Способ определения содержания водорода в алюминиевых сплавах

Авторы патента:

G01N1/10 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2665585:

Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (RU)

Изобретение относится к металлургии, в частности к области анализа и определения водорода в алюминиевых сплавах. Предложен способ определения содержания водорода в алюминиевых сплавах, включающий отбор расплава, его последующую кристаллизацию сразу в двух подогреваемых тиглях: один под атмосферным давлением, а другой под низким давлением, и измерение разности плотностей полученных слитков. Во время кристаллизации расплава на образец в тигле под низким давлением воздействуют ультразвуком, а образец в тигле под атмосферным давлением подвергают прессованию в пруток с вытяжкой не менее 5 и по полученной разности плотностей образцов определяют содержание водорода. Технический результат – повышение точности при определении содержания водорода в алюминиевом расплаве.

 

Изобретение относится к металлургии, в частности к области анализа и определения водорода в алюминиевых сплавах.

Водород, попадающий в расплав алюминия и его сплавов во время плавки и литья, оказывает отрицательное влияние на свойства и структуру изделий и полуфабрикатов из алюминиевых сплавов. Поэтому для повышения качества продукции из алюминиевых сплавов необходимо максимально понизить в нем содержание водорода. Для этого необходимо контролировать фактическое содержание водорода как в расплаве, так и в твердом металле на основных операциях металлургического передела. Все это способствует созданию новых методов и приборов аналитического обеспечения технологического процесса литья алюминиевых сплавов, снижение пределов обнаружения, повышение точности и экспрессности при определении водорода.

Известен способ определения содержания водорода в алюминиевых сплавах, включающий отбор расплава, изготовление цилиндрического образца и определение количества содержащегося в сплаве водорода, при этом отбор расплава осуществляют заливкой порции жидкого металла в металлическую изложницу цилиндрического сечения с дальнейшим охлаждением со скоростью 3÷6°C/сек, а изготовление образца производят из литой пробы посредством круговой механической обработки с удалением со стороны литниковой и донной частей поверхностного слоя металла толщиной не менее 0,12Н, где H - высота литой пробы; и удалением слоя металла на остальных поверхностях толщиной не менее 0,05D, где D - диаметр литой пробы; и получением на всех обработанных поверхностях образца параметра шероховатости Ra<1 мкм, затем определение содержания водорода выполняют после нагрева в вакууме механически обработанного образца до температуры 680÷720°C и его последующего расплавления в момент появления на поверхности расплава первых газовых пузырьков водорода с учетом измеряемых значений температуры расплава и давления над расплавленным металлом (Патент №2435160 РФ, МПК G01N 1/10, G01N 25/38. Способ определения содержания водорода в алюминиевых сплавах / А.Ю. Сухих, Г.А. Суслов, В.П. Ефремов (РФ) - №2010124542/28, заявл. 15.06.2010; опубл. 27.11.2011 Бюл. №33).

В основе известного способа лежит известный метод определения содержания водорода в жидком металле по выделению первого пузырька в алюминии и алюминиевых сплавах (метод Дарделла - Гудченко) при содержании водорода от 0,05 до 1,0 см3 на 100 г металла (ГОСТ 21132.0-75), сущность которого состоит в зависимости количества растворенного водорода в жидком металле от парциального давления водорода в газовой фазе над металлом (Непрерывное литье алюминиевых сплавов. В.И. Напалков и др. М.: Интермет Инжиниринг, 2005, с. 325).

Недостатками известного способа являются его длительность и сложность. Для осуществления данного способа требуется изготовление образца из литой пробы посредством круговой механической обработки, что не позволяет обеспечить необходимую воспроизводимость и точность полученных результатов и требует существенных затрат времени и специального оборудования при определении содержания водорода в алюминиевом расплаве.

