Способ получения расплавных полиимидных связующих полимеризационного типа

Изобретение относится к области высокомолекулярной химии, а именно к способу получения полиимидного связующего полимеризационного типа, применяемого для изготовления полимерных композиционных материалов, которые могут быть использованы в теплонагруженных элементах конструкций изделий аэрокосмической, судостроительной, автомобильной и других высокотехнологичных областей промышленности. Способ получения полиимидного связующего заключается в том, что смешивают по меньшей мере один диангидрид тетракарбоновой кислоты, эндиковый ангидрид и первичный алифатический спирт в эквимолярном соотношении. Далее выдерживают и нагревают полученную смесь до получения моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты. Затем в полученный расплав добавляют по меньшей мере один ароматический диамин и нагревают. Изобретение позволяет снизить количество выделяемых летучих веществ в процессе формования полимерных композиционных материалов, снизить время и энергозатраты на синтез связующего, повысить срок хранения связующего и рабочую температуру полимерных композиционных материалов на его основе. 1 табл., 5 пр.

 

Изобретение относится к области высокомолекулярной химии, а именно к полиимидным связующим полимеризационного типа, применяемым для изготовления полимерных композиционных материалов (ПКМ), которые могут быть использованы в теплонагруженных элементах конструкций изделий аэрокосмической, судостроительной, автомобильной и других высокотехнологичных областей промышленности.

Полиимиды - класс высокотермостойких полимеров гетероциклического строения, отличающихся высокими физико-химическими показателями, радиационной и химической стойкостью, хорошей термостабильностью в интервале температур от -150 до +350°С. Однако из-за поликонденсационного характера реакции образования имидного цикла, проходящего с выделением значительного количества летучих веществ, их применение в качестве связующих для получения малопористых композиционных материалов сильно ограничено.

Одним из способов решения проблемы получения малопористых высокопрочных ПКМ на основе полиимидных связующих является применение композиций с ненасыщенными концевыми группами - так называемых PMR-полиимидных составов (полиимидные связующие полимеризационного типа). Исходные композиции используются при пропитке волокнистых армирующих элементов - волокон, тканей, лент и т.д. При нагревании пропитанной ткани происходит удаление растворителя, образование амидных связей и имидных циклов. Полученные таким образом препреги подвергаются высокотемпературной обработке при 300-370°С, в ходе которой происходит полимеризация по ненасыщенным фрагментам с образованием трехмерной сетки. Главным преимуществом связующих этого типа является низкая пористость отвержденных изделий, что связано с отсутствием выделения летучих веществ при отверждении.

Известен способ получения раствора полиимидного олигомера двухстадийного отверждения (полиимидного связующего полимеризационного типа). Раствор содержит по меньшей мере один олигомер полиамидокислоты, полиимидный олигомер и один или несколько органических растворителей. Олигомер полиамидокислоты получают реакцией одного или нескольких ароматических диангидридов, одного или нескольких ароматических диаминов и одного или нескольких агентов регулирования молекулярного веса в реакции присоединительного отверждения, выбранных из группы, состоящей из цитраконового ангидрида и итаконового ангидрида, и где полиимидный олигомер является продуктом конденсации олигомера полиамидокислоты. Предпочтительная концентрация олигомера(-ов) в растворе составляет 25 масс. %. Препреги, полученные пропиткой волокнистых наполнителей данным раствором, формуют при температуре 370°С, что позволяет получить ПКМ с объемной пористостью не более 2% (RU 2394048 С9, 10.07.2010).

К числу основных недостатков данного способа получения связующего следует отнести высокую конечную температуру формования, низкую концентрацию олигомера, что затрудняет получение ПКМ с большим содержанием полимерной матрицы, а также дефицитность исходных компонентов (цитраконового и итаконового ангидридов), обуславливающую высокую стоимость полиимидного связующего.

Известны способы получения полиимидных связующих полимеризационного типа, представляющих собой раствор имидообразующей смеси компонентов, состоящий из диметилового эфира ароматической карбоновой кислоты, монометилового эфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и ароматического диамина в среде амидных растворителей или низших алкильных спиртов. Препреги, полученные пропиткой наполнителей данными связующими, формуют методами прямого или автоклавного прессования при температурах до 320°С, что позволяет получать термостойкие низкопористые ПКМ (US 3745149 А, 10.07.1973; US 5171822 А, 15.12.1992).

Основным недостатком указанных способов получения связующих является малый срок хранения (не более трех недель при комнатной температуре), что связано с образованием нерастворимых продуктов реакций амидизации и имидизации, проходящих между компонентами связующего.

Наиболее близким аналогом является способ получения полиимидного связующего полимеризационного типа, включающий смешивание по меньшей мере одного диангидрида тетракарбоновой кислоты, ангидрида карбоновой кислоты (например, эндикового ангидрида) и вторичного алифатического спирта (низкокипящего органического растворителя) с получением раствора смеси моноалкоксиэфира карбоновой кислоты (например, моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты) и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты во вторичном алифатическом спирте, добавление в полученный раствор по меньшей мере одного ароматического полиамина (ароматического диамина, ароматического триамина, ароматического тетрамина или их смеси) и нагрев полученного раствора с получением смеси имидообразующих мономеров. В одном из вариантов данного способа осуществляют выдержку при температуре 89°С в течение 3-5 часов предварительно высушенной смеси диангидрида 3,3',4,4'-бензофенонтетракарбоновой кислоты и эндикового ангидрида с изопропиловым спиртом с получением 50-75% раствора смеси моноизопропоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и диизопропоксиэфира бензофенонтетракарбоновой кислоты в изопропиловом спирте, добавление в полученный раствор ароматического диамина при нагревании с получением раствора смеси имидообразующих мономеров. Раствор имеет повышенную жизнеспособность при температурах до 80°С (US 6103864 А, пункт 15 формулы изобретения, пример 4, 15.08.2000).

