Способ получения композиционного материала

Изобретение относится к авиационной и машиностроительной промышленности и может быть использовано при создании деталей из конструкционных материалов, в частности для изготовления антенных обтекателей ракет, обладающих высокой прочностью в сочетании с хорошими диэлектрическими характеристиками при высоких температурах и стойкостью к термоудару. Технический результат - повышение термостойкости получаемого композиционного материала, обладающего также повышенной прочностью, низкими значениями газопроницаемости при сохранении диэлектрических свойств на высоком уровне. В способе получения композиционного материала, включающем пропитку заготовки из спеченного диоксида кремния пористостью 7,0-12,0% раствором олигометилфенилспиросилоксана в ацетоне МФСС-8, сушку на воздухе в течение 3-24 ч, полимеризацию, полимеризацию проводят при температуре 390-410°С в течение 2-3 ч. Затем проводят повторную объемную пропитку заготовки раствором олигометилфенилспиросилоксана в ацетоне МФСС-8 в течение 2-30 ч, дополнительно сушат на воздухе в течение 3-24 ч. Затем еще раз полимеризуют при 290-310°С в течение 2-3 ч. 1 табл., 4 пр.

 

Изобретение относится к авиационной и машиностроительной промышленности и может быть использовано при создании деталей из конструкционных материалов, в частности для изготовления антенных обтекателей ракет, обладающих высокой прочностью в сочетании с хорошими диэлектрическими характеристиками при высоких температурах и стойкостью к термоудару.

Известен композиционный материал, описанный в патенте РФ №2256262, МПК 7H01Q1/42, публикация 10.07.2005 «Антенный обтекатель ракеты», в котором обтекатель включает радиопрозрачную оболочку из пористой керамики, состоящую из внутреннего радиопрозрачного силового элемента из пористой керамики с веденным в поры полимером и внешнего теплозащитного элемента из пористой кварцевой керамики, соединенной слоем герметика со шпангоутом из инвара. Внешний теплозащитный элемент дополнительно содержит наружный герметизирующий слой из пористой кварцевой керамики с введенным в поры полимером. Толщины слоев керамики с полимером равны по высоте обтекателя и составляют 1-2 мм. В качестве полимера использован полиметилфенилспиросилоксан, а в качестве пористой кварцевой керамики - кварцевая керамика с пористостью 10-12%. Способ получения радиопрозрачной оболочки заключается в пропитке внутренней и наружной поверхностей оболочки ацетоновым раствором олигометилфенилспиросилоксана с плотностью 0,950-0,960 на глубину 1,0-2,0 мм с последующей полимеризацией при температуре 325°С.

К недостатку данного способа следует отнести то, что полученная оболочка при указанном режиме полимеризации при достижении температуры на поверхностях оболочки выше 350°С начинается термодеструкция полиметилфенилспиросилоксана, которая идет с выделением горючих газообразных продуктов, горение которых повышает температуру материала и тем самым снижают применимость материала в обтекателях при высоких температурах и высоких темпах нагрева.

Раствор олигометилфенилспиросилоксана в ацетоне применяется, в основном, для пропитки пористой керамики с целью ее упрочнения, придания ей влагостойкости, при условии сохранения диэлектрических характеристик, в том числе и при температурах до 1000°С. Поэтому очень важны свойства материала при высоких температурах и при высоких темпах нагрева. При деструкции полиметилфенилспиросилоксана при температурах около 500°С образуются, в основном, низкомолекулярные активные фрагменты макромолекул (Н, , , и др.), которые могут реагировать с макромолекулами, образуя соответствующие газообразные продукты, накапливаться в образце и затем воспламенятся при доступе к ним кислорода. Этот эффект, характерный для объемной пропитки керамики, наблюдается как при проведении термического анализа образцов на термоанализаторе, так и при испытании изделий.

Наиболее близким техническим решением является «Способ получения композиционного материала», патент РФ №2270180, МПК С04В 35/14, С04В 41/81, публикация 20.02.2006, включающий пропитку заготовки из спеченного диоксида кремния пористостью 7,0-12,0% раствором олигометилфенилспиросилоксана, сушку на воздухе в течение 3-24 ч, затем полимеризацию при температуре 200-230°С в течение 3-4 ч.

