Способ приготовления катализатора гидроочистки сырья гидрокрекинга

Изобретение относится к способам приготовления катализаторов гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга. Катализатор готовят пропиткой носителя, который содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; водным раствором, одновременно содержащим биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борную кислоту в концентрациях, которые обеспечивают получение катализатора, содержащего, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,4-1,6; носитель – остальное.. Используют пропитку носителя по влагоемкости, либо из избытка раствора, при этом пропитку проводят при температуре 20-80°С в течение 20-60 мин при перемешивании. После пропитки катализатор сушат. Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника. Технический результат - получение катализатора, имеющего максимальную активность в реакциях обессеривания и деазотирования, протекающих при гидроочистке нефтяных фракций с температурой начала кипения выше 360°С. 5 з.п. ф-лы, 7 пр., 2 табл.

 

Изобретение относится к способам приготовления катализаторов нефтепереработки, в частности к способам приготовления катализаторов предварительной гидроочистки нефтяных фракций с температурой начала кипения выше 360°С, предназначенных для получения сырья с низким содержанием серы, которое далее перерабатывается в процессе гидрокрекинга.

Современные процессы гидрокрекинга, включают несколько последовательных стадий, на первой из которых осуществляется предварительная гидроочистка фракций с температурой начала кипения выше 360°С с получением сырья с пониженным содержанием серы, азота и полициклических ароматических соединений. Необходимость максимально возможного снижения содержания этих компонентов в сырье обусловлена тем, что они являются каталитическими ядами для катализаторов последующих стадий. Далее такое гидроочищенное сырье подается на гидрокрекинг, проводящийся на цеолитсодержащих катализаторах. Наиболее типичные примеры многостадийных процессов описаны в патентах [Пат. РФ №2470989, 27.11.2011; Пат. РФ №2565669, 0.10.2015; Пат. РФ №2595041, 20.08.2016]. В данных вариантах процесса на первой стадии используются известные катализаторы, содержащие металлы VIб и VIII групп периодической системы, нанесенные на алюмооксидный или алюмосиликатный носитель. Основным недостатком этих катализаторов низкая обессеривающая и деазотирующая активность.

В связи с этим, в мире активно разрабатываются катализаторы и способы приготовления катализаторов, предназначенных для гидрообработки или гидроочистки углеводородного сырья, сочетающих высокую обессеривающую и деазотирующую активность.

Так известен способ приготовления катализатора [Заявка РФ №2012154275, B01J 31/02, 10.07.14], включающий: (а) обработку композиции предшественника катализатора, включающей, по меньшей мере, один металл группы 6 Периодической таблицы элементов, по меньшей мере, один металл групп 8-10 Периодической таблицы элементов, первым органическим соединением, содержащим, по меньшей мере, одну аминогруппу и, по меньшей мере, 10 атомов углерода, или вторым органическим соединением, содержащим, по меньшей мере, одну группу карбоновой кислоты и, по меньшей мере, 10 атомов углерода, с образованием обработанной органическим соединением композиции предшественника катализатора, и (b) нагревание указанной обработанной органическим соединением композиции предшественника катализатора при температуре от примерно 195°С до примерно 250°С в течение промежутка времени, достаточного для того, чтобы первое или второе органические соединения прореагировали с образованием in situ дополнительных ненасыщенных атомов углерода, не присутствовавших в первом или втором органическом соединениях, но не настолько длительного, чтобы более 50 масс. % первого или второго органических соединений испарились, образуя таким образом композицию предшественника катализатора, содержащую образованные in situ ненасыщенные атомы углерода.

Известен также способ получения катализатора [Заявка РФ №2014130016, B01J 37/02, 10.02.2016]. Данный способ, исходя из предшественника катализатора, содержащего носитель на основе оксида алюминия и/или диоксида кремния-оксида алюминия и/или цеолита и, содержащего, по меньшей мере, один элемент VIB группы и, возможно, по меньшей мере, один элемент VIII группы, причем указанный способ включает пропитку указанного предшественника раствором (С14) диалкилсукцината, отличающийся тем, что он включает следующие стадии:

1) пропитку (стадия 1) указанного высушенного, прокаленного или регенерированного предшественника по меньшей мере одним раствором, содержащим по меньшей мере одну карбоновую кислоту, отличную от уксусной кислоты, затем выдерживание и сушку при температуре меньше 200°С, возможно, с последующей термообработкой при температуре меньше 350°С; 2) последующую пропитку (стадия 2) раствором, содержащим по меньшей мере один (С1-С4) диалкилсукцинат, затем выдержку и сушку при температуре меньше 200°С без последующей стадии прокаливания;

и тем, что предшественник катализатора и/или раствор стадии 1 и/или раствор стадии 2 содержит фосфор.

