Полупроводниковый газоанализатор оксида углерода

Изобретение относится к области газового анализа, в частности к детектирующим устройствам для регистрации и измерения содержания оксида углерода. Газовый датчик согласно изобретению содержит полупроводниковое основание, нанесенное на непроводящую подложку 2, выполненное из поликристаллической пленки ZnTe полупроводниковое основание 1. Изобретение при существенном упрощении технологии изготовления газового датчика позволяет определять содержание оксида углерода с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. 4 ил.

 

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей оксида углерода и других газов. Изобретение может быть использовано в экологии.

Известен датчик (детектор) по теплопроводности, действие которого основано на различии теплопроводности паров вещества и газа-носителя (Вяхирев Д.А., Шушукова А.Ф. Руководство по газовой хроматографии. М.: Высш. школа, 1987. - С. 211). Однако такой датчик (детектор) чувствителен только к веществам с теплопроводностью, близкой к теплопроводности газа-носителя.

Известен также полупроводниковый газовый датчик на основе оксида индия (In2O.3), легированного оксидами щелочных металлов (Yamaura Hiroyuki, Tamaki Jun, Moriya Koji, Miura Norio, Yamazoe Noboru // J. Electrochem. Soc. - 1996. - V. 43. N 2. P. 36-37). Он позволяет детектировать 6,7-0,05 Па CO во влажном воздухе при 300°C. Недостатком данного устройства является недостаточная чувствительность для контроля содержания оксида углерода, высокая рабочая температура - 300°C и трудоемкость изготовления.

Ближайшим техническим решением к изобретению является газовый датчик влажности газов, состоящий из поликристаллической пленки антимонида индия, легированного селенидом цинка, с нанесенным на ее поверхность металлическими электродами и непроводящей подложки (патент RU №2206083, М. Кл. 7 G01N 27/12, опубл. 10.06.2003).

Недостатком известного устройства является его недостаточная чувствительность при контроле микропримесей оксида углерода. Кроме того, конструкция датчика предполагает при его изготовлении операции напыления металлических электродов и прямых адсорбционных измерений.

Техническим результатом изобретения является повышение чувствительности и технологичности изготовления датчик а.

Указанный технический результат достигается тем, что в известном газовом датчике, содержащем полупроводниковое основание, нанесенное на непроводящую подложку, согласно заявляемому изобретению полупроводниковое основание выполнено в виде поликристаллической пленки теллурида цинка, нанесенной на непроводящую подложку.

Сущность изобретения поясняется чертежами, где представлены на фиг. 1 - конструкция заявляемого датчика, на фиг. 2 - изобара адсорбции оксида углерода, свидетельствующая о протекании его химической адсорбции на поверхности полупроводникового основания (ZnTe), то есть об адсорбционной активности последнего к CO уже при комнатной температуре; на фиг. 3 - кривые зависимости величины pH изоэлектрического состояния поверхности (pHизо) полупроводников системы ZnTe - CdSe, экспонированных на воздухе (а) и в атмосфере оксида углерода (б), от их состава, демонстрирующие заметное влияние оксида углерода на pHизо поверхности полупроводникового основания; на фиг. 4 - градуировочная кривая зависимости изменения pH изоэлектрического состояния поверхности (ΔpHизо) полупроводникового основания в процессе адсорбции при комнатной температуре от начального давления CO (Pco). Она наглядно указывает на его высокую чувствительность к CO.

Датчик состоит из полупроводникового основания 1, выполненного в виде поликристаллической пленки ZnTe и непроводящей подложки 2 (фиг. 1).

Принцип работы такого датчика основан на адсорбционно-десорбционных процессах, протекающих на полупроводниковой пленке, нанесенной на непроводящую подложку, и вызывающих изменение pH изоэлектрического состояния и, соответственно, силы активных центров ее поверхности.

Работа датчика осуществляется следующим образом.