К недостаткам известного способа следует отнести то, что материал, полученный таким способом, сохраняя высокие радиотехнические и прочностные свойства до температур до ~1000°С, при температурах выше 350°С начинает выделять газообразные продукты деструкции метилфенилспиросилоксана (Н2, СН4, С6Н6, и др.), которые снижают применимость материала в обтекателях при высоких температурах и высоких темпах нагрева.

Термостойкость материала принято характеризовать температурой начала деструкции и остаточной массой материала после воздействия температур порядка 1000°С.

При получении материала по способу, описанному в аналоге, температура начала деструкции полиметилфенилспиросилоксана, определенная как температура, при которой происходит потеря 1% массы отвержденного при температуре 200-230°С, составляет 250-350°С, а остаточная масса полимера после нагрева до 1000°С составляет 55-65%, что явно ограничивает его применение в высокотермонагруженных изделиях, где 35-45% массы полимера превращается в горючие газообразные продукты.

Техническим результатом настоящего изобретения является повышение термостойкости получаемого композиционного материала с учетом его высокотемпературной деструкции.

Технический результат обеспечивается тем, что предложен способ получения композиционного материала, включающий пропитку заготовки из спеченного диоксида кремния пористостью 7,0-12,0% раствором олигометилфенилспиросилоксана в ацетоне МФСС-8, сушку на воздухе в течение 3-24 ч, полимеризацию, отличается тем, что полимеризацию проводят при температуре 390-410°С в течение 2-3 ч, затем проводят повторную объемную пропитку заготовки раствором олигометилфенилспиросилоксана в ацетоне МФСС-8 в течение 2-30 ч, дополнительно сушат на воздухе в течение 3-24 ч, а затем еще раз полимеризуют при 290-310°С в течение 2-3 ч.

Авторы установили, что проведение двукратной пропитки по всему объему керамической заготовки раствором олигометилфенилспиросилоксана в ацетоне с последующей полимеризацией при температуре 290-310°С и 390-410°С увеличивает термостойкость получаемого материала на 25-30% за счет увеличения температуры начала деструкции отвержденного полимера и уменьшения (в 3,5 - 9,0 раз) выделения газообразных продуктов термодеструкции. Так термостойкость композиционного материала, полученного по способу, описанному в аналоге, составляет 250-350°С при остаточной массе полимера после нагрева 55-65%, а по предлагаемому способу - 500-525°С с остаточной массой при 1000°С - 90-95%. В совокупности отличительные признаки обеспечивают достижение технического результата изобретения.

Авторы установили, что можно менять порядок проведения режимов отверждения полимера. Например, провести отверждение полимера сначала при температуре 390-410°С, потом при температуре 290-310°С. Или наоборот, сначала при температуре 290-310°С, потом при температуре 390-410°С.

Технологический процесс получения заявленного композиционного материала состоит в следующем:

- обезжиривание ацетоном заготовки из кварцевой керамики;

- сушка на воздухе в течение 15-20 мин;

- объемная пропитка заготовки раствором олигометилфенилспиросилоксана в течение 2-30 ч (в зависимости от способа пропитки и габаритов заготовки);

- сушка на воздухе в течение 3 - 24 ч;

- полимеризация при температуре 390-410°С в течение 2-3 ч;

- повторная объемная пропитка заготовки раствором олигометилфенилспиросилоксана в течение 2-30 ч;

- сушка на воздухе в течение 3- 24 ч;

- повторная полимеризация при температуре 290-310°С в течение 2-3 ч;

- механическая обработка заготовки до требуемых размеров.