Известен способ приготовления катализатора гидроочистки нефтяных фракций [РФ №2286846, B01J 23/78, B01J 23/83, C10G 45/08, 10.11.2006], включающий стадию предварительного модифицирования носителя. Данный способ приготовления заключается в приготовлении носителя по следующей методике - гидроксид алюминия смешивают с раствором борной кислоты и азотнокислым раствором карбоната лантана с последующей сушкой и прокалкой, и дальнейшей пропиткой полученного носителя раствором азотнокислого кобальта и парамолибдата аммония при рН 2,0-3,5 и температуре 40-80°С в присутствии фосфорной кислоты. Получаемый катализатор содержит оксиды кобальта, молибдена, натрия, лантана, бора и фосфора и имеет следующий состав, мас. %: СоО 2,5-4,0; MoO3 8,0-12,0; Na2O 0,01-0,08; La2O3 1,5-4,0; P2O5 2,0-5,0; B2O3 0,5-3,0; Al2O3 - остальное.

Общим недостатком для вышеперечисленных способов приготовления катализаторов, является то, что с их использованием не удается приготовить катализаторы, обеспечивающие достижения низкого остаточного содержания серы и азота в получаемых при гидроочистке продуктах.

Наиболее близким по своей технической сущности и достигаемому эффекту к заявляемому способу приготовления катализатора является способ, описанный в [Пат. РФ №2626402, B01J 37/00, B01J 23/883, 09.11.2016], заключающийся в пропитке носителя, который содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное, водным раствором биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] с последующей сушкой. Получаемый катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; носитель - остальное. Используют пропитку носителя по влагоемкости, либо из избытка раствора, при этом пропитку проводят при температуре 20-80°С в течение 20-60 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 100-200°С. Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Основным недостатком известного способа приготовления катализатора является то, что получаемый катализатор имеет неоптимальный химический состав, что обуславливает его низкую активность в реакциях деазотирования и обессеривания. Катализатор, получаемый известным способом, содержит бор в форме бората алюминия Al3BO6 со структурой норбергита, представляющего собой частицы с размерами от 10 до 200 нм. Однако, в катализаторе, приготовленном известным способом, борат алюминия Al3BO6 содержится в форме крупных частиц, поверхность которых на стадиях грануляции и нанесения активных металлов полностью блокируется оксидом алюминия, соединениями никеля и молибдена. Бор никак не влияет на кислотные характеристики готового катализатора и никак не участвует в катализе. В последние годы установлено, что увеличение поверхностной кислотности катализаторов способствует возрастанию деазотирующей и обессеривающей активности [Catalysis Today 292 (2017) 58-66; Applied Catalysis A: General 530 (2017) 132-144]. Увеличение кислотности катализатора приводит к увеличению его активности как за счет участия поверхностных Бренстедовских центров в катализе реакций деазотирования, так и за счет увеличения дисперсности сульфидных частиц и повышения их активности в обессеривании.

Соответственно, катализатор, приготовленный известным способом, имеет низкую кислотность и, как следствие, относительно низкую активность в деазотировании и обессеривании.

Предлагаемое изобретение решает задачу создания улучшенного способа приготовления катализатора, характеризующегося:

1. Оптимальным химическим составом получаемого катализатора, который содержит бор в форме двух различных типов химических соединений - входящий в состав носителя с концентрацией 5,0-25,0% борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор с концентрацией 0,4-1,6% в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

2. Повышенной поверхностной кислотностью получаемого катализатора, в особенности наличием сильных Бренстедовских кислотных центров (БКЦ), определенных методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовских кислотных центров средней силы, 30-60 мкмоль/г (РА=1250-1260 кДж/моль), обеспечивающих возрастание деазотирующей активности.

