Способ снижения карбонатной жесткости воды и устройство для этого

Настоящее изобретение относится к технической области очищения жидкости, а именно к возможности очистки природной или водопроводной воды от солей жесткости, что приводит к умягчению воды, кроме этого изобретение направлено на дополнительное очищение от вредных и нерастворимых примесей, таких как тяжелые металлы, взвешенные частицы и другие. Описан способ снижения карбонатной жесткости воды, включающий в себя обработку воды постоянным электрическим током с осаждением в катодном пространстве карбонатов кальция и магния, удаляемых периодической промывкой в дренаж, и одновременным транспортом ионов кальция и магния под действием электрического поля из анодного в катодное пространство и подкислением отфильтрованной воды в анодном пространстве, в котором катодное и анодное пространство разделены пористой перегородкой, изготовленной из микропористого материала, полученного методом блочной полимеризации резорцина с формальдегидом. Также описано устройство для снижения карбонатной жесткости воды. Технический результат: предложен способ снижения карбонатной жесткости воды, позволяющий обеспечить очистку природной или водопроводной воды в фильтрующем устройстве. 2 н. и 5 з.п. ф-лы, 1 табл., 1 ил.

 

Настоящее изобретение относится к технической области очищения жидкости, а именно к возможности очистки природной или водопроводной воды от солей жесткости, что приводит к умягчению воды, кроме этого изобретение направлено на дополнительное очищение от вредных и не растворимых примесей, таких как тяжелые металлы, взвешенные частицы и другие.

Известно, что природная или водопроводная вода с большим содержанием солей (гидрокарбонатов, хлоридов и сульфатов) называется жесткой, с малым содержанием - мягкой.

В воде родников и колодцев всегда присутствуют соли щелочноземельных металлов в той или иной степени. Их источники - отложения в почве известняков, доломитов, гипса. Жесткость воды в природе подвержена изменениям в течение года: она увеличивается при испарении в жару и уменьшается весной и осенью. Талые и дождевые воды очень мягкие. В колодцах и артезианских скважинах концентрация солей постоянна, если они правильно изготовлены и изолированы от верхних стоков.

Есть несколько признаков, которые помогут это понять:

Ткани после стирки становятся жесткими на ощупь. На поверхности белья остаются продукты взаимодействия жирных кислот мыла и солей Са и Mg (белые разводы).

Моющие средства образуют мало пены, появляются хлопья, требуется большее количество мыла или порошка для стирки. Ионы кальция и магния реагируют с мыльными веществами, образуя устойчивые соли, чем снижают моющую способность средств.

Стенки чайника зарастают накипью. Выпавший осадок и есть карбонатные соли.

Краны постепенно покрываются налетом после испарения водопроводной воды с поверхности.

После умывания возникает ощущение стянутости и сухости кожи лица, растворяется защитная жировая пленка.

При умывании мягкой водой создается впечатление, что мыло не смывается, но это не так. Мягкой водой не смывается естественная защита кожи, что для нее очень полезно.

Различают несколько видов жесткости:

Временную (карбонатную) жесткость, обусловленную гидрокарбонатами кальция и магния Са(НСO3)2; Mg(HCO3)2:

Постоянную (некарбонатную) жесткость, вызванную присутствием других солей, не выделяющихся при кипячении воды: в основном, сульфатов и хлоридов Са и Mg (CaSO4, СаСl2, MgSO4, MgCl2).

Различают несколько вариантов умягчения воды, один из них электродиализ. Основан он на удаление из воды солей под действием электрического поля.

Из предшествующего уровня техники известен один из способов уменьшения карбонатной жесткости циркуляционной воды оборотных схем охлаждения (авторское свидетельство СССР №132132А от 20.09.1960) направленный на повышение эффективности процесса, упрощения и удешевления его. Способ осуществляется за счет пропускания постоянного электрического тока через циркуляционную воду, при плотности его, отвечающей катодному процессу, протекающему с кислородной деполяризацией, причем на катоде происходит осаждение карбоната кальция и гидрата окиси магния вследствие нейтрализации бикарбонатного аниона ионами гидроксила, образующихся в катодном пространстве за счет ассимиляции электронов кислородом, находящихся в циркуляционной воде. Недостатками работы данного способа является:

- быстрое покрытие катода слоем осадка солей жесткости, после чего его нужно заменять или каким-то образом удалять осадок, из-за чего данная система уменьшения жесткости воды может работать только на оборотной воде.