Примеры выполнения способа

Пример 1. Заготовки из кварцевой керамики обезжиривают ацетоном. Сушат на воздухе 15 мин. Пропитывают заготовки раствором олигометилфенилспиросилоксана в ацетоне (продукт МФСС-8 ТУ 6-02-1352-87 или ТУ 2229-001-64570284-2011) методом «окунания» в течение 20 ч. Сушат на воздухе 3 ч. Проводят полимеризацию при температуре 290°С в течение 2 ч. Повторно пропитывают аналогичным способом и сушат на воздухе 3 ч. Проводят полимеризацию при температуре 390°С в течение 2 ч.

Пример 2. Заготовки из кварцевой керамики обезжиривают ацетоном. Сушат на воздухе 20 мин. Пропитывают заготовки раствором олигометилфенилспиросилоксана в ацетоне (продукт МФСС-8 ТУ 6-02-1352-87 или ТУ 2229-001-64570284-2011) методом «окунания» в течение 30 ч. Сушат на воздухе 24 ч. Проводят отверждение при температуре 410°С в течение 2 ч. Повторно пропитывают аналогичным способом и сушат на воздухе 24 ч. Проводят отверждение при температуре 310°С в течение 2 ч.

Пример 3. Заготовки из кварцевой керамики обезжиривают ацетоном. Сушат на воздухе 20 мин. Пропитывают заготовки раствором олигометилфенилспиросилоксана в ацетоне (продукт МФСС-8 ТУ 6-02-1352-87 или ТУ 2229-001-64570284-2011) с использованием вакуума в течение 2 ч. Сушат на воздухе 6 ч. Проводят полимеризацию при температуре 300°С в течение 3 ч. Повторно пропитывают аналогичным способом и сушат на воздухе 6 ч. Проводят полимеризацию при температуре 400°С в течение 3 ч.

Пример 4. Заготовки из кварцевой керамики обезжиривают ацетоном. Сушат на воздухе 15 мин. Пропитывают заготовки раствором олигометилфенилспиросилоксана в ацетоне (продукт МФСС-8 ТУ 6-02-1352-87 или ТУ 2229-001-64570284-2011) с использованием вакуума в течение 5 ч.

Сушат на воздухе 6 ч. Проводят полимеризацию при температуре 400°С в течение 2,5 ч. Повторно пропитывают аналогичным способом и сушат на воздухе 6 ч. Проводят полимеризацию при температуре 300°С в течение 2,5 ч. Данные экспериментов сведены в таблицу.

Из таблицы видно, что композиционный материал, полученный по предложенному способу, отличается высокой термостойкостью, кроме того, материал обладает повышенной прочностью, низкими значениями газопроницаемости при сохранении диэлектрических свойств на высоком уровне.

Композиционный материал, полученный по предлагаемому способу, может быть применен для изготовления высокотермонагруженных антенных обтекателей ракет.

Источники информации

1. Патент РФ№2474013, H01Q 1/42 от 27.01.13

2. Патент РФ №2270180, С04В 35/14, С04В 41/81 от 20.02.06.

Способ получения композиционного материала, включающий пропитку заготовки из спеченного диоксида кремния пористостью 7,0-12,0% раствором олигометилфенилспиросилоксана в ацетоне МФСС-8, сушку на воздухе в течение 3-24 ч, полимеризацию, отличающийся тем, что полимеризацию проводят при температуре 390-410°С в течение 2-3 ч, затем проводят повторную объемную пропитку заготовки раствором олигометилфенилспиросилоксана в ацетоне МФСС-8 в течение 2-30 ч, дополнительно сушат на воздухе в течение 3-24 ч, а затем еще раз полимеризуют при 290-310°С в течение 2-3 ч.



 

Похожие патенты:
Изобретение относится к огнеупорному восстановленному грануляту и может применяться в производстве огнеупорных бетонов и пластичных масс, например, для заделки лёток, для литья под давлением или в составе огнеупорных строительных растворов.

Изобретение относится к водно-дисперсионным композициям, применяемым при производстве керамических строительных материалов для модификации их свойств путем обработки поверхности готовых изделий.
Изобретение относится к композициям, предназначенным для поверхностной обработки материалов с целью придания им гидрофобных свойств. .
Изобретение относится к нефтедобывающей промышленности, а именно способам интенсификации добычи нефти и газа. .
Изобретение относится к производству бетонных и железобетонных строительных изделий, в частности панелей, блоков, плит, черепицы. .