3. Наличием в составе получаемого катализатора соединения никеля, который имеет повышенную обессеривающую, гидрирующую и деазотирующую активностью при условиях процесса, используемых для гидроочистки нефтяных фракций с температурой начала кипения выше 360°С.

4. Оптимальными текстурными характеристиками получаемого катализатора, обусловленными присутствием в катализаторе частиц бората алюминия Al3BO6 со структурой норбергита, представляющего собой частицы с размерами от 10 до 200 нм, способствующими получению катализатора, объем и размер пор которого обеспечивают доступ всех подлежащих превращению молекул сырья к активному компоненту.

5. Оптимальными условиями нанесения биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты, и последующей сушки катализатора, обеспечивающими сохранение в составе катализатора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], бората алюминия Al3BO6 со структурой норбергита, представляющего собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°, и образование в составе катализатора поверхностных соединений бора, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

6. Оптимальными соотношениями компонентов, обеспечивающими получение катализатора, имеющего следующий химический состав, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Задача решается способом приготовления катализатора гидроочистки сырья гидрокрекинга, включающего в свой состав соединения молибдена, никеля, бора и алюминия, заключающегося в том, что катализатор готовят пропиткой носителя, который содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; водным раствором, одновременно содержащим биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11(C6H5O7)2] с последующей сушкой.

Задача также решается тем, что способ приготовления катализатора приводит к получению катализатора, который содержит бор в форме двух различных типов химических соединений - входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор в форме поверхностных соединений, характеризующихся полосами поглощения характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Задача также решается тем, что при пропитке используют такие соотношения компонентов, что получаемый катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Задача также решается тем, что способ приготовления обеспечивает получение катализатора, имеющего удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляющего собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Задача также решается тем, что используют пропитку носителя по влагоемкости, либо из избытка раствора, при этом пропитку проводят при температуре 20-80°С в течение 20-60 мин при периодическом перемешивании, а после пропитки катализатор сушат на воздухе при температуре 100-200°С.

Основным отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом, является то, что катализатор готовят пропиткой носителя, который содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; водным раствором, одновременно содержащим биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борную кислоту с последующей сушкой.

Вторым отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является то, что используют такие концентрации компонентов, что получаемый катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений - 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Третьим отличительным признаком является то, что катализатор, получаемый заявляемым способом содержит бор в форме двух различных типов химических соединений - входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор в форме поверхностных соединений, характеризующихся полосами поглощения характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Четвертым отличительным признаком способа приготовления катализатора является то, что получаемый катализатор содержит сильные Бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА=1250-1260 кД ж/моль).

Еще одним отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом, является то, что для приготовления катализатора используют пропитку носителя по влагоемкости, либо из избытка раствора, при этом пропитку проводят при температуре 20-80°С в течение 20-60 мин при периодическом перемешивании, а после пропитки катализатор сушат на воздухе при температуре 100-200°С. Такие условия приготовления обеспечивают сохранение в составе катализатора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], бората алюминия Al3BO6 со структурой норбергита, представляющего собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и образование в составе катализатора поверхностных соединений бора, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Используемые условия приготовления приводят к получению катализатора, имеющего удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляющего собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм и содержащего, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений - 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Технический эффект предлагаемого способа приготовления катализатора складывается из следующих составляющих:

1. Заявляемый способ приготовления обеспечивает получение катализатора, химический состав которого обуславливает максимальную активность в целевых реакциях деазотирования и обессеривания, протекающих при гидроочистке углеводородного сырья. Наличие в составе катализатора бора в форме двух различных типов химических соединений - входящего в состав носителя с концентрацией 5,0-25,0% бората алюминия Al3BO6 со структурой норбергита, и бора с концентрацией 0,4-1,6% в форме поверхностных соединений, обеспечивает оптимальное сочетание текстурных и кислотных характеристик носителя и катализатора.

2. Использование для приготовления катализатора носителя, в состав которого входит борат алюминия Al3BO6 со структурой норбергита представляющего собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° с заявляемой концентрацией, способствует минимизации нежелательного химического взаимодействия между активными металлами (Ni и Мо) и носителем, и селективному получению наиболее активного в гидроочистке сульфидного компонента - NiMoS фазы типа II, а также способствует достижению текстурных характеристик катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту.