- отсутствие разделения катодного и анодного пространства, так что часть обрабатываемой воды не подвергается очищению, соответственно показатель эффективности уменьшения жесткости воды снижается.

Так же известен еще один способ, направленный на регенерацию композиционного адсорбционного углеродного материала от адсорбированных веществ (патент №2171139 от 05.01.2000 г.). Работа способа заключается в заполнении слоя адсорбента раствором электролита с последующим пропусканием электрического тока. Причем при заполнении слоя адсорбента раствором электролита, удельная объемная электропроводность композиционного адсорбционного углеродного материала отличается от удельной объемной электропроводности электролита не более чем на порядок, а электрический ток пропускают с удельной плотностью не менее 0,01 ампер на грамм композиционного адсорбционного углеродного материала. Такой способ позволяет достичь высокой степени регенерации от органических, как полярных, так и неполярных, веществ и ионов тяжелых металлов.

Недостатком работы данного способа является разделение работы на две фазы: адсорбция из раствора и регенерация адсорбента под действием электрического тока, что приводит к малой эффективности очистки в отношении солей жесткости и соответственно к умягчению жесткости воды.

Так же известен еще один способ, направленный на уменьшение жесткости воды (патент №2137721 от 16.07.1998 г.), и обеспечивает повышение эффективности очистки воды от солей жесткости. Работа способа осуществляется следующим образом: в аппарате, имеющем в верхней части водослив для отвода обработанной воды, а в нижней части входной патрубок с защитой от наносов и сбросной клапан, размещены цилиндры круглого или другого геометрического сечения, которые служат катодом, а размещенный по оси каждого цилиндра анод выполнен в виде перфорированных трубок. Наружная поверхность анодов может быть покрыта диэлектрической краской, между катодом и анодом могут быть установлены проницаемые для ионов перегородки в виде цилиндрических или расширяющихся кверху усеченных конусов, а над отверстиями перфорированных анодов могут быть выполнены отгибы или козырьки, направляющие выделяющиеся на аноде газы внутрь трубок.

Недостатком работы заявленного способа является разделение работы на две фазы: адсорбция из раствора и регенерация адсорбента под действием электрического тока, что приводит к малой эффективности очистки в отношении солей жесткости и соответственно к умягчению жесткости воды.

По своим техническим характеристикам наиболее близкое к заявляемому является способ уменьшения жесткости воды (прототип по патенту №2148026 от 16.07.1998) направленный на снижение жесткости воды, предотвращение образования накипи на поверхностях теплообменников, бактерицидной обработки воды за счет выделения на катоде активного хлора. Процесс работы проводится в электролизере, рабочая поверхность которого служит катодом, а анод расположен коаксиально внутри электролизера по всей его длине. Водяной поток пропускают в ламинарном режиме вдоль оси электролизера и при достижении определенной толщины слоя осадка на катоде подают импульс тока, превышающего ток ионизации кислорода, достаточный для бурного выделения на катоде водорода, при этом направление движения водного потока изменяют на противоположное. Ионизацию кислорода катализируют за счет использования материалов с высоким перенапряжением выделения водорода, а водный поток перед обработкой электрическим током аэрируют.

Недостатками работы данного способа являются:

- отсутствие разделения катодного и анодного пространства, так что часть обрабатываемой воды может не подвергаться очистки;

- возможность попадания частиц осадка в очищенную воду.

Задачей заявляемого технического решения является разработка способа снижения карбонатной жесткости воды и устройство для этого, позволяющие обеспечить очистку природной или водопроводной воды от карбонатной жесткости, в фильтрующем устройстве.

Дополнительные задачи изобретения заключаются в обеспечении очищенной воды лучшими органолептическими показателями и отсутствием осадков и налета при кипячении во время использования фильтрующего устройства.

Технический результат способа снижения карбонатной жесткости воды, включающий в себя обработку воды постоянным электрическим током с осаждением в катодном пространстве карбонатов кальция и магния, удаляемых периодической промывкой в дренаж и одновременным транспортом ионов кальция и магния под действием электрического поля из анодного в катодное пространство и подкислением отфильтрованной воды в анодном пространстве, достигается за тем, что катодное и анодное пространство разделены пористой перегородкой, изготовленной из материала, обладающего способностью к адсорбции ионов кальция и магния.