Наиболее близким по совокупности существенных признаков, по технической сущности и достигаемому результату является способ определения содержания водорода в алюминиевых сплавах, включающий отбор расплава и его последующую кристаллизацию сразу в двух подогреваемых тиглях: один под атмосферным давлением, а другой под низким давлением, и измерение разности плотностей полученных слитков методом гидростатического взвешивания (Богданова Т.А. Разработка конкурентоспособной технологии литья автомобильных колес из силумина на основе алюминия А7 / Т.А. Богданова: дисс. канд. техн. наук. - Красноярск, 2014. - 155 с.).

Известный способ позволяет по разности плотности полученных образцов оценить содержание водорода в расплаве. Чем меньше разница, тем чище алюминиевый расплав. Однако во время кристаллизации расплава под низким давлением (обычно менее 80 мБар) происходит недостаточно полная экстракция водорода из образца, а при кристаллизации расплава под атмосферным давлением в образце образуется пористость. Все это отрицательно сказывается на точности полученных результатов (Eskin D.G. Application of a plate sonotrode to ultrasonic degassing of aluminum melt. / D.G. Eskin, K. Al-Helal, I. Tzanakis. // J. Mater. Process. Technol. - 222 (2015). - P. 148-154).

Задачей, на решение которой направлен предлагаемый способ, является повышение точности при определении содержания водорода в алюминиевом расплаве.

Для решения поставленной задачи в способе определения содержания водорода в алюминиевых сплавах, включающем отбор расплава, его последующую кристаллизацию сразу в двух подогреваемых тиглях: один под атмосферным давлением, а другой под низким давлением, и измерение разности плотностей полученных слитков, дополнительно во время кристаллизации расплава в тигле под низким давлением на расплав воздействуют ультразвуком, а образец, полученный в тигле под атмосферным давлением, подвергают прессованию в пруток с вытяжкой не менее 5.

По отношению к прототипу имеющиеся у предлагаемого способа отличительные признаки, позволяют получить следующий положительный эффект:

- во время кристаллизации расплава в тигле под низким давлением на расплав дополнительно воздействуют ультразвуком, что позволяет практически удалить весь водород из расплава;

- в процессе прессования слитка, полученного в тигле под атмосферным давлением, на обрабатываемый металл действует всестороннее неравномерное сжатие и при вытяжке более пяти (вытяжка - это отношение поперечных площадей заготовки к пресс-изделию) наблюдается практически полная проработка литой структуры слитка, исчезновение литейной пористости и усадочных раковин, что повышает плотность отпрессованного металла (Баузер М. Прессование. Справочное руководство / М. Баузер, Г. Заузер, К. Зигерт. - М.: «АЛЮСИЛ МВиТ», Москва, 2009. - 918 с.).

Следует отметить, что одним из важнейших источников погрешности при определении содержания водорода в металле является поверхностный водород, величина которого в значительной степени определяет точностные характеристики способа определения водорода в расплаве. Следовательно, для повышения точности способа первостепенное значение имеет качество поверхности подготовленного образца для проведения исследований. Во время прессования, особенно прямым методом, происходит полное удаление поверхностного водорода с наружной поверхности отпрессованного прутка, а все наружные дефекты и загрязнения остаются в пресс-остатке.

Данные отличительные признаки позволяют учесть дополнительное содержание водорода в расплаве алюминия, что приведет к увеличению разности плотностей полученных образцов и обеспечит повышение точности при определении содержания водорода в алюминиевом расплаве.

Наличие в предлагаемом техническом решении признаков, отличных от признаков, характеризующих ближайший аналог, позволяет сделать вывод о его соответствии условию патентоспособности изобретения «новизна».

В процессе поиска по предмету разработки по патентной документации и по научно-технической литературе не выявлено технических решений очевидных для специалиста, что позволяет сделать вывод о соответствии предлагаемого технического решения условию патентоспособности изобретения «изобретательский уровень».

Сущность предлагаемого способа заключается в следующем. Путем отбора алюминиевого расплава из металлотракта или из миксера расплав разливают в два подогретых тигля (например, вакуумной установки 3VT, см. http://www.lityo.biz/vcd-137-1-1708/goodsinfo.html?print=1) для изготовления проб. При этом во время кристаллизации расплава в тигле под низким давлением на расплав воздействуют ультразвуком, который подается к расплаву, как только включается вакуумный насос. Сразу после кристаллизации слитка, полученного в тигле под атмосферным давлением, его подвергают прессованию в пруток с вытяжкой не менее 5. После прессования отпрессованный пруток отделяют от пресс-остатка. Затем измеряют плотности полученных образцов (например, методом гидростатического взвешивания с помощью специализированных весов MK 2200 см. http://www.lityo.biz/vcd-137-1-1707/GoodsInfo.html). Далее определяют плотности образцов исследуемого алюминиевого сплава, полученные при атмосферном давлении и при пониженном давлении (вакууме):

где mB и mЖ - масса образца на воздухе и в жидкости соответственно;

γЖ - плотность жидкости (обычно дистиллированная вода).

Следует отметить, что при отборе пробы из расплава металла основным требованием является сохранение водорода в твердом образце в том же количестве, что и в расплаве. Поэтому для получения достоверных результатов охлаждение расплава в тигле необходимо производить с регламентированной скоростью. Скорость кристаллизации 3÷6°C/сек позволяет исключить процесс выделения водорода из расплава путем диффузии при затвердевании расплава. Полученная разность плотности образцов соответствует содержанию водорода в расплаве.

Пример. Для сравнения точности при определении содержания водорода в алюминиевом расплаве с использованием предлагаемого способа и известного производили отбор на одном из предприятий ОК «РУСАЛ» во время плавки сплава 1XXX серии. Отливался слиток размером 600×1750×4700 мм общей массой 45 тонн. Приготовление и литье слитка производилось с обязательным применением дегазационной установки SNIF; фильтрация осуществлялась через трубчатый металлофильтр PTF (Mitsui) и пенокерамический фильтр ПКФ. Отливка слитка проводилась через распределитель металла Combo-Bag, модифицировали расплав прутковой лигатурой Al-Ti-B после выходного портала PTF (Mitsui) из расчета 1÷2 кг/т. Во время подачи расплава по металлотракту из миксера перед литейной машиной производился отбор проб массой около 80 грамм для анализа содержания водорода в расплаве по предлагаемому и известному способам. Для исследования использовали одну и ту же вакуумную установку 3VT. Алюминиевый расплав разливали сразу в два подогретых тигля вакуумной установки 3VT для изготовления проб для определения разности плотностей образцов. Во всех случаях время кристаллизации расплава в тиглях составляло не менее 4 минут, что соответствовало скорости охлаждения расплава 3÷6°C/сек. Сначала определяли разность плотностей расплава по известному способу, а затем по предлагаемому. Во время кристаллизации расплава в тигле под низким давлением (не более 80 мБар) на расплав воздействовали ультразвуком частотой 20 кГц, который создавался с помощью установки ультразвуковых колебаний (УЗК), состоящей из ультразвукового генератора с воздушным охлаждением, конвертером из пьезокерамических кристаллов цирконата-титаната свинца (ЦТС), усилителя, ресивера, акустического излучателя для передачи ультразвуковых колебаний в расплаве алюминия. Датчик УЗК способен был преобразовывать до 1,5 кВт электрической энергии на резонансной частоте 20 кГц с плавной регулировкой амплитудой УЗК от 30 до 100% максимальной амплитуды, равной 81 мкм. В опытах применяли УЗК с амплитудой 40 мкм.

Сразу после кристаллизации слитка, полученного в тигле под атмосферным давлением, его подвергали прессованию в пруток с вытяжкой, равной λ=5. Затем в обоих способах определяли плотности полученных образцов методом гидростатического взвешивания с помощью специализированных весов МК 2200 для определения плотности образцов алюминия методом гидровзвешивания и рассчитали разности плотностей. В известном способе определили содержание водорода в расплаве, равное 0,12 см3/100 г, а в предлагаемом способе - 0,135 см3/100 г расплава. Содержание водорода в месте отбора проб также было измерено другим прибором -ALSPEK Н (http://www.wffbundry.ru/3-hydrogen-tester-5.htmn и получено содержание водорода в расплаве, равное 0,125 см3/100 г.