3. Использование для приготовления катализатора биметаллических комплексных соединений [Ni(H2O)2]2[Mo4O11(C6H5O7)2] обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидроочистке, наиболее активного компонента - NiMoS фазы типа II в форме частиц оптимальной для катализа морфологии, локализованных в доступных для всех подлежащих превращению молекул сырья.

4. Используемый способ приготовления обеспечивает наличие в составе катализатора сильных Бренстедовских кислотных центров, определяемых методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовских кислотных центров средней силы, 30-60 мкмоль/г (РА=1250-1260 кДж/моль). Такие кислотные центры способствуют возрастанию деазотирующей активности катализатора.

Описание предлагаемого технического решения.

Сначала готовят носитель, содержащий борат алюминия Al3BO6 со структурой норбергита и γ-Al2O3.

Берут навеску продукта термической активации гидраргиллита (ПТАГ), приготовленного по технологии центробежной термоактивации (ИК СО РАН, ТУ 2175-040-03533913-2007), или любой другой технологии, обеспечивающей получение ПТАГ со следующими характеристиками: массовая доля рентгеноаморфной фазы, %, не менее 80; доля потери массы при прокаливании при (900±20)°С, % - 10-12; удельная поверхность, м2/г, не менее 120; суммарный объем пор (влагоемкость), см3/г, не менее 0,1; массовая доля гиббсита (гидраргиллита), %, не более 5; массовая доля натрия оксида, %, не более 0,5. Навеску измельчают на планетарной мельнице до частиц со средним размером 20 мкм.

Навеску измельченного порошка гидратируют при перемешивании в течение двух часов в нагретых до 50°С слабоконцентрированных растворах азотной кислоты (кислотный модуль 0,03). После чего полученную суспензию фильтруют под вакуумом и многократно промывают дистиллированной водой. В результате получают влажный осадок. Гидротермальную обработку отмытого осадка проводят в автоклаве в водных растворах азотной кислоты с добавлением заданного количества борной кислоты при температуре раствора выше 100°С. После завершения гидротермальной обработки раствор охлаждают до комнатной температуры, автоклав разгружают, содержимое сосуда репульпируют дистиллированной водой до получения суспензии пригодной для распылительной сушки. Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку не менее 150°С и непрерывном перемешивании суспензии. Готовый порошок борсодержащего гидроксида алюминия выгружают из стакана циклонного пылеуловителя распылительной сушилки.

Далее готовят формовочную массу методом смешения и пептизации полученного порошка в лабораторном смесителе с Z-образными лопастями в присутствии 2,5%-ного водного раствора аммиака. Готовую пластичную массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме круга, трилистника или четырехлистника с размером от вершины трилистника до середины основания от 1,0 до 1,6 мм.

Затем проводят термообработку экструдатов, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре (110±10)°С в течение 2-х ч. Термическую обработку проводят в муфельной печи с подачей сжатого воздуха в печь. Экструдаты в фарфоровой чашке помещали в печь и прокаливают при температуре (550±10)°С в течение 4 ч.

Готовый носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное, и имеет удельную поверхность 200-280 м2/г, объем пор 0,6-0,8 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

С использованием данного носителя готовят нанесенный катализатор. Сначала готовят пропиточный раствор, содержащий биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11(C6H5O7)2]. Для этого отвешивают заданные количества парамолибдата аммония (NH4)6Mo7O24⋅4H2O, никеля (II) углекислого основного водного NiCO3⋅mNi(OH)2⋅nH2O, кислоты лимонной моногидрата. Мерным цилиндром отмеряют заданное количество воды дистиллированной. В колбу наливают отмеренное количество воды и помещают якорь магнитной мешалки. Колбу помещают на нагревательную поверхность магнитной мешалки с подогревом. Устанавливают скорость вращения мешалки 300 об/мин и температуру раствора 60°С. Загружают в колбу отмеренное количество кислоты лимонной и перемешивают при визуальном контроле. Затем в колбу к раствору кислоты лимонной добавляют навеску парамолибдата аммония при постоянном перемешивании и поддержании температуры раствора (60±5)°С. Раствор перемешивают до образования однородного прозрачного раствора, содержащего комплексное соединение - цитрат молибдена (VI) (NH4)4[Мо4(C6H5O7)2O11]. Навеску никеля (II) углекислого основного водного добавляют к ранее полученному водному раствору цитрата молибдена (VI). При этом жидкость вспенивается, а ее температура повышается до 70°С. Перемешивание продолжают при (75-80)°С до получения однородного прозрачного раствора ярко-зеленого цвета, не содержащего мути, пузырьков и пены. Раствор содержит никель и молибден в форме биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2].