Изобретение относится к технологии изготовления стеновых материалов для возведения зданий, а именно лицевого кирпича и керамических блоков. .

Изобретение относится к производству керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче углеводородов методом гидравлического разрыва пласта.
Изобретение относится к технологии керамических материалов из кварцевой керамики с повышенной прочностью на изгиб, позволяющей изготавливать керамические экраны для приборов разного назначения и огнеупорные керамические изделия.
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления кремнеземистых легковесных керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП.

Изобретение относится к производству керамических изделий из кварцевой керамики, типа кварцевых тиглей для металлургической промышленности. Предложен способ формования заготовок из кварцевой керамики, включающий приготовление водного шликера кварцевого стекла с плотностью 1,80÷1,91 г/см3, его заливку в пористую форму под давлением и выдержку под давлением в течение заданного времени, в котором формование проводят в форме, выполненной из пористого полимера, под давлением 0,5÷0,8 МПа, а время выдержки шликера под давлением рассчитывают исходя из отношения толщины стенки заготовки к скорости набора, которая составляет 10÷20 мм/ч.

Изобретение относится к нефтегазодобывающей промышленности, а именно к производству керамических проппантов, в частности к подготовке сырьевой смеси, предназначенной для изготовления среднеплотных и легковесных магнезиально–кварцевых проппантов с насыпной плотностью 1,4–1,65 г/см3.

Изобретение относится к керамической промышленности, а точнее к технологии получения кварцевой керамики с пониженной температурой спекания, и может найти широкое применение для производства высокотермостойких керамических изделий различного назначения.

Изобретение относится к способам получения высокоплотных керамических материалов на основе кварцевого стекла - кварцевой керамики с открытой пористостью, близкой к нулю.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических расклинивающих агентов, предназначенных для использования при добыче нефти или газа методом гидравлического разрыва пласта.

Изобретение относится к способу получения сегментированного гелевого композита, содержащего стадии обеспечения листа сегментированного волокном холста или листа сегментированного пенопласта с открытыми порами, объединения листа с предшественником геля, гелеобразования предшественника геля, гелеобразования объединения с получением композитного листа, свертывания в рулон композитного листа и сушки композитного листа с получением сегментированного, армированного гелевого композита.
Изобретение относится к производству бомз-подставок для обжига крупногабаритных керамических изделий из стеклокерамики литийалюмосиликатного состава. Измельчают мокрым способом закристаллизованное стекла, либо забракованные после термообработки изделия, либо использованные бомз-подставки, либо отливки произвольной формы, получаемые из шликеров, оставшихся в подпиточных емкостях формовых комплектов после окончания набора стеклокерамических изделий до получения водного шликера с плотностью 2,10÷2,20 г/см3, с тониной помола с остатком на сите 0,063 мм 7,1÷12,5%.

Изобретение относится к авиационной и машиностроительной промышленности и может быть использовано при создании деталей из конструкционных материалов, в частности для изготовления антенных обтекателей ракет, обладающих высокой прочностью в сочетании с хорошими диэлектрическими характеристиками при высоких температурах и стойкостью к термоудару. Технический результат - повышение термостойкости получаемого композиционного материала, обладающего также повышенной прочностью, низкими значениями газопроницаемости при сохранении диэлектрических свойств на высоком уровне. В способе получения композиционного материала, включающем пропитку заготовки из спеченного диоксида кремния пористостью 7,0-12,0 раствором олигометилфенилспиросилоксана в ацетоне МФСС-8, сушку на воздухе в течение 3-24 ч, полимеризацию, полимеризацию проводят при температуре 390-410°С в течение 2-3 ч. Затем проводят повторную объемную пропитку заготовки раствором олигометилфенилспиросилоксана в ацетоне МФСС-8 в течение 2-30 ч, дополнительно сушат на воздухе в течение 3-24 ч. Затем еще раз полимеризуют при 290-310°С в течение 2-3 ч. 1 табл., 4 пр.

Наверх