Способ рентгеновской компьютерной томографии аварийных взрывоопасных объектов

Использование: для выполнения рентгеновской компьютерной томографии. Сущность изобретения заключается в том, что на объект предварительно наносится система рентгеноконтрастных реперов. Проводится радиография объекта вместе с реперами в нескольких ракурсах. По искажению проекций реперов на детекторе определяют координаты плоскости детектора. После преобразования координат прямых на детекторе, соответствующих исследуемому сечению объекта, в дуги окружности с центром в середине объекта геометрия облучения будет соответствовать стандартной геометрии облучения для томографов четвертого поколения (детекторы на окружности вокруг объекта, источник излучения движется по окружности и последовательно облучает все детекторы). С помощью стандартных программ для томографов четвертого поколения восстанавливают томографическое изображение объекта. Технический результат: обеспечение возможности получать томографическое изображение взрывоопасного объекта в полевых условиях без его перемещения. 4 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к компьютерной томографии, основанной на получении изображения сечения объекта радиационными методами, например с помощью рентгеновского излучения.

Техническая проблема, на решение которой направлено изобретение

В настоящее время существует проблема проведения исследований взрывоопасных объектов в полевых условиях и желательно без их перемещений. Радиография является одним из методов проведения таких исследований. Однако информативность радиографии часто недостаточна для принятия решений. Метод рентгеновской компьютерной томографии намного более информативен, но требует сложного оборудования и перемещения взрывоопасных объектов при их исследовании. Предлагаемое изобретение лишено этих недостатков.

Уровень техники

Аналог

Известен способ, на использовании которого основаны томографы четвертого поколения [см. «Справочник по рентгенотехнике» / Под ред. Клюева В.В. М.: «Машиностроение», т. 2, 1992, стр. 306].

В устройствах томографов четвертого поколения (см. фиг. 1) на вращающейся раме установлены излучатель (рентгеновская трубка) 2 и веерообразный блок коллиматоров, а детекторы, число которых в различных томографах колеблется от 600 до 1200, образуют неподвижный кольцевидный блок (кольцо Гентри) 3 вокруг исследуемого объекта 1. Зарегистрированная информация с детекторов поступает в компьютер и с помощью стандартных программ (для томографов четвертого поколения) восстанавливается томографическое изображение объекта.

Достоинством такого способа является то, что реализующие его устройства широко распространены, и для них существуют стандартные программы восстановления томографического изображения (крайне сложные для самостоятельной разработки).

Недостатком известного технического решения является то, что вся конструкция достаточно сложная, не приспособлена для работы в полевых условиях и требует помещения объекта внутрь томографа (в кольцо Гентри), т.е. перемещения взрывоопасного объекта.

Прототип

Наиболее близким к заявляемому способу техническим решением того же назначения и выбранный автором в качестве прототипа является по совокупности признаков способ, реализованный устройством [см. авт. свид. СССР №1500081, кл. G01N 23/08, G01T 1/29].

Суть способа заключается в том, что исследуемый объект 1 (см. фиг. 2) помещается на поворотный стол 4, облучается источником проникающего излучения 2, которое регистрируется детектором 5 с запоминанием информации (радиофотолюминесцентным стеклом (РФЛС)). После каждого поворота стола РФЛС 6 занимает место детектора 5. Зарегистрированная информация с РФЛС преобразуется в цифровую форму и с помощью специально разработанной программы восстанавливают томографическое изображение объекта.

Преимущество данного способа заключается в том, что не требуются специально подобранные сотни детекторов, нет необходимости в системах стабилизации, РФЛС после нагрева (в нагревателе для восстановления РФЛС 7) пригодны к повторному использованию.

Недостаток такого технического решения заключается в его сложности, непригодности к использованию в полевых условиях, а также в том, что требуется перемещение взрывоопасного объекта. Большим недостатком является необходимость разработки специальных программ восстановления томографического изображения.

Технический результат изобретения

Техническим результатом изобретения является разработка способа, обеспечивающего получение томографического изображения сечений аварийных взрывоопасных объектов в полевых условиях.

Способ достижения технического результата

Указанный результат достигается тем, что проводится радиография объекта в разных ракурсах и детектирование РФЛС, но предварительно на исследуемый объект наносится система рентгеноконтрастных реперов, по проекциям реперов на РФЛС в разных ракурсах определяется геометрия облучения и после преобразования координат прямых на РФЛС, соответствующих исследуемому сечению объекта, в дуги окружности с центром в середине объекта восстанавливают с помощью стандартных программ для томографов четвертого поколения томографическое изображение интересующего сечения объекта.

Сущность изобретения

Сущность предлагаемого изобретения поясняется с помощью фиг. 3 и фиг. 4. Для достижения указанной задачи (разработка способа рентгеновской компьютерной томографии аварийных взрывоопасных объектов) выполняются следующие действия (см. схему измерений на фиг. 3):

1. На исследуемый объект 1 наносится система реперов, например объект помещается в рентгенопрозрачный кубик 8 известных размеров, в вершинах которого расположены шарики 9 из материалов различной плотности (свинец, медь, железо и т.д.).

2. Намечается плоскость 10, в которой хотят получить сечение объекта, в этой плоскости определяются точки размещения рентгеновского источника 2 для проведения радиографии в нескольких ракурсах. Число ракурсов зависит от соотношения размеров объекта и РФЛС.

3. Рентгеновский источник 2 облучает исследуемый объект 1. На РФЛС 6 кроме рентгенограммы 11 исследуемого образца будут зарегистрированы проекции реперов 13. По искажению проекций вычисляют геометрию облучения и координаты плоскости РФЛС 6.

4. Определяют координаты прямой 12, соответствующей пересечению интересующей плоскости сечения объекта 10 и плоскости РФЛС 6.

5. Преобразуют (см. фиг. 4) координаты прямой 12 в координаты дуги 14 окружности с центром в середине объекта 1 и соответственно вводят поправки в зарегистрированные величины доз на этой прямой 12.

6. Не изменяя положение реперов, проводится радиография в другом ракурсе, путем перемещения источника излучения и РФЛС вручную, и проводятся все вычислительные операции, как и в предыдущем ракурсе, причем координаты дуги выбираются программным путем так, чтобы она лежала на той же окружности, т.е. среди всех точек на РФЛС выбираются те точки, которые лежат на окружности.

7. Проводится облучение объекта еще в нескольких ракурсах вокруг исследуемого объекта так, чтобы дуги замкнули окружность.

8. Таким образом, в результате мы получаем схему измерений полностью аналогичную схеме измерения для томографов четвертого поколения (объект в центре кольца детекторов).

9. Используя стандартные программы восстановления для томографов четвертого поколения, получаем искомое томографическое изображение нашего объекта.

С помощью реперов определяется не только геометрия облучения, но и проводится стабилизация излучения (в случае отличия зарегистрированной РФЛС дозы на одном и тоже расстоянии от одного и того же репера вводится поправочный коэффициент). Это позволяет использовать в качестве источника излучения импульсные рентгеновские трубки, которые хотя и отличаются нестабильностью излучения, но намного легче и мобильнее, чем трубки с постоянным излучением.

Таким образом, кроме радиографии, все остальные операции вычислительные. В данном способе отсутствует необходимость сканирующего устройства и систем стабилизации рентгеновского излучения, что позволяет проводить измерения в полевых условиях. Также этот способ не требует перемещения взрывоопасных объектов.

Обоснование технико-экономической эффективности изобретения

Технико-экономическая эффективность предложенного способа заключается в том, что позволяет:

1. Отказаться от использования сложного механического сканирующего устройства.

2. Отказаться от электронной системы стабилизации излучения.

3. Использовать импульсные рентгеновские трубки.

4. Осуществлять перемещение РФЛС и рентгеновского аппарата вокруг исследуемого объекта вручную, так как не требуется высокой точности соблюдения геометрии облучения. Точность геометрии обеспечивается введением поправок программным путем посредством определения координат проекций реперов.

Обоснование соответствия критерию охраноспособности «новизна»

Предлагаемое техническое решение является новым, поскольку в общедоступных источниках нет сведений о способе проведения рентгеновской компьютерной томографии без сканирующего устройства, когда геометрия измерений определяется путем нанесения на исследуемый объект системы реперов.

Обоснование соответствия критерию охраноспособности «изобретательский уровень»

Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций существует

Обоснование соответствия критерию охраноспособности «промышленная применимость»

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы стандартное оборудование, приспособления и материалы, широко применяемые в радиографии (рентгеновская трубка, РФЛС), стандартные методы преобразования координат, а также методы восстановления изображения для томографов четвертого поколения.

Способ рентгеновской компьютерной томографии аварийных взрывоопасных объектов, основанный на радиографии объекта детекторами с запоминанием информации (рентгеновская пленка, радиофотолюминесцентные стекла) и восстановлением томографического изображения с помощью стандартных программ для томографов четвертого поколения, отличающийся тем, что с целью получения томографического изображения сечений аварийных взрывоопасных объектов в полевых условиях на исследуемый объект наносят систему рентгеноконтрастных реперов, проводят радиографию объекта, по искажению проекций реперов на детекторе в разных ракурсах определяют геометрию облучения и после преобразования программным путем координат прямых на детекторе, соответствующих исследуемому сечению объекта, в дуги окружности с центром в середине объекта восстанавливают при помощи стандартных программ для томографов четвертого поколения томографическое изображение интересующего сечения объекта по данным зарегистрированных доз на детекторах.



 

Похожие патенты:

Использование: для формирования рентгеновского флуороскопического изображения. Сущность изобретения заключается в том, что система формирования рентгеновского флуороскопического изображения содержит: контролируемый проход; электронный ускоритель; экранирующее коллиматорное устройство, содержащее экранирующую конструкцию и первый коллиматор для извлечения плоского секторного пучка рентгеновского излучения низкой энергии и второй коллиматор для извлечения плоского секторного пучка рентгеновского излучения высокой энергии, расположенные в пределах экранирующей конструкции; матрицу детекторов низкой энергии, предназначенную для приема пучка рентгеновского излучения из первого коллиматора; и матрицу детекторов высокой энергии, предназначенную для приема пучка рентгеновского излучения из второго коллиматора.

Использование: для контроля сохранности кристаллов драгоценных камней в процессах технологической переработки. Сущность изобретения заключается в том, что выполняют формирование контрольной коллекции кристаллов-имитаторов и их исследование сканированием системой компьютерной томографии с формированием базы данных образов кристаллов-имитаторов.

Использование: для исследования пространственного распределения нефти в поровом пространстве грунтов и других пористых сред. Сущность изобретения заключается в том, что отбирают пробу исследуемого материала, применяют рентгеноконтрастный агент и метод рентгеновской компьютерной микротомографии, при этом рентгеноконтрастный агент, для приготовления которого используется спирт с числом атомов углерода 3 и более, в котором растворяется соль металла с высоким атомным весом до полного насыщения, смешивается с нефтью, кроме того, осуществляют прямое изучение пространственного распределения нефти в пористом материале.

Использование: для определения коэффициента остаточной водонасыщенности горных пород. Сущность изобретения заключается в том, что осуществляют выбор образцов керна заданного литологического типа в широком диапазоне фильтрационно-емкостных свойств, после чего производят сканирование отобранных образцов с помощью рентгеновского томографа с получением трехмерных изображений образцов, которые сегментируют на поровое пространство и скелет породы, выделяют из каждого сегментированного трехмерного изображения несколько фрагментов, определяют для каждого фрагмента значение пористости, затем с помощью гидродинамического симулятора определяют значения скоростей движения флюида в дискретных точках порового пространства, строят гистограмму скоростей движения флюида, выбирают фрагмент с пористостью, максимально близкой к пористости реального образца керна из исследуемого литотипа, определяют пороговое значение скорости движения флюида, исходя из соблюдения условия: доля скоростей от общей площади гистограммы ниже порогового значения скорости движения флюида численно равна коэффициенту остаточной водонасыщенности реального образца, предварительно определенному экспериментально, присваивают всем выделенным фрагментам выбранное пороговое значение скорости движения флюида и, исходя из деления на категории подвижности жидких флюидов, относят все поровое пространство, в котором скорость движения флюида ниже порогового значения, к заполненному остаточной водой, рассчитывают для каждого выделенного фрагмента коэффициент остаточной водонасыщенности как отношение объема пор, заполненных остаточной водой, к общему объему пор.