Далее к раствору при перемешивании и продолжающемся нагревании добавляют борную кислоту Н3ВО3 в количестве, обеспечивающем получение катализатора, содержащего 0,4-1,6% бора в форме поверхностных соединений, перемешивание продолжают до полного растворения борной кислоты.

Приготовленный раствор переливают в тарированный мерный цилиндр, после чего объем раствора доводят до заданного количества добавлением дистиллированной воды.

Полученным раствором пропитывают борсодержащий носитель, при этом используют либо пропитку носителя по влагоемкости, либо из избытка раствора. Пропитку проводят при температуре 20-80°С в течение 20-60 мин при периодическом перемешивании, в случае пропитки из избытка раствора после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора. После пропитки катализатор сушат на воздухе при температуре 100-200°С.

В результате, получают катализатор, содержащий [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; бора в форме поверхностных соединений 0,4-1,6%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. При этом входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°, а поверхностные соединения бора характеризуются полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Катализатор содержит сильные Бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА=1250-1260 кДж/моль).

Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

После сульфидирования по известным методикам, катализатор содержит мас. %: Мо - 10,0-14,0; Ni - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений 0,5-2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Согласно известному решению в [Пат. РФ №2626402].

Сначала готовят носитель, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки. Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,6 мм. Сформованные гранулы сушат при температуре 120°С и прокаливают при температуре 550°С. В результате получают носитель, содержащий мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48,91 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 20°С в течение 60 мин. Затем катализатор сушат на воздухе при 100°С.

Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее проводят запись ИК-спектров, которые регистрировали на спектрометре Shimadzu FTIR-8300 в спектральном диапазоне 700-6000 см-1 с разрешением 4 см-1, проводили 300 сканов для накопления сигнала. Данные ИК-спектроскопии приведены в таблице 1.

Снимки ПЭМВР были получены на электронном микроскопе JEM-2010 (JEOL, Япония) с разрешающей способностью решетки 0,14 нм при ускоряющем напряжении 200 кВ. По данным ПЭМВР в составе катализатора присутствуют частицы бората алюминия Al3BO6 со структурой норбергита с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Катализатор сульфидируют прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300 по следующей программе:

- сушка катализатора в реакторе гидроочистки в токе водорода при 140°С в течении 2 ч;

- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;

- подача сульфидирующей смеси и увеличение температуры до 240°С со скоростью подъема температуры 25°С/ч;

- сульфидирование при температуре 240°С в течение 8 ч (низкотемпературная стадия);

- увеличение температуры реактора до 340°С со скоростью подъема температуры 25°С/ч;

- сульфидирование проводят при температуре 340°С в течение 8 ч.

В результате получают катализатор, который содержит мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга, в качестве которого используют вакуумный газойль, имеющий интервал кипения 360-570°С, содержащий 0,95% серы и 0,16% азота. Гидроочистку проводят при давлении 16,0 МПа, объемном расходе сырья 0,75 ч-1, объемном отношение водород/сырье 1000 нм33, температуре 380°С.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Примеры 2-7 иллюстрируют предлагаемое техническое решение.

Пример 2.

Сначала готовят борсодержащий носитель аналогично примеру 1. В результате получают носитель, содержащий мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48,91 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее температуру раствора поднимают до 90°С и растворяют в нем 44,63 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением нагретой до 90°С дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты при 90°С в течение 60 минут. Затем катализатор сушат на воздухе при 100°С.

Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений, характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 3.

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 5,98 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

100 г полученного носителя пропитывают при 70°С по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты из примера 2. Затем катализатор сушат на воздухе при 100°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 4.

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 14,63 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании и нагревании до 70°С последовательно растворяют 48,91 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее к раствору добавляют 11,15 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл. 100 г полученного носителя пропитывают по влагоемкости 67 мл раствора. Затем катализатор сушат на воздухе при 200°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 0,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 0,5; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 5.

