Светильник

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света, за счет использования светоизлучающих диодов. В светильнике, содержащем набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400-800 нм, снабженных драйверами питания, согласно изобретению использованы светодиоды, спектры излучения которых находятся в диапазоне 400-675 нм, при этом спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной частоте излучения, причем использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 200 Вт и более каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет, с возможным отклонением от центральной частоты на ±15 нм, при этом драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет, с возможным отклонением указанных значений энергии на ±30%. Кроме того, тип спектра сформирован набором однотипных светодиодов с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Кроме того, названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм. Изобретение обеспечивает светильнику спектр излучения, соответствующий солнечному свету в диапазоне 400-675 нм. 2 з.п. ф-лы, 6 ил., 3 табл.

 

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов для использования в световыращивательных технологиях.

Известен светильник, содержащий набор светодиодов с разными спектрами излучения, снабженных драйверами, при этом в составе светильника использованы двенадцать красных светодиодов с длиной волны 660 нм, шесть оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм (см. US №6921182).

Известен также светильник, содержащий набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне длин волн порядка 400-800 нм, снабженных драйверами (см. RU №2504143, 2014). При этом в составе светильника использованы по меньшей мере два типа светодиодов, причем предпочтительно, чтобы светодиоды первого типа излучали в области синего цвета с длиной волны от 400 нм до 500 нм, а светодиоды второго типа излучали в области красного цвета с длиной волны от 600 нм до 700 нм, причем свет, излучаемый первой группой светодиодов, состоит приблизительно из 80%-90% красного света и 10%-20% синего света. Такие светильники с двух спектральным излучением (синий свет с центральной длиной излучений 440 нм и красный свет с центральной длиной излучений 660 нм) принято называть светильниками полного спектра «Full Spectrum» или растительными светильниками «Grow Light». Также стали производить отдельные светодиоды полного спектра «Full Spectrum» или растительные светодиоды «Grow Light» (http://alled.ru/gr5-fito-led.html?sl=RU; https://ru.aliexpress.com/item/Hontiey-380Nm/32673210204.html?spm=a2g0v.10010108.1000015.60.603e552b6F0qEU.

Все перечисленные решения были направлены на получение оптимального сочетания длин волн для усиления темпов роста растений, а также снижение энергопотребления и увеличение срока службы светильников, при их технической реализации по сравнению с существующими световыращивательными технологиями, но не обеспечивают спектр излучения близкий к спектру солнца. Кроме того, сочетание длин волн, выбранных для усиления роста растений в существующих технических решениях непривлекательно для людей, наблюдающих освещенное растение, а иногда даже вредно для глаз.

Задача, на решение которой направлено изобретение, - обеспечение в светильнике спектра излучения соответствующего спектру солнечного света в моделируемом диапазоне длин волн 400-675 нм.

Технический результат, проявляющийся при решении поставленной задачи, заключается в обеспечении для светильника спектра излучения, близкого к спектру излучения солнечного света в моделируемом диапазоне длин волн 400-675 нм, при минимизации общего количества используемых светодиодов.

Для решения поставленной задачи, светильник, содержащий набор известных светодиодов с разными спектрами излучения, снабженных драйверами питания, отличается тем, что в нем использованы светодиоды, максимальные амплитуды излучения которых находятся в диапазоне длин волн 400-675 нм, при этом спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной длине волны излучения, причем использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 1000 Вт каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет, с возможным отклонением от центральной длины волны на ±15 нм, при этом драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет, с возможным отклонением указанных значений энергии на ±30%. Кроме того, тип спектра сформирован набором однотипных светодиодов с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Кроме того, названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

При этом совокупность признаков отличительной части формулы изобретения обеспечивают светильнику спектр излучения соответствующего естественному солнечному свету, причем отличительные признаки отличительной части формулы изобретения обеспечивают решение нижеследующего комплекса функциональных задач.

Признаки «… использованы светодиоды, максимальные амплитуды излучения которых находятся в диапазоне длин волн 400-675 нм…» обеспечивают максимально полное приближение к спектру солнечного света, при минимальном количестве используемых типов светодиодов.

Признаки «… спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона…» способствуют выравниванию (снижению волнистости) суммарного спектра светильника.

Признаки, указывающие, что спектры, составляющие набор светодиодов, перекрывают друг друга «предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной длине волны излучения», также способствуют снижению волнистости суммарного спектра светильника.