Возможен вариант развития способа снижения карбонатной жесткости воды, включающий в себя обработку воды постоянным электрическим током с осаждением в катодном пространстве карбонатов кальция и магния, удаляемых периодической промывкой в дренаж и одновременным транспортом ионов кальция и магния под действием электрического поля из анодного в катодное пространство и подкислением отфильтрованной воды в анодном пространстве, при этом, что катодное и анодное пространство разделены пористой перегородкой, изготовленной из микропористый материал, полученного методом блочной полимеризации резорцина с формальдегидом.

Возможен вариант развития способа снижения карбонатной жесткости воды, в котором, фильтрация воды осуществляется через пористую перегородку из катодного в анодное пространство.

Возможен вариант развития способа снижения карбонатной жесткости воды, в котором обработка воды электрическим током осуществляется в промежутках между циклами фильтрации.

Возможен вариант развития способа снижения карбонатной жесткости воды, в котором обработка воды электрическим током осуществляется непосредственно в процессе фильтрации.

Возможен вариант развития способа снижения карбонатной жесткости воды, в котором может использовать микропористый материал, изготовленный из керамического материала.

Технический результат устройства для снижения карбонатной жесткости воды включающее в себя анод и катод, заключается в том, что фильтрующее устройство состоит из корпуса с крышкой, внутри которых помещены два цилиндрических электрода - внешний анод и внутренний катод, причем электроды разделены проницаемой фильтрующей перегородкой, изготовленной из пористого материала.

Возможен вариант развития устройства для снижения карбонатной жесткости воды включающее в себя анод и катод, в котором фильтрующее устройство состоит из корпуса с крышкой, внутри которых помещены два цилиндрических электрода - внешний анод и внутренний катод, причем электроды разделены проницаемой фильтрующей перегородкой, изготовленной из пористого материала, обладающего способностью к адсорбции ионов кальция и магния.

Возможен вариант развития устройства для снижения карбонатной жесткости воды, в котором перегородка может быть изготовлена из микропористого материала, полученного методом блочной полимеризации резорцина с формальдегидом.

Для более полного раскрытия сущности заявляемого технического решения на чертеже показано фильтрующее устройство.

Фильтрующее устройство состоит из цилиндрических электродов - внешнего анода поз.1 и внутреннего катода поз. 2, причем электроды разделены проницаемой фильтрующей перегородкой, изготовленной из микропористого материала, полученного методом блочной полимеризации резорцина с формальдегидом. Поз. 3 - стакан фильтра, поз. 4 - фильтрующий картридж, поз. 5 - дренажный сброс, поз. 6 - крышка фильтра, поз. 7 - выход фильтрата, поз. 8 вход потока воды, поз. 9 - отверстие сброса газов.

Поток фильтруемой воды в фильтрующем устройстве имеет радиальное направление от катода (поз. 2) к аноду (поз. 1), см. чертеж.

При этом обработка воды электрическим током осуществляется как в промежутках между циклами фильтрации, так и непосредственно в процессе фильтрации.

Между внешним анодом (поз. 1) и внутренним катодом (поз. 2), находится проницаемая фильтрующая перегородка, которая может быть изготовлена из несколько видов материалов:

- микропористый материал, полученный методом блочной полимеризации резорцина с формальдегидом;

- микропористый материал, изготовленный из керамического материала;

- пористый материал, изготовленный из керамического материала;

пористый материал, изготовленный из прессованного мелкофракционного активированного угля;

- пористый материал, содержащий моноблочный материал из активированного угля;

- пористый материал, содержащий гранулы ионообменной смолы;

- пористый материал, содержащий дробленый цеолит.

В составе микропористого материала, находятся ионообменные группы, которые могут улавливать катионы кальция и магния по ионообменному механизму. Попутно данный материал улавливает катионы тяжелых металлов. Внутри фильтрующего устройства находится картридж из прессованного мелкофракционного активированного угля.