Готовят носитель также, как в примере 3.

Затем готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 42,23 г лимонной кислоты C6H8O7; 77,58 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 27,1 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее к раствору добавляют 22,31 г борной кислоты Н3ВО3.

После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя при комнатной температуре пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты. Затем катализатор сушат на воздухе при 120°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 29,3; бор в форме поверхностных соединений - 0,8; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,65 см3/г, средний диаметр пор 15 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений, характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Мо - 10,0; Ni - 3,0; S - 6,7; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 6.

Готовят носитель также, как в примере 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде круга диаметром 1,0 мм.

Затем готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при нагревании до 80°С и перемешивании последовательно растворяют 56,9 г лимонной кислоты C6H8O7; 104,53 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 36,5 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее к раствору добавляют 22,31 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 80°С, в колбу приливают 200 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], также нагретого до 80°С. Пропитку продолжают в течение 20 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 200°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 35,8; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 130 м2/г, объем пор 0,35 см3/г, средний диаметр пор 10 нм, и представляет собой частицы с сечением в виде круга с диаметром 1,0 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит мас. %: Мо - 14,0; Ni - 4,3; S - 9,4; бор в форме поверхностных соединений - 1,2; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Пример 7.

Готовят носитель также, как в примере 3, с той разницей что формовочную пасту экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника диаметром 1,6 мм.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 30°С, в колбу приливают 133 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты из примера 5, также нагретого до 30°С. Пропитку продолжают в течение 60 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 120°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 30,6%; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 175 м2/г, объем пор 0,6 см3/г, средний диаметр пор 14 нм, и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Мо - 11,7; Ni - 3,6; S - 7,9; бор в форме поверхностных соединений - 1,2; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице 2.

Таким образом, как видно из приведенных примеров, предлагаемый способ приготовления обеспечивает получение катализатора, который позволяет получить сырье гидрокрекинга с гораздо меньшим содержанием серы и азота, чем с использованием катализатора, приготовленного по способу-прототипу.

1. Способ приготовления катализатора гидроочистки сырья гидрокрекинга, включающего в свой состав соединения молибдена, никеля и бора, отличающийся тем, что катализатор готовят пропиткой носителя, который содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; водным раствором, одновременно содержащим биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борную кислоту в концентрациях, которые обеспечивают получение катализатора, содержащего, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,4-1,6; носитель – остальное.

2. Способ по п. 1, отличающийся тем, что получаемый катализатор содержит бор в форме двух различных типов химических соединений - входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

3. Способ по п. 1, отличающийся тем, что получаемый катализатор содержит сильные Бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль).

4. Способ по п. 1, отличающийся тем, что получаемый катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

5. Способ по п. 1, отличающийся тем, что используют пропитку носителя по влагоемкости, либо из избытка раствора, при этом пропитку проводят при температуре 20-80°С в течение 20-60 мин при периодическом перемешивании.

6. Способ по п. 1, отличающийся тем, что после пропитки катализатор сушат на воздухе при температуре 100-200°С.



 

Похожие патенты:

Настоящее изобретение относится к каталитической композиции для оксихлорирования этилена до 1,2-дихлорэтана, содержащей: подложку, имеющую осажденные на ней каталитически активные металлы, содержащие от 2 до 8 % по массе меди, от 0,1 до 0,6 моль/кг одного или более щелочных металлов, от 0,08 до 0,85 моль/кг одного или более щелочноземельных металлов, и от 0,09 до 0,9 моль/кг Mn, причем количество каждого из каталитически активных металлов приведено в расчете на общую массу композиции катализатора, все каталитически активные металлы нанесены на подложку в виде их хлоридов или других водорастворимых солей, подложка представляет собой псевдоожижаемую подложку, имеющую площадь поверхности по БЭТ от 80 до 220 м2/г, и причем каталитическая композиция не содержит редкоземельных металлов.

Настоящее изобретение относится к способу получения простых эфиров, которые могут быть использованы в качестве присадок к моторным топливам, а также в качестве цетаноповышающих добавок к дизельному топливу.