Признаки, указывающие, что «использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 1000 Вт каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет», обеспечивают формирование светильником спектра излучения близкого к солнечному свету.

Признаки, указывающие, что возможно отклонение излучаемого светодиодами спектра «от центральной длины волны на ±15 нм», задают параметры, обеспечивающие компоновку линейки или матрицы светодиодов.

Признаки, указывающие, что «драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет», обеспечивают необходимое выравнивание излучений светодиодов, снижающее волнистость суммарного спектра светильника.

Признаки, указывающие, что возможно отклонение уровня энергии подаваемой на светодиоды на ±30%, задают параметры подачи энергии на светодиоды, обеспечивающие оптимальную компоновку линейки или матрицы светодиодов.

Признаки, указывающие, что «тип спектра сформирован набором однотипных светодиодов, с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра», обеспечивают возможность использования как одиночного светодиода большой мощности, так и матрицы, сформированной из нескольких светодиодов малой мощности.

Признаки, указывающие, что «названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм», конкретизируют технические характеристики светодиодов.

На фиг. 1 показаны спектры излучения восьми типов использованных светодиодов, выровненных по мощности излучения; на фиг. 2 показан спектр суммарного излучения восьми светодиодов, соответствующий солнечному спектру (коричневая кривая (real SUN) - спектр солнца, а розовая кривая (Sun 8 Реш) - спектр светильника из восьми светодиодов); на фиг. 3 показан спектр излучения трех типов светодиодов (Cyan, Green, Warm White) и суммарного их спектра при различной ширине полосы излучения Green светодиода; на фиг. 4 показана матрица из восьми светодиодов разного типа, формирующая суммарный спектр излучения, в диапазоне частот 400-675 нм, который соответствует солнечному спектру; на фиг. 5 показан реальный суммарный спектр излучения матрицы из восьми светодиодов разного типа; на фиг. 6 показана плотность мощности излучения светодиодов разного номинала мощности, составляющих матрицу и их суммарной мощности без применения регулирования драйверами.

В настоящее время промышленность выпускает различные светодиоды с узкой и широкой полосой излучения, с пиком излучения, приходящимся на одну или несколько определенных частот света. Охвачен широкий диапазон частот света от УФ излучения до красного и инфракрасного света. Кроме того, имеются светодиоды белого света с различной цветовой температурой.

Таким образом, если имеется набор светодиодов с различными спектрами (фиг. 1), то из них можно набрать линейку или матрицу светодиодов с перекрытием спектральных кривых на уровне примерно 0,4-0,6 и тогда они, суммируя свои энергетические параметры, будут формировать спектр излучения соответствующий солнечному свету (см. фиг. 2). Таким образом, если известен моделируемый диапазон спектра солнечного излучения, то подбирая различные светодиоды с разным спектром и разной центральной длиной излучения и задавая им разную интенсивность излучения, можно получить источник света очень похожий по своему спектру на солнечное излучение. Трудность заключается в том, что светодиоды имеют очень узкий спектр генерирования излучения на определенной длине волны и непостоянный уровень мощности излучения при одних и тех же номиналах выпускаемой продукции у разных производителей и даже в пределах одной партии у одного и того же производителя. Поэтому для перекрытия всего диапазона фотосинтетически активной радиации солнечного спектра требуется большое количество разных типов светодиодов. Однако чем больше количество используемых светодиодов, тем труднее подобрать их точные, мощность, частоту и режимы питания по току, чтобы синтезируемая полоса частот в точности соответствовала солнечному спектру.

Для того чтобы спектр светового излучения получившегося светильника не имел волнообразный характер, а был бы равномерным, надо чтобы спектры отдельных светодиодов были бы примерно одинаковой формы (ширины) и пересекались друг с другом на уровне 0,4-0,6 от максимума. Если, например, есть два зеленых (Green) светодиода каждый из которых излучает максимум световой энергии на длине волны 523 нм, а на уровне 0,5 ширина полосы излучения первого будет 37 нм («Green F»), а второго 70 нм («Green W»), то при суммировании с соседними светодиодами (Cyan и Warm White) появится неравномерность (волнообразный характер), что приводит к отличию полученного спектра от спектра солнца (в данном случае в диапазоне длин волн 480-580 нм), хотя в среднем энергия будет такая же. На (Фиг. 3) изображены спектры излучения трех типов светодиодов по отдельности (Cyan, Green, Warm White) и их суммарного спектра при различной ширине полосы излучения Green светодиода. Светло-зеленым сплошным цветом изображен спектр излучения светодиода Green с широкой полосой излучения на уровне 0,5 от максимума равной 70 нм (обозначение «Green W»). Светло-зеленым пунктиром изображен спектр излучения светодиода Green с узкой полосой излучения на уровне 0,5 от максимума равной 37 нм (обозначение «Green F»). При суммировании энергии излучения двух светодиодов Cyan и Warm White с одним из «Green W» или «Green F» получается суммарный спектр, изображенный на фиг. 3 темно-зеленым цветом, причем сплошной цвет - суммарное излучение включает «Green W», а темно-зеленый пунктир - суммарное излучение включает «Green F». Хорошо видно, что широкие спектры отдельных светодиодов способствуют получению гладкого равномерного характера спектра суммарного излучения, в то время как узкие спектры отдельных светодиодов приводят к неравномерному (волнообразному характеру) суммарного спектра и увеличению ошибки воспроизведения заданного солнечного спектра.