Техническое решение настоящего изобретения реализуется следующим образом:

Во время регенерации под действием приложенного к электродам (поз. 1 и 2) напряжения во внутреннем объеме корпуса фильтра, заполненного жесткой водой, возникает электрический ток ионов Са2+, Mg2+, как растворенных в воде, так, в некоторой степени, и осевших в матрице полимера во время фильтрации, к стенке корпуса фильтра (катоду (поз. 2)). В противоположном направлении (к аноду (поз. 1)) движутся анионы солей жесткости (Сl-, НСО3-, СО32-, SO42- и др.). На катоде (поз. 2) происходит электрохимическое восстановление катионов водорода до газообразного водорода, который удаляется через воздушный клапан (чертеж) по химическим реакциям (1, 2):

Анионы ОН- остаются в воде, создавая щелочную среду. В присутствии ОН- протекает ряд химических реакций:

При этом, чем более щелочная среда, тем более равновесие сдвинуто в сторону образования карбонат-аниона и, соответственно, карбонатов кальция и магния. Карбонаты кальция и магния частично оседают на катоде (поз. 2) и внешней стенке фильтрующего картриджа (поз. 4), а большая их часть смывается в дренажный сброс (поз. 5), т.к. во время регенерации постоянно происходит медленный слив воды из корпуса. В результате данных превращений в пространстве между катодом (поз. 2) и внешней стенкой картриджа (поз. 4) снижается жесткость.

На аноде (поз. 1) происходит электрохимическое окисление кислорода воды и хлорид-аниона по реакциям (6), (7):

Кислород удаляется через отверстие сброса газов (поз. 9), а в объеме воды, прилегающем к аноду (поз. 1), происходит накопление катионов водорода (кислоты), что препятствует осаждению солей жесткости во внутреннем пространстве картриджа (поз. 4).

Таким образом, во время регенерации происходит частичное вымывание катионов кальция и магния из объема матрицы фильтрующего картриджа (поз. 4) с восстановлением его ионообменной емкости к солям жесткости и выпадение карбонатов кальция и магния в осадок в объеме воды внутри корпуса фильтра, которые постоянно смываются через дренажный сброс (поз. 5). Также происходит подкисление воды, которая затем смывается в фильтрат. В целом, процесс регенерации позволяет потребителю во время фильтрации отбирать воду с пониженными рН и жесткостью, а из воды с пониженным рН осаждение солей жесткости на нагревательных элементах приборов и аппаратов затруднено.

Проведенные опытные исследования показали эффективность настоящего изобретения.

1. Способ снижения карбонатной жесткости воды, включающий в себя обработку воды постоянным электрическим током с осаждением в катодном пространстве карбонатов кальция и магния, удаляемых периодической промывкой в дренаж, и одновременным транспортом ионов кальция и магния под действием электрического поля из анодного в катодное пространство и подкислением отфильтрованной воды в анодном пространстве, отличающийся тем, что катодное и анодное пространство разделены пористой перегородкой, изготовленной из микропористого материала, полученного методом блочной полимеризации резорцина с формальдегидом.

2. Способ снижения карбонатной жесткости воды по п. 1, отличающийся тем, что фильтрация воды осуществляется через пористую перегородку из катодного в анодное пространство.

3. Способ снижения карбонатной жесткости воды по п. 1, отличающийся тем, что обработка воды электрическим током осуществляется в промежутках между циклами фильтрации.

4. Способ снижения карбонатной жесткости воды по п. 1, отличающийся тем, что обработка воды электрическим током осуществляется непосредственно в процессе фильтрации.

5. Способ снижения карбонатной жесткости воды по п. 1, отличающийся тем, что может использовать микропористый материал, изготовленный из керамического материала.

6. Устройство для снижения карбонатной жесткости воды, включающее в себя анод и катод, отличающееся тем, что фильтрующее устройство состоит из корпуса с крышкой, внутри которых помещены два цилиндрических электрода - внешний анод и внутренний катод, причем электроды разделены проницаемой фильтрующей перегородкой, изготовленной из пористого материала, обладающего способностью к адсорбции ионов кальция и магния.

7. Устройство для снижения карбонатной жесткости воды по п. 6, отличающееся тем, что перегородка может быть изготовлена из микропористого материала, полученного методом блочной полимеризации резорцина с формальдегидом.