Изобретение относится к способам производства нанесенного на подложку медного катализатора оксихлорирования этилена путем (i) пропитки, на первом этапе, глиноземного носителя первым водным раствором, который содержит медь, щелочной металл и необязательно щелочноземельный металл, для формирования таким образом первого каталитического компонента; и (ii) пропитки, на следующем этапе, первого каталитического компонента вторым водным раствором, который содержит медь и щелочноземельный металл.

Изобретение относится к каталитической химии, в частности к приготовлению носителей катализаторов глубокого гидрообессеривания вакуумного газойля, и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к катализатору для обработки выхлопных газов при селективном каталитическом восстановлении оксидов азота, содержащему: (a) от 1 до 99 масс.% октаэдрического молекулярного сита (OMS), содержащего оксид марганца; и (b) от 1 до 99 масс.% молекулярного сита (молекулярных сит) со средними порами и/или с крупными порами, где катализатор представляет собой композитный катализатор и октаэдрическое молекулярное сито (OMS) сформировано в присутствии молекулярного сита.

Изобретение относится к катализатору реформинга углеводородов и диоксида углерода, включающему оксидный носитель, который содержит гексаалюминат в форме β''-алюмината и частицы металлического никеля.

Изобретение относится к области синтеза Фишера-Тропша в промышленном катализе. Описан катализатор на основе кобальта для синтеза Фишера-Тропша, способ его приготовления и его применение.

Изобретение относится к технологии приготовления катализаторов для получения синтетических высоковязких полиальфаолефиновых базовых масел. Для получения синтетических базовых полиальфаолефиновых масел предлагается катализатор, представляющий собой смесь модифицированного метилалюминоксана ММАО-12 в толуоле и бис(изопропилциклопентадиенил)цирконий дихлорида в толуоле, который имеет мольное соотношение Al/Zr=(250-1000), количество Zr - (36-9) мкмоль.

Изобретение относится к носителю для катализатора гидрирования углеводородных нефтепродуктов, катализатору, содержащему указанный носитель, способам получения носителя и к способу получения катализатора.

Структурированный катализатор на основе железа для производства α-олефина из синтез-газа на неподвижном слое или в суспензионном слое, способ его изготовления и применение.

Настоящее изобретение относится к каталитической композиции для оксихлорирования этилена до 1,2-дихлорэтана, содержащей: подложку, имеющую осажденные на ней каталитически активные металлы, содержащие от 2 до 8 % по массе меди, от 0,1 до 0,6 моль/кг одного или более щелочных металлов, от 0,08 до 0,85 моль/кг одного или более щелочноземельных металлов, и от 0,09 до 0,9 моль/кг Mn, причем количество каждого из каталитически активных металлов приведено в расчете на общую массу композиции катализатора, все каталитически активные металлы нанесены на подложку в виде их хлоридов или других водорастворимых солей, подложка представляет собой псевдоожижаемую подложку, имеющую площадь поверхности по БЭТ от 80 до 220 м2/г, и причем каталитическая композиция не содержит редкоземельных металлов.

Настоящее изобретение относится к каталитической композиции для оксихлорирования этилена до 1,2-дихлорэтана, содержащей: подложку, имеющую осажденные на ней каталитически активные металлы, содержащие от 2 до 8 % по массе меди, от 0,1 до 0,6 моль/кг одного или более щелочных металлов, от 0,08 до 0,85 моль/кг одного или более щелочноземельных металлов, и от 0,09 до 0,9 моль/кг Mn, причем количество каждого из каталитически активных металлов приведено в расчете на общую массу композиции катализатора, все каталитически активные металлы нанесены на подложку в виде их хлоридов или других водорастворимых солей, подложка представляет собой псевдоожижаемую подложку, имеющую площадь поверхности по БЭТ от 80 до 220 м2/г, и причем каталитическая композиция не содержит редкоземельных металлов.

Изобретение относится к области производства катализаторов гидрокрекинга углеводородного сырья. Гидрокрекинг позволяет преобразовать высококипящие углеводородные фракции нефти в более ценные продукты - дизельное и реактивное топливо, керосин, бензин и моторные масла.

Изобретение относится к способам производства нанесенного на подложку медного катализатора оксихлорирования этилена путем (i) пропитки, на первом этапе, глиноземного носителя первым водным раствором, который содержит медь, щелочной металл и необязательно щелочноземельный металл, для формирования таким образом первого каталитического компонента; и (ii) пропитки, на следующем этапе, первого каталитического компонента вторым водным раствором, который содержит медь и щелочноземельный металл.

