей мере один катализатор окисления А, пропускают поток поступающей реакционной газовой смеси А, содержащей реагенты - метанол и молекулярный кислород, а также по меньшей мере один инертный газ-разбавитель, отличающийся от водяного пара, и при прохождении этой реакционной зоны А метанол, содержащийся в поступающей реакционной газовой смеси А, в условиях гетерогенного катализа окисляют до формальдегида и водяного пара, так что образуется газообразная смесь продуктов А, содержащая формальдегид, водяной пар, по меньшей мере один инертный газ-разбавитель, отличающийся от водяного пара, а также при необходимости избыточный молекулярный кислород, и поток газообразной смеси продуктов А выходит из реакционной зоны А, причем к проходящей через реакционную зону А реакционной газовой смеси А на ее пути через эту реакционную зону А при необходимости может подаваться дополнительный молекулярный кислород и/или дополнительный инертный газ-разбавитель, при необходимости поток газообразной смеси продуктов А, выходящий из реакционной зоны А, подают в зону разделения Т*, и в этой зоне разделения Т* от газообразной смеси продуктов А отделяют при необходимости еще содержащийся в газообразной смеси продуктов А, не вступивший в реакцию метанол, причем остается газообразная смесь продуктов А*, содержащая формальдегид, и поток газообразной смеси продуктов А* выходит из реакционной зоны А, из потока газообразной смеси продуктов А или из потока газообразной смеси продуктов А*, а также по меньшей мере одного другого потока веществ, содержащего уксусную кислоту, получают поток поступающей реакционной газовой смеси В, содержащей уксусную кислоту, водяной пар, по меньшей мере один инертный газ-разбавитель, отличающийся от водяного пара, формальдегид и при необходимости молекулярный кислород, в котором содержащееся молярное количество уксусной кислоты nHAc больше, чем содержащееся в нем молярное количество формальдегида nFd, через вторую реакционную зону В, в которую загружен по меньшей мере один катализатор альдольной конденсации В, пропускают поток поступающей реакционной газовой смеси В, и при прохождении этой реакционной зоны В формальдегид, содержащийся в поступающей реакционной газовой смеси В, вместе с уксусной кислотой, содержащейся в поступающей реакционной газовой смеси В, в условиях гетерогенного катализа конденсируют до акриловой кислоты и H2O, так что образуется газообразная смесь продуктов В, содержащая акриловую кислоту, уксусную кислоту, водяной пар, по меньшей мере один инертный газ-разбавитель, отличающийся от водяного пара, а также при необходимости молекулярный кислород, и поток газообразной смеси продуктов В выходит из реакционной зоны В, причем к проходящей через реакционную зону В реакционной газовой смеси В на ее пути через эту реакционную зону В при необходимости может подаваться дополнительный молекулярный кислород и/или дополнительный инертный газ-разбавитель, поток газообразной смеси продуктов В, выходящий из реакционной зоны В, подают в зону разделения Т, и в этой зоне разделения T разделяют по меньшей мере на три потока веществ - X, Y и Z, причем поток акриловой кислоты, содержащийся в потоке вещества X, больше, чем потоки акриловой кислоты, содержащиеся в потоках веществ Y и Z, вместе взятые, поток уксусной кислоты, содержащийся в потоке вещества Y, больше, чем потоки уксусной кислоты, содержащиеся в потоках веществ X и Z, вместе взятые, поток инертного газа-разбавителя, отличающегося от водяного пара, содержащийся в потоке вещества Z, больше, чем потоки инертного газа-разбавителя, отличающегося от водяного пара, содержащиеся в потоках веществ X и Y, вместе взятые, и поток вещества Y возвращают в реакционную зону В и используют дополнительно для получения поступающей реакционной газовой смеси В.
Изобретение относится к способу получения катализатора окисления метанола до формальдегида и может быть использовано в производстве формальдегида и карбамидо-формальдегидных смол.

Изобретение относится к способам получения карбамидоформальдегидного концентрата с улучшенными свойствами и фракционным составом, применяемого в качестве сырья в производстве высококачественных малотоксичных смол, используемых для склеивания древесины, при получении ДСП, ДВП и МДФ класса эмиссии Е-1 по формальдегиду, а также в качестве антислеживающей добавки к карбамиду и других целей.

Изобретение относится к корковому катализатору, предназначенному, в частности, для окисления метанола в формальдегид, способу его получения и применению катализатора для окисления метанола в формальдегид.
Изобретение относится к способу получения катализатора окисления метанола до формальдегида и его применению в способах получения формальдегида. .
Изобретение относится к катализатору для окисления метанола до формальдегида, к способу получения катализатора и к его использованию в способах получения формальдегида.

Изобретение относится к области нефтехимии, конкретно к процессам получения формальдегида окислительным дегидрированием метанола, используемого в качестве мономера в производстве смол и пластмасс, а также как сырье для синтеза изопрена, многоатомных спиртов, взрывчатых веществ, присадок к маслам, в медицинской промышленности и др.

Изобретение относится к способу получения формальдегида. .

Изобретение относится к способу гетерогенного экзотермического синтеза формальдегида при избыточном количестве кислорода, в частности в реакторах синтеза, которые имеют несколько соединенных последовательно адиабатических каталитических слоев, включающему следующие стадии: подачу газообразных реагентов, содержащих метанол и избыточное количество кислорода в первый из указанных каталитических слоев; прохождение указанных газообразных реагентов через каталитические слои, сопровождающееся частичным окислением метанола.

Изобретение относится к новым соединениям общей формулы (I), которые могут быть использованы в парфюмерии, косметике и при производстве моющих средств, к ароматической композиции, содержащей по меньшей мере одно соединение общей формулы I, в виде изомера или смеси изомеров, энантиомера или смеси энантиомеров, или в виде рацемической смеси, или в виде диастереомера или смеси диастереомеров, к способу получения соединения формулы I, а также к применению по меньшей мере одного соединения формулы I в качестве ароматизирующего вещества и маскирующего или нейтрализующего запах агента. В формуле I R1, R2 и R3 каждый независимо представляет собой атом водорода или насыщенную, разветвленную или неразветвленную С1-С5алкильную группу; m представляет собой целое число от 1 до 4; n представляет собой целое число от 2 до 4; кольцо является насыщенным и содержит от 5 до 8 атомов углерода, общее число атомов углерода в кольце и радикалах R1, R2 и R3 представляет собой от 7 до 11.
Наверх