 

Похожие патенты:

Изобретение относится к способу снижения содержания общего органического углерода в сточных водах, полученных в результате процесса получения оксида олефина. Способ включает контактирование водной смеси М1, содержащей оксигенат, который представляет собой антрахинон и/или производные антрахинона, с адсорбирующим средством, адсорбцию части оксигената на адсорбирующем средстве, отделение водной смеси М2 от адсорбирующего средства, причем смесь М2 является обедненной адсорбированным оксигенатом, выделение оксигената из смеси М2 посредством подвергания смеси М2 обратному осмосу в узле обратного осмоса, содержащем мембрану обратного осмоса, с получением водной смеси М3, обедненной этим оксигенатом.

Изобретение относится к устройствам для очистки жидкости и используется в основном совместно с фильтрами кувшинного типа, которые применяются практически везде, где есть необходимость получения чистой питьевой воды.
Изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении алмазосодержащих кимберлитовых руд, характеризующихся высоким содержанием глинистых материалов, преимущественно сапонита, добываемых на месторождениях Архангельской области РФ.

Изобретение относится к области очистки воды, технологических жидкостей, смазочно-охлаждающих жидкостей, моющих растворов от содержащихся в них взвешенных примесей и может быть использовано на станциях водоподготовки и промышленных производствах.

Изобретение относится к области медицины, а именно к медицинской технике и дезинфектологии, и предназначено для стерилизации медицинских и стоматологических инструментов.

Изобретение относится к санитарно-техническому оборудованию и может быть использовано в системе хозяйственно-питьевого водоснабжения жилых и производственных помещений, дачных участков, а также в пассажирском железнодорожном транспорте.

Заявленное изобретение относится к опреснению воды вакуумным дистилляционным методом и может быть использовано для опреснения и обезвреживания непригодной для употребления воды в районах с большим количеством солнечных дней.

Изобретение относится к ионообменным материалам, способным удалять радионуклиды из воды. Способ селективного удаления радионуклидов стронция из водного потока, содержащего катионы стронция и по меньшей мере один из катионов натрия, калия, кальция или магния, заключается в приведении водного потока в контакт с аморфным силикатом титана, который получают в результате контактирования раствора растворимой соли титана с силикатом натрия и достаточным количеством щелочи при интенсивном перемешивании.

Изобретение относится к области техники обработки воды и, более конкретно, к системе очистки воды. Система очистки воды (100) содержит: блок составного фильтрующего картриджа (1), подкачивающий насос (4), электромагнитный клапан (7) сбросной воды и устройство аккумулирования воды.

Группа изобретений может быть использована в химической промышленности для обработки потока природного газа, содержащего соединения серы, включая сероводород и бисульфиды, с образованием элементарной серы.

Изобретение может быть использовано для умягчения и очистки жесткой, питьевой воды от ряда неорганических и органических примесей как в домашних, так и в производственных условиях. Для осуществления способа проводят фильтрование воды через последовательно расположенные три ступени очистки. Первая ступень включает картридж с загрузкой из смеси фильтрующих материалов, при этом по крайне мере один из компонентов представляет собой карбоксильную катионообменную смолу в кислой форме. Вторая ступень включает картридж, состоящий из ионообменной смолы и резорцин-формальдегидного ПГС-полимера, а третья ступень содержит фильтрующий материал, обладающий буферными свойствами, содержащий активированный уголь. Способ обеспечивает эффективную очистку воды от взвешенных веществ, солей жесткости и железа, активного хлора, органических и хлорорганических соединений, а также приводит к улучшению органолептических качеств полученной воды при сохранении минимального остаточного полезного уровня жесткости. 2 ил.

Изобретение может быть использовано в технологии очистки шахтных вод от меди, никеля, марганца и солей жесткости для получения воды хозяйственно-питьевого назначения вплоть до норм, предъявляемых к питьевой воде. Способ осуществляют путем комплексной многоступенчатой очистки воды. На первой стадии шахтные воды фильтруют через загрузку кварцевого песка крупностью 0,8-2,0 мм, на второй стадии медь, никель и марганец извлекают в трех и более сорбционных фильтрах аминодиацетатным ионитом с расходом 5-10 удельных объемов по загрузке одного фильтра. Затем шахтные воды обрабатывают 20%-ным раствором карбоната натрия до рН 6,5-8,5. Образующиеся карбонаты кальция и магния удаляют на стадии ультрафильтрации и очищенные воды обеззараживают ультрафиолетовым излучением. Способ обеспечивает комплексную очистку шахтных вод от загрязняющих элементов с высокой эффективностью удаления примесей. 1 табл., 2 пр.