Изобретение относится к способам производства нанесенного на подложку медного катализатора оксихлорирования этилена путем (i) пропитки, на первом этапе, глиноземного носителя первым водным раствором, который содержит медь, щелочной металл и необязательно щелочноземельный металл, для формирования таким образом первого каталитического компонента; и (ii) пропитки, на следующем этапе, первого каталитического компонента вторым водным раствором, который содержит медь и щелочноземельный металл.

Предлагается способ увеличения активности и эффективности катализатора низкотемпературной изомеризации парафинов С4-С6, состоящего из платины и хлора на носителе эта-оксиде алюминия, полученного методом пропитки носителя водным раствором соляной кислоты и платинохлористоводородной кислоты, повторного прокаливания, восстановления и хлорирования хлорорганическим соединением в газовой фазе.

Изобретение относится к области приготовления металл-углеродных композиций, которые представляют собой наночастицы золота, нанесенные на поверхность пористых углеродных носителей, и которые могут быть использованы в качестве катализаторов для получения N-(фосфонометил)-глицина, C3H8NO5P путем окисления N-замещенных-N-(фосфонометил)-глицинов пероксидом водорода.

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, включающему в свой состав соединения молибдена, кобальта, бора и алюминия.
Настоящее изобретение относится к катализатору гидродесульфирования, содержащему подложку, фосфор, по меньшей мере, один металл, выбранный из группы VIB, причем металлом группы VIB является молибден, и, по меньшей мере, один металл, выбранный из группы VIII периодической системы элементов, причем металлом группы VIII является кобальт, причем содержание металла группы VIB, выраженного в расчете на содержание оксидов, составляет от 6 до 25 вес.% от общего веса катализатора, содержание металла группы VIII, выраженное в расчете на содержание оксидов, составляет от 0,5 до 7 вес.% от общего веса катализатора, подложка содержит по меньшей мере 90 вес.% оксида алюминия, который получен из размешанного и экструдированного геля бемита, и причем плотность молибдена в катализаторе, выраженная в числе атомов молибдена на нм2 катализатора, составляет от 3 до 5, атомное соотношение Co/Mo составляет от 0,3 до 0,5, и атомное соотношение P/Mo составляет от 0,1 до 0,3, и удельная поверхность указанного катализатора составляет от 60 до 150 м2/г.

Изобретение относится к катализатору для обработки выхлопных газов при селективном каталитическом восстановлении оксидов азота, содержащему: (a) от 1 до 99 масс.% октаэдрического молекулярного сита (OMS), содержащего оксид марганца; и (b) от 1 до 99 масс.% молекулярного сита (молекулярных сит) со средними порами и/или с крупными порами, где катализатор представляет собой композитный катализатор и октаэдрическое молекулярное сито (OMS) сформировано в присутствии молекулярного сита.

Изобретение относится к области производства катализаторов гидрокрекинга углеводородного сырья. Гидрокрекинг позволяет преобразовать высококипящие углеводородные фракции нефти в более ценные продукты - дизельное и реактивное топливо, керосин, бензин и моторные масла.

Изобретение относится к способам приготовления катализаторов гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга. Катализатор готовят пропиткой носителя, который содержит, мас.: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; водным раствором, одновременно содержащим биметаллическое комплексное соединение [Ni2]2[Mo4O112] и борную кислоту в концентрациях, которые обеспечивают получение катализатора, содержащего, мас.: [Ni2]2[Mo4O112] 29,0-36,0; бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,4-1,6; носитель – остальное.. Используют пропитку носителя по влагоемкости, либо из избытка раствора, при этом пропитку проводят при температуре 20-80°С в течение 20-60 мин при перемешивании. После пропитки катализатор сушат. Катализатор имеет удельную поверхность 130-180 м2г, объем пор 0,35-0,65 см3г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника. Технический результат - получение катализатора, имеющего максимальную активность в реакциях обессеривания и деазотирования, протекающих при гидроочистке нефтяных фракций с температурой начала кипения выше 360°С. 5 з.п. ф-лы, 7 пр., 2 табл.

Наверх