Датчик помещают в находящуюся при комнатной температуре камеру (ею может быть обычная стеклянная трубка), через которую пропускают (или в которой выдерживают) анализируемый на содержание оксида углерода газ. При контакте пропускаемого газа с поверхностью полупроводниковой пленки ZnTe происходит избирательная адсорбция молекул CO и изменение pH изоэлектрического состояния поверхности. С помощью градуировочных кривых можно определить содержание оксида углерода в исследуемой среде.

Из анализа приведенной на фиг. 4 типичной градуировочной кривой, полученной с помощью заявляемого датчика и выражающей зависимость ΔpHизо от содержания оксида углерода (Pco), следует: заявляемый датчик при существенном упрощении технологии его изготовления позволяет определить содержание оксида углерода с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. Существенное упрощение технологии изготовления датчика обусловлено исключением операции нанесения на полупроводниковое основание металлических электродов.

Малые габариты устройства (рабочий объем менее 0,2 см3) в сочетании с малой массой пленки-адсорбента позволяют снизить постоянную датчика по времени до 10-20 мс.

Конструкция заявляемого датчика позволяет также улучшить и другие характеристики: быстродействие, регенерируемость, способность работать не только в статическом, но и в динамическом режиме.

Газовый датчик, содержащий полупроводниковое основание, нанесенное на непроводящую подложку, отличающийся тем, что полупроводниковое основание выполнено из поликристаллической пленки ZnTe.



 

Похожие патенты:

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей оксида углерода, и может быть использовано для экологического мониторинга.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам для регистрации и измерения содержания оксида углерода. Предложенный датчик угарного газа содержит полупроводниковое основание (1), выполненное в виде поликристаллической пленки твердого раствора (ZnTe)0,75(CdSe)0,25, и непроводящую подложку 2.

Изобретение относится к технике анализа запахов газовых смесей, содержащих обладающие запахом компоненты, и может быть использовано для определения качественного и количественного анализа запаха таких смесей.

Изобретение относится к области создания высокочувствительных датчиков и приборов на их основе для измерения токсичных газов и может быть использовано в аналитической химии, экологическом мониторинге, в атмосферном мониторинге, для измерения концентрации озона в технологических процессах и в научных исследованиях.

Изобретение относится к области физики. Способ включает введение в микрорезонатор из пористого кремния органических полимеров класса полифениленвиниленов, причем микрорезонатор из пористого кремния размещают на дне металлической емкости, которую заполняют раствором органического полимера с концентрацией 0,1-1 мг/мл в органическом растворителе, после чего в емкость нагнетают инертный газ и поддерживают избыточное давление на уровне 1-9 бар в течение 10-100 минут при фиксированной температуре из диапазона от +10°С до +50°С.

Изобретение может быть использовано в аналитической химии для контроля концентрации озона в технологических процессах, экологического мониторинга, контроля воздушной среды рабочих зон, атмосферного мониторинга, в научных исследованиях, в том числе в области атмосферной химии.

Изобретение может быть использовано в аналитической химии, в экологическом мониторинге, для контроля воздушной среды населенных мест, в атмосферном мониторинге, для контроля концентрации озона в технологических процессах, научных исследованиях, в том числе в области атмосферной химии.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака.

Использование: для определения содержания нефтяных топлив в грунтах «на месте». Сущность изобретения заключается в том, что способ определения содержания нефтяных топлив в грунтах включает определение типа грунта, определение типа нефтяного топлива, установление содержания концентрации топлива по градуировочным графикам, при этом измеряют температуру грунта, на покрытии пьезосенсора сорбируют равновесные газы естественного происхождения над незагрязненным грунтом и фиксируют изменение частоты колебаний пьезосенсора, затем также сорбируют газы над загрязненным нефтяным топливом грунтом и фиксируют изменение частоты колебаний пьезосенсора, с учетом температуры грунта и содержания газов естественного происхождения определяют концентрацию нефтяного топлива в грунте по градуировочному графику.

Изобретение относится к области газового анализа и может быть использовано для экологического мониторинга. Техническим результатом изобретения является повышение чувствительности и технологичности изготовления датчика.
Наверх