Изобретение относится к области очистки морской воды, а именно к устройствам для обезвреживания судовых балластных вод. Установка может быть использована в качестве штатного судового оборудования для обезвреживания балластной воды, а также как образец-прототип технологии при проведении береговых или морских испытаний с целью последующей сертификации в IMO. Установка для обезвреживания судовых балластных вод включает по меньшей мере один фильтр, содержащий размещенный в его корпусе фильтрующий элемент в виде спирально навитой на каркас проволоки треугольного сечения, устройство генерации ионов меди, блок озонирования, блок ультрафиолетового облучения, дозатор биоцида, систему мониторинга и управления, насосы, трубопроводы и запорную арматуру. Установка выполнена в виде многофункционального модуля, в котором элементы установки в виде устройства генерации ионов меди, блока озонирования и блока ультрафиолетового облучения заключены в корпусе размещенного в нем фильтра. Для этого фильтр выполнен с возможностью подачи обрабатываемой воды вовнутрь фильтрующего элемента, установленного по оси фильтра, через сквозные окна, образованные в нижнем днище корпуса фильтра, и последующего вывода обработанной воды на выход из фильтра через окна, образованные в его промежуточном днище. Фильтрующий элемент закреплен между упомянутыми днищами и изготовлен из преимущественно титановой проволоки треугольного сечения путем навивки на титановый каркас с отверстиями таким образом, что основание треугольника в сечении проволоки обращено по направлению вовнутрь фильтрующего элемента. Вершина треугольника при этом обращена наружу. Внутри фильтрующего элемента коаксиально с его продольной осью размещена с возможностью вращения и возвратно-поступательного перемещения в осевом направлении турбина, содержащая не менее двух спиральных лопастей геликоидной формы, закрепленных по торцам в опорных дисках и снабженных медными щетками, установленными соприкасающимися с внутренней поверхностью фильтрующего элемента. Щетки в совокупности представляют собой устройство генерации ионов меди. Блок ультрафиолетового облучения размещен вокруг фильтрующего элемента в кольцевом зазоре между наружной поверхностью фильтрующего элемента и внутренней стенкой корпуса фильтра и состоит из расположенных по кругу ультрафиолетовых ламп, защищенных кварцевыми чехлами, верхний торец которых сообщен с атмосферой. Блок также содержит озоногенерирующую камеру, образованную пространством внутри кварцевого чехла вокруг ультрафиолетовой лампы и выполненную с возможностью принудительной утилизации озона. В качестве дозатора биоцида использован бромселективный фильтр, который расположен на верхнем днище, в виде крышки модуля, на выходе воды из фильтра, и выполнен с возможностью протока через него морской воды. Морская вода предварительно прошла очистку на фильтрующем элементе, обработку ультрафиолетовыми лучами и обогащенной ионами меди. Вход воды в фильтр организован через дренажную перегородку в крышке модуля, проницаемую для морской воды и непроницаемую для частиц бромселективной фильтрующей загрузки. В состав установки введен установленный в трубопроводной магистрали на выходе воды из модуля водовоздушный эжектор, с воздушной полостью которого сообщена нижняя полость озоногенерирующей камеры. Техническим результатом изобретения является повышение эффективности работы оборудования в отношении качества очистки морской воды и снижение удельных затрат (трудовых, энергетических, материальных) при одновременном обеспечении экологической и санитарной безопасности человека и окружающей среды. 4 з.п. ф-лы, 8 ил.