По каждому типу светодиодов спектрофотометром «ТКА-Спектр» были сняты спектральные и энергетические параметры (фиг. 1 и фиг. 6), которые позволили сформировать излучение светильника близкое к солнечному спектру (фиг. 2).

Моделируемый диапазон 400-675 нм из диапазона фотосинтетически активной радиации солнечного спектра, составляющего 400-800 нм, реализуется набором из восьми типов светодиодов имеющих разную мощность. Например, из этого набора есть три светодиода мощностью 10 Вт следующего состава: WW - теплый белый, GR - зеленый и FS - растительный свет, и пяти светодиодов мощностью 3 Вт следующего состава: Violet - фиолетовый, Royal Blue - королевский синий, Blue - синий, Cyan - голубой, Deep Red - глубокий красный (см. фиг. 6). На фиг. 6 видно, что максимальные значения плотности мощности излучения, измеренные прибором спектрофотометром «ТКА-Спектр» на расстоянии 50 см от центра светодиодов, по их оси, имеют разную амплитуду и разные пики излучения. В данном случае на все 10 Вт светодиоды подавался один и тот же ток 900 мА, а на все 3 Вт светодиоды - ток 600 мА (табл. 1). Если просто просуммировать мощности всех спектров излучения указанных светодиодов, то суммарный спектр будет иметь форму, далекую от спектра солнечного света (на фиг. 6 кривая «Сумма» красного цвета).

Для того чтобы из этого набора светодиодов получить спектр солнца в диапазоне длин волн 400-675 нм необходимо привести все пики излучения к одной и той же величине, т.е. пронормировать. Для этого существует два способа: первый - регулировка осуществляется изменением тока питания с помощью токовых драйверов питания у каждого светодиода; второй - регулировка осуществляется подбором количества однотипных по частоте излучения светодиодов, работающих в номинальном рабочем режиме, но которые имеют разную мощность излучения, т.е. разный паспортный номинал мощности. После приведения уровня излучения всех типов светодиодов к одной и той же величине спектр излучения всех светодиодов примет вид, изображенный на фиг. 1. При этом названные области спектров излучения светодиодов перекрывают друг друга в разных спектральных участках моделируемого диапазона излучения, где-то на уровне 0,4-0,6 от максимальной амплитуды.

Желтым фоном на фиг. 2 выделена область моделирования солнечного спектра в диапазоне длин волн 400-675 нм. В таблице 2 приведены параметры семи типов светодиодов (или наборов светодиодов одного и того же типа) моделирующих диапазон 400-675 нм солнечного спектра после их приведения к одной и той же плотности излучения и нормирования.

Из табл. 2 видно, что у двух светодиодов имеется два спектральных пика мощности излучения: один из которых Warm White -на длине волны 587 нм (максимальная амплитуда равна 1), а на длине волны 447 нм - 0,44; другой светодиод Growing Light с максимальной амплитудой на длине волны 650 нм - 1, а на длине волны 447 нм - 0,47. Все остальные светодиоды имеют один пик излучения. Измерения проводились спектрофотометром «ТКА-Спектр», на расстоянии 500 мм от центра светодиодов по их оси.

Если каждый светодиод будет излучать световую энергию измеренную в Вт/м2, в пропорциях соответствующих коэффициентам приведенными в табл. 3, то получится суммарный спектр мощности излучения светильника, показанный на фиг. 2 (кривая Sun 8 Реш), который хорошо совпадает со спектром мощности излучения Солнца в этом диапазоне.