Таким образом, предлагаемый способ определения содержания водорода в алюминиевых сплавах по сравнению с известным позволяет повысить точность определения содержания водорода в алюминиевом расплаве.

Способ определения содержания водорода в алюминиевых сплавах, включающий отбор расплава, его последующую кристаллизацию сразу в двух подогреваемых тиглях: один под атмосферным давлением, а другой под низким давлением, и измерение разности плотностей полученных образцов, отличающийся тем, что во время кристаллизации расплава на образец в тигле под низким давлением воздействуют ультразвуком, а образец в тигле под атмосферным давлением подвергают прессованию в пруток с вытяжкой не менее 5 и по полученной разности плотностей образцов определяют содержание водорода.



 

Похожие патенты:
Изобретение относится к измерительной технике и может быть применено в химической и нефтедобывающей промышленностях, гидротехническом строительстве, сельском хозяйстве и грунтоведении.

Изобретение относится к измерительной технике, в частности к устройствам для определения насыпной плотности пористых, рыхлых волокон или волокноподобных материалов, легко делящихся на фрагменты и сцепляемых друг с другом и соответственно не ссыпаемых в мерный цилиндр через стандартную воронку.

Изобретение относится к строительным материалам, в частности к способам определения средней плотности зерен крупного и мелкого заполнителя для бетонных и растворных смесей, а конкретно к способу определения средней плотности гранул полистирольного заполнителя вспененного гранулированного (ПВГ) для полистиролбетона.

Изобретение относится к области обработки и использования сыпучих материалов, в том числе сыпучих высокорадиоактивных материалов для производства твэлов ядерных реакторов.

Изобретение относится к области исследования плотности квазидисперсных материалов: почв - при проведении предпосевной обработки, грунтов - при дорожном строительстве.

Изобретение относится к приборам и устройствам для изучения физико-химических свойств жидкостей и предназначено для прецизионного определения температурной зависимости плотности металлических жидкостей пикнометрическим методом.

Изобретение относится к области трибологических испытаний, а именно к устройствам для испытания материалов и смазочных сред при динамическом управлении параметрами нагружения и реверсивного движения на малых скоростях относительного перемещения.

Изобретение относится к измерительной технике, предназначено для измерения плотности жидкости, преимущественно нефти и нефтепродуктов. .

Изобретение относится к области измерений и может быть использовано для исследования теплофизических характеристик электроизоляционных материалов. Согласно предложенному способу определения температуры стеклования проводят серии испытаний вдавливанием индентора в поверхность испытуемого материала при плавно изменяющейся температуре.

Изобретение относится к области пищевой промышленности, в частности к кондитерской отрасли, и может быть использовано для контроля качества кондитерских изделий. Способ определения витамина B2 в кондитерских изделиях включает последовательное проведение кислотного и ферментного гидролиза пробы с последующей фильтрацией, фотолиз, флюориметрическое определение и обработку результатов, при этом перед фотолизом проводят концентрирование водной фазы, полученной после фильтрации, путем твердофазной экстракции.

Изобретение относится к медицине, а именно к гистологии, и может быть использовано в диагностике нарушений сперматогенеза различной этиологии, включая идиопатическое бесплодие.

Изобретение относится к аналитической химии и касается способов определения ионов хрома (III) и железа (III) в растворе при совместном присутствии. Способ определения концентрации ионов хрома (III) и железа (III) при совместном присутствии в растворе включает добавление к анализируемому раствору, содержащему ионы хрома (III) и железа (III), 4 мл раствора трилона Б (концентрацией 80 г/л), нагревание полученной смеси на кипящей водяной бане в течение 10 мин, охлаждение смеси до комнатной температуры, добавление к охлажденной смеси 0,5 мл водного раствора аммиака, доведение дистиллированной водой до 25 мл, определение оптической плотности раствора и вычисление концентрации ионов по калибровочным зависимостям, при этом измерение оптической плотности производят при 660 нм для ионов хрома (III) и при 315 нм для ионов железа (III).