Группа изобретений может быть использована в области переработки осадков сточных вод для снижения класса опасности механически обезвоженных осадков при их последующей утилизации. Технология способа включает приготовление смеси из адсорбента и инертного материала, смешивание активной смеси и механически обезвоженных осадков сточных вод, и подсушивание смеси до влажности 0-20% с получением конечной смеси. В качестве адсорбента используют акваионит, при этом масса адсорбента составляет не менее 3% от абсолютно сухой массы механически обезвоженных осадков сточных вод. В качестве инертного материала используют песок, при этом масса инертного материала составляет 15-450% от массы механически обезвоженных осадков сточных вод. Обработка каменистых включений инертного материала включает определение влажности инертного материала, дробление каменистых включений и их просеивание. В некоторых вариантах способа в качестве инертного материала используют сухой или влажный песок, к активной смеси добавляют реагент из гуматов, а разбавление смеси инертным материалом выполняют до и после подсушивания. 6 н. и 8 з.п. ф-лы, 10 ил.

Группа изобретений может быть использована на водоочистных станциях. Устройство для разделения фракций твердых веществ для регулирования времени обработки твердых отходов содержит классификационную сетку, осуществляющую преимущественную селекцию фракций с временем обработки твердых отходов большим, чем требуемый порог. Время обработки твердых отходов регулируется вручную или автоматически. Устройство выполнено с возможностью оптимизации селекции организмов или частиц, удерживаемых сеткой, а также возврата по меньшей мере части удержанных организмов или частиц во входную часть устройства. Удержанные организмы или частицы включают в себя организмы биологического происхождения или твердые вещества, имеющие химически реактивные свойства. Для удерживания фракции с меньшим временем обработки твердых отходов используют сепаратор твердой и жидкой фаз. Группа изобретений позволяет извлекать организмы или твердые вещества конкретного диапазона размеров. 2 н. и 13 з.п. ф-лы, 19 ил.

Изобретение может быть использовано в водоочистке. Система (100) очистки воды содержит блок (1) составного картриджа фильтра, подкачивающий насос (4) и электромагнитный клапан (7) сбросной воды. Блок (1) составного картриджа фильтра содержит корпус (11) фильтра и составной картридж фильтра. В корпусе (11) фильтра имеется впуск (111) сырой воды, выпуск (114) предварительно обработанной воды, впуск (115) предварительно обработанной воды, выпуск (112) очищенной воды и выпуск (113) концентрированной воды. Составной картридж фильтра содержит фильтрующую часть и картридж фильтра, улучшающий вкусовые качества воды, расположенные вдоль вертикального направления. Выпуск (114) предварительно обработанной воды соединен со стороной выпуска воды картриджа фильтра предварительной обработки фильтрующей части и с подкачивающим насосом (4). Впуск предварительно обработанной воды соединен со стороной впуска воды картриджа (112) фильтра тонкой очистки фильтрующей части и с подкачивающим насосом (4). Изобретение позволяет упростить конструкцию системы, уменьшить ее размеры, повысить надежность и срок службы. 9 з.п. ф-лы, 4 ил.

Изобретение относится к электровихревой обработке воды, используемой для питьевых целей, и может быть использовано в промышленности, медицине, микроэлектронике и сельском хозяйстве при орошении сельскохозяйственных культур в системах капельного орошения. Электроактиватор воды включает камеру активации 1, состоящую из корпуса 5, внутри которого коаксиально установлены наружный 2 и внутренний 3 электроды. Наружный электрод 2 выполнен в виде отрезка трубы из нержавеющей стали, стойкой к электрохимической коррозии. Внутренний электрод 3 выполнен в виде спирального перфорированного трубопровода из нержавеющей стали, стойкой к электрохимической коррозии. Внутренний 3 и наружный 2 электроды разделены полупроницаемой диафрагмой 4 из микропористой пластмассы. Корпус 5 электроактиватора со стороны подводящего трубопровода 6 закрыт крышкой 7 из диэлектрического материала, имеющей герметичные уплотнения, а с другой стороны - закрыт крышкой 8 с отводящим патрубком 9. Подвод электрического потенциала к внутреннему электроду 3 выполнен с помощью шины 10, присоединенной к его наружной поверхности за крышкой 7 у подводящего трубопровода 6, а к наружному электроду 2 - с помощью шины 11, присоединенной к его наружной поверхности. В корпусе 5 электроактиватора выполнены перегородки 12 и отсеки 13, имеющие в нижней части сливные отверстия, образующие осадочную камеру 14. Изобретение позволяет в процессе активации воды очистить ее от солевого осадка, повысить качество воды и производительность электроактиватора. 1 з.п. ф-лы, 1 ил.
Наверх