В этом случае все светодиоды должны получать энергию от токовых драйверов питания таким образом, чтобы их излучение соответствовало коэффициентам таблицы 3. В результате будет сформирован суммарный спектр излучения светильника, практически полностью повторяющий спектр излучения солнечного света (фиг. 2, розовый цвет кривой). Спектр мощности солнечного света измерялся спектрофотометром марки «ТКА-Спектр» во Владивостоке 11.02.2017 в 10-38 местного времени.

В процессе работы была сформирована действующая матрица светодиодов (фиг. 4), в которой каждый светодиод был запитан током с помощью токового драйвера таким образом, чтобы мощность излучения каждого типа светодиода, измеренная на расстоянии 50 см от светодиодов, давала вклад в суммарное излучение в соответствии с режимами в табл. 3. При включении всех светодиодов с указанными режимами спектр мощности излучения светильника характеризовался зависимостью, показанной на фиг. 5. Полученная плотность мощности излучения равная 20 мВт/м2 в диапазоне длин волн 400-675 нм на расстоянии 50 см от светильника и имеет гладкий характер, практически полностью соответствует солнечному спектру со среднеквадратичной ошибкой отклонения не превышающей 11,2%.

Очень важно отметить, что коэффициенты в табл. 3 относятся к плотности мощности излучения света, или к спектральной облученности, измеренной на одном и том же расстоянии одним и тем же прибором спектрофотометром. При этом приведенные в табл. 3 коэффициенты никак не характеризуют потребляемую светодиодами энергию или величину тока, протекающую через светодиоды. Это связано с тем, что к.п.д. у каждого светодиода разный и режимы питания тоже все разные. Если есть два светодиода одинакового типа, но с разными к.п.д., например 15% и 30%, то спектральная облученность, полученная на одном и том же расстоянии, у первого светодиода будет в 2 раза меньше при одном и том же питании по току или потребляемой мощности, чем у второго. И если их запитать по току в соответствии с табл. 3, то суммарный спектр всех светодиодов будет сильно отличаться от расчетного спектра, изображенного на фиг. 2. В случае если имеются два светодиода с одинаковой частотой излучения, но разным номиналом мощности, например 1 Вт и 10 Вт, то первый тип светодиода можно запитать максимальным током 300 мА, а второй тип - 900 мА. Соответственно плотности мощности излучения световой энергии у них будут очень сильно отличаться. Кроме того, очень важно использовать такие режимы питания всех восьми типов светодиодов (или групп однотипных по частоте излучения светодиодов в сборке), чтобы в каждой группе однотипные светодиоды (светодиоды излучающие свет одной и той же частоты) давали суммарный пик излучения одинаковой величины, которую удобно приравнять к относительной единице, как это изображено на фиг. 1.

1. Светильник, содержащий набор известных светодиодов с разными спектрами излучения, снабженных драйверами питания, отличающийся тем, что в нем использованы светодиоды, максимальные амплитуды излучения которых находятся в диапазоне длин волн 400-675 нм, при этом спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной длине волны излучения, причем использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 1000 Вт каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет, с возможным отклонением от центральной длины волны на ±15 нм, при этом драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет, с возможным отклонением указанных значений энергии на ±30%.

2. Светильник по п. 1, отличающийся тем, что тип спектра сформирован набором однотипных светодиодов, с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра.

3. Светильник по п. 1, отличающийся тем, что названные светодиоды имеют максимальное излучение на длинах волн соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм.



 

Похожие патенты:

Изобретение относится к области светотехники, а именно к полупроводниковым осветительным устройствам, и предназначено для использования в составе осветительного оборудования общего назначения.

Изобретение относится к области светотехники. Техническим результатом является обеспечение эффективности и раномерности излучения.

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности передачи и насыщенности красного или зеленого цвета.

Светильник, содержащий набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне порядка 400-800 нм, снабженных драйверами, отличается тем, что спектры, составляющие набор отобранных светодиодов, перекрывают друг друга в разных спектральных участках диапазона, предпочтительно, на уровне 0,5 от максимальной амплитуды, причем использованы два теплых белых и один зеленый светодиоды с мощностью излучения 10 Вт каждый, синий, голубой, два светодиода полного спектра и по одному светодиоду глубокий красный и инфракрасный светодиоды с мощностью излучения 3 Вт каждый.

Изобретение относится к области светотехники и может быть использовано для светодиодного светильника (10) в помещении для скота. Техническим результатом является повышение эффективности излучения.

Изобретение относится к области светотехники. Техническим результатом является повышение оптической эффективности освещения.