Изобретение относится к геологии и может быть использовано при определении генезиса морских осадочных отложений, а именно мелкозернистых песчаников, алевролитов, алевроаргиллитов и аргиллитов.

Изобретение относится к медицине, в частности, возможно использование в здравоохранении, медицинской и спортивной диагностике. Способ определения уровня стрессоустойчивости человека включает определение величины максимальной интенсивности свечения проб со слюной I0 и величины максимальной интенсивности свечения контрольных проб без слюны Ik, вычисление люциферазного индекас LI0 пробы со слюной и люциферазного индекса LIk контрольной пробы без слюны, вычисление люциферазного индекса стресса по формуле LIstress=LI0-LIk, при этом LIstress 18-30% соответствует среднему уровню стрессоустойчивости; LIstress более 30% - высокому; LIstress менее 18% - низкому уровню стрессоустойчивости.

Изобретение относится к способу анализа и/или обработки оплодотворенного яйца. Способ обработки и/или анализа оплодотворенного яйца, включающий размещение яйца горизонтально зародышем вверх, выполнение отверстия в скорлупе сбоку со стороны зародыша, проведение анализа и/или обработки зародыша и закрытие отверстия в скорлупе, отличается тем, что по изобразительной информации с использованием методов компьютерной графики формируют трехмерную модель фрагмента скорлупы на 8-15% больше размера будущего отверстия, по трехмерной модели изготавливают форму, в которой из двухкомпонентного силикона для литьевых форм отливают крышку для закрытия будущего отверстия, после выполнения отверстия в скорлупе и проведения анализа и/или обработки зародыша закрывают отверстие в скорлупе путем наложения на отверстие силиконовой крышки и ее разглаживания от отверстия к краям.

Группа изобретений относится к области медицины. Предложены способ и набор для исследования на присутствие цитомегаловируса (CMV), вируса простого герпеса I (HSV I), вируса простого герпеса II (HSV II), вируса Эпштейна-Барра (EBV), HHV6, HHV7, HHV8, парвовируса 19, вируса гепатита В (HBV), вируса гепатита С (HCV), коксаки-вируса, вирусов иммунодефицита человека (HIV-1, HIV-2), аденоассоциированного вируса (AAV), вируса краснухи, HPV, хламидий, токсоплазмы и норовируса внутри сперматозоидов.
Изобретение относится к области медицины, в частности к онкологии, и предназначено для прогноза рака молочной железы с использованием цифрового изображения гистологического препарата, приготовленного из образца опухолевой ткани.

Изобретение относится к области ветеринарии и предназначено для диагностики мутантного аллеля, вызывающего короткий позвоночник или брахиспину у крупного рогатого скота.

Изобретение относится к способу, позволяющему оценивать остаточный срок службы трубы. Сущность: осуществляют этап (S1) установления внутреннего диаметра трубы, предназначенный для получения данных о внутреннем диаметре (D) трубы; степень деформации внутреннего диаметра (ΔD) трубы из разницы между внутренним диаметром трубы и исходным внутренним диаметром (D0) трубы; этап создания (S3a) диаграммы проекции деформации, предназначенный для построения графика проекции деформации при условиях, когда уширение трубы достигает предела удлинения (X) срока службы при произвольно прогнозируемом остаточном сроке службы (T); этап (S3b) определения стандартной степени деформации, предназначенный для получения данных о степени деформации (A), получаемых при определении внутреннего диаметра трубы в ходе этапа определения внутреннего диаметра трубы, в качестве стандарта для определения наличия/отсутствия прогнозируемого остаточного срока службы на основе диаграммы проекции деформации; этап (S3c) вычисления общей погрешности, предназначенный для определения суммарной погрешности (B) при получении внутреннего диаметра трубы; и этап (S4) определения остаточного срока службы, предназначенный для определения остаточного срока службы трубы на основе степени деформации внутреннего диаметра трубы, степени деформации, которая служит в качестве стандарта для определения наличия/отсутствия прогнозируемого остаточного срока службы, и суммарной погрешности.
Наверх