Использование: для определения концентрации водорода в наночастицах палладия. Сущность изобретения заключается в том, что измеряют спектр рентгеновского поглощения за К-краем палладия в интервале 24320±10-24440±20 эВ, определяют значение коэффициента поглощения в точках первых двух максимумов и рассчитывают концентрацию водорода С по формуле , где μA - значение коэффициента поглощения в точке первого краевого максимума, μB - значение коэффициента поглощения в точке второго краевого максимума, k1=0.903±0.001, k2=0.0320±0.0003.

Изобретение предназначено для использования в мясной промышленности. Мясоперерабатывающее устройство содержит мясоперерабатывающий блок (2) для переработки мяса или мясопродукта, при этом блок (2) содержит выпуск (4) блока; и рентгеновский анализатор (6), содержащий источник (10) рентгеновского излучения для испускания пучка (24) рентгеновских лучей к переработанному мясу в зоне (22) анализа, и связанный с ним детектор (12) рентгеновского излучения для обнаружения рентгеновских лучей, проходящих от источника (10) и взаимодействующих с переработанным мясом; транспортер (14), расположенный внутри корпуса (8) и выполненный с возможностью транспортировки переработанного мяса от впуска (16) к выпуску (18) через зону (22) анализа, расположенную снаружи перерабатывающего блока (2).

Изобретение относится к пищевой промышленности, а именно, к определению анатомо-морфологических дефектов зерна или семян зерновых культур с помощью рентгенографии.

Изобретение относится к определению в зерновых культурах и семенах скрытой зараженности, обусловленной повреждением насекомыми вредителями, с помощью рентгенографии в зерноперерабатывающей промышленности и семеноводстве.

Использование: для исследования фильтрационно-емкостных свойств горных пород. Сущность изобретения заключается в том, что производят выбор образцов керна в широком диапазоне фильтрационно-емкостных свойств, осуществляют сканирование с помощью рентгеновского микротомографа отобранных образцов с получением трехмерных изображений образцов, которые сегментируют на поровое пространство и скелет породы, выделяют из сегментированных изображений несколько фрагментов, для каждого фрагмента определяют значение пористости (м0), увеличивают пористость фрагмента путем попиксельного расширения порового пространства и определяют его значение (м1), с помощью гидродинамического симулятора определяют значение проницаемости (к1) фрагмента, по полученным значениям пористости и проницаемости для всех фрагментов, выделенных из каждого образца, строят их тренды, по линиям трендов определяют значения проницаемости исходных фрагментов (к0), соответствующие значениям (м0), и по установленным значениям пористости и проницаемости для исходных фрагментов находят их корреляционную связь.

Предлагаемое изобретение относится к приспособлениям для крепления рентгеновских аппаратов. Задача: повышение производительности труда, повышение надежности эксплуатации рентгеновского аппарата, улучшение качества снимков, улучшение условий труда дефектоскописта.

Использование: для неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта датчиками физических полей, измеряют величины сигналов с каждой точки поверхности контролируемого объекта, разбивают диапазон величин сигналов по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величин измеренных сигналов, в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля. Принимают, что сигнал на дефектном участке меньше по величине сигнала на качественном участке, вероятность ложного обнаружения дефектов и вероятность пропуска дефектов, исходя из задач контроля. Измеряют величину сигнала в центре интервала, на который попадает наибольшее количество сигналов дефектного участка. Измеряют величину сигнала в центре интервала, на который попадает наибольшее количество сигналов качественного участка. Измеряют номер интервала m, соответствующего величине 0,67 , и номер интервала n, соответствующего 0,67 . Дополнительно измеряют величину сигнала в центре интервала m и в центре интервала n. Определяют среднеквадратичное значение распределения сигналов на дефектных участках. Определяют среднеквадратичное значение распределения сигналов на качественных участках. Задают соотношение между величинами вероятностей ложного обнаружения и пропуска дефектов: и . Определяют численное значение порогового сигнала путем решения приведенного уравнения. Технический результат: обеспечение возможности повысить достоверность выявления дефектов и обеспечить выявление дефектов с заданной вероятностью. 5 ил., 1 табл.
Наверх