Изобретение относится к области светотехники. Техническим результатом является упрощение монтажа.

Лампочка // 2658634
Изобретение относится к области светотехники. Техническим результатом является достижение эффективного равномерного освещения.

Изобретение модет быть использовано в светоизлучающих диодах. Люминофор, излучающий желто-оранжевый свет, имеет общую формулу Sr9-a-b-xMaMg1,5+b(PO4)7:xEu2+, где M - Ca и/или Ba; 0,001≤x≤0,9; 0≤a≤1,0; 0≤b≤2,3.

Изобретение относится к области светотехники. Техническим результатом является упрощение сборки и демонтировки светильника с направляющей посредством одного смещения осветительного модуля в направлении против направления гравитационной силы.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает обработку семян ризоторфином и стимуляторами роста.

Изобретение относится к области растениеводства, а также систем и аппаратуры передачи данных и предназначена для неразрушающей биодиагностики ксилемного потока травянистых растений с использованием беспроводной передачи данных.

Группа изобретений относится к области растениеводства и биологии. Платформа для фенотипирования растительного биологического объекта содержит контейнер, герметически закрытый крышкой, ограничивающей внутреннее пространство, разделенное на два пространства: нижнее внутреннее пространство, которое содержит по меньшей мере одно средство для контроля температуры, погруженное в жидкий теплоноситель; и верхнее внутреннее пространство, при этом поверхность жидкого теплоносителя находится на границе между нижним внутренним пространством и верхним внутренним пространством; крышку, содержащую по меньшей мере одно отверстие, которое приспособлено под установку горшка, и по меньшей мере один горшок, нижняя часть которого находится в верхнем внутреннем пространстве и который приспособлен под прием семян растений и почвенного паразита, предпочтительно на почве, а также под обеспечение роста семян растений и развития таких почвенных паразитов.

Изобретение относится к области биохимии, в частности к способу получения гетерологического целевого пептида или белка. Также раскрыт способ инфильтрации клеток Agrobacterium во все или отдельные надземные части интактного растения.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает посев смеси семян люцерны и ежи сборной, которую равномерно перемешивают и засыпают в один бункер сеялки.

Группа изобретений относится к области сельского хозяйства и дистанционного зондирования земли. Способ измерения индекса плотности растительности реализуется с помощью устройства фиксации изображения, расположенного на летательном аппарате, причем устройство фиксации изображения содержит систему спектральных фильтров и заключается в том, что получают данные изображения объекта съемки в RGB-диапазоне, проводят обработку полученных данных с помощью системы фильтрации, при которой в красном канале (R) полученных изображений оцифровывают ближний инфракрасный диапазон (NIR), а данные изображения в зеленом (G) и синим каналах (B) оставляют неизменным или удаляют изображение в G канале.

Изобретение относится к области сельского хозяйства и к определению урожая и продуктивности орошаемых сельскохозяйственных культур под влиянием лесных полос за период вегетации.

Изобретение относится к области биотехнологии растений и может быть использовано в питомниководстве для производства посадочного материала с помощью технологии клонального микроразмножения.

Изобретение относится к области сельского хозяйства. Способ включает предпосевную обработку семян растений и обработку вегетирующих растений регулятором роста, действующее вещество которого выделяют из растительного сырья.

Изобретение относится к области сельского хозяйства и экологии, в частности к определению адаптации различных сортов сельскохозяйственных культур к токсическим веществам почвы - засолению, тяжелым металлам, нефтепродуктам и другим абиотическим факторам.

Изобретение относится к области измерения магнитных величин слабых магнитных полей, амплитуда которых сравнима или значительно меньше амплитуды геомагнитного поля, в селекции у растений многолетних трав и некоторых видов растений - резерватов патогенов.

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света, за счет использования светоизлучающих диодов. В светильнике, содержащем набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400-800 нм, снабженных драйверами питания, согласно изобретению использованы светодиоды, спектры излучения которых находятся в диапазоне 400-675 нм, при этом спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной частоте излучения, причем использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 200 Вт и более каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет, с возможным отклонением от центральной частоты на ±15 нм, при этом драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет, с возможным отклонением указанных значений энергии на ±30. Кроме того, тип спектра сформирован набором однотипных светодиодов с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Кроме того, названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм. Изобретение обеспечивает светильнику спектр излучения, соответствующий солнечному свету в диапазоне 400-675 нм. 2 з.п. ф-лы, 6 ил., 3 табл.

Наверх