К недостаткам способа-прототипа можно отнести следующее. Добавление избыточного количества низшего алифатического спирта на стадии синтеза моноалкоксиэфира карбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты приводит к получению смеси данных компонентов в растворе. Наличие в составе связующего растворителя приводит к невозможности применения расплавных методов получения препрегов. Энергозатратные процессы получения диалкоксиэфира тетракарбоновой кислоты и моноалкоксиэфира карбоновой кислоты, связанные с предварительной сушкой диангидрида тетракарбоновой кислоты и эндикового ангидрида и длительным получением раствора смеси моноалкоксиэфира карбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты во вторичном алифатическом спирте, приводят к удорожанию технологии получения связующего. Полученное способом-прототипом связующее обладает температурой стеклования до 320°С.

Техническим результатом изобретения является повышение технологичности полиимидного связующего полимеризационного типа за счет возможности применения расплавной технологии получения препрегов на его основе и также за счет снижения количества выделяемых летучих веществ в процессе формования ПКМ, снижение времени и энергозатрат на синтез связующего, а также повышение срока хранения связующего и рабочей температуры ПКМ на его основе.

Для достижения технического результата предложен способ получения полиимидного связующего полимеризационного типа, включающий смешивание по меньшей мере одного диангидрида тетракарбоновой кислоты, эндикового ангидрида и алифатического спирта, выдержку и нагрев полученной смеси до получения моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты, добавление в полученную смесь по меньшей мере одного ароматического диамина и ее нагрев, при этом используют первичный алифатический спирт, который смешивают по меньшей мере с одним диангидридом тетракарбоновой кислоты и эндиковым ангидридом в эквимолярном соотношении, а по меньшей мере один ароматический диамин добавляют в расплав смеси моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты.

Установлено, что применение в качестве этерифицирующего агента первичного алифатического спирта позволяет снизить время стадии получения моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и диалкоксиэфира(-ов) тетракарбоновой кислоты (1-ой стадии синтеза) до 2-х часов. Также необходимо отметить, что в предложенном способе отсутствует дополнительная стадия предварительной сушки диангидрида тетракарбоновой кислоты и эндикового ангидрида. Данные обстоятельства позволяют значительно снизить энергозатраты при осуществлении предложенного способа.

В качестве первичного алифатического спирта для получения диалкокси эфиров тетракарбоновых кислот и моноалкокси эфира 5-норборнен-эндо-2,3-дикарбоновой кислоты могут быть использованы метиловый спирт, спирт этиловый синтетический абсолютированный очищенный (ТУ 9182-116-11726438), н-пропиловый (ТУ 2632-106-44493179) или н-бутиловый спирт (ГОСТ 6006).

В качестве диангидридов тетракарбоновых кислот, применяемых для получения диалкокси эфиров тетракарбоновых кислот, могут быть использованы диангидрид бензол-1,2,4,5-тетракарбоновой кислоты, диангидрид 3,3',4,4'-бензофенонтетракарбоновой кислоты, 4,4'-оксидифталевый ангидрид, диангидрид 3,3',4,4'-бифенилтетракарбоновой кислоты или их смесь.

В изобретении используется эндиковый ангидрид, применяемый для получения моноалкокси эфира 5-норборнен-эндо-2,3-дикарбоновой кислоты.

Смешивание первичного алифатического спирта по меньшей мере с одним диангидридом тетракарбоновой кислоты и эндиковым ангидридом в эквимолярном соотношении (2 моля первичного алифатического спирта на 1 моль диангидрида тетракарбоновой кислоты и 1 моль первичного алифатического спирта на 1 моль эндикового ангидрида), то есть без избытка спирта, как в способе-прототипе, приводит к получению расплава смеси моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты (без наличия растворителя).

На второй стадии синтеза в расплав полученной смеси добавляют по меньшей мере один ароматический диамин. Взаимодействие компонентов происходит в следующем мольном соотношении:

диалкокси эфир тетракарбоновой кислоты n
моноалкокси эфир
5-норборнен-эндо-2,3-дикарбоновой кислоты 2
ароматический диамин n+1,

где n≥2.

В качестве ароматических диаминов могут быть использованы м-фенилендиамин, 4,4'-диаминодифенилметан, 4,4'-оксидианилин, 4,4'-диаминодифенилсульфон или их смесь.

Таким образом, в полученном полиимидном связующем полимеризационного типа растворитель отсутствует, что, во-первых, обеспечивает возможность получения препрегов расплавным методом, а во-вторых, исключает выделения в отдельную фазу нерастворимых продуктов взаимодействия исходных компонентов. Вследствие этого срок хранения полиимидного связующего увеличивается по меньшей мере до 6 месяцев.

Кроме того, установлено, что за счет отсутствия растворителя в составе связующего, полученного предлагаемым способом, снижается общее количество летучих веществ, выделяющихся в процессе получения ПКМ, приблизительно в 2 раза по сравнению с применением связующего, полученным способом-прототипом. Это связано с тем, что общее количество летучих веществ, выделяющихся при переработке связующего, состоит из низкомолекулярных продуктов, образующихся при прохождении реакции имидизации, характер которой является поликонденсационным, и летучих веществ, выделяющихся при удалении растворителя. Уменьшение массовой доли летучих веществ обеспечивает упрощение процесса получения малопористых ПКМ.

Вместе с тем следует отметить нецелесообразность концентрирования уже приготовленного раствора связующего до 100% содержания сухого остатка, поскольку данная технология является трудноосуществимой, энергозатратной и неэффективной вследствие высоких значений вязкостей полиимидных связующих полимеризационного типа.

Отвержденные образцы связующего, полученного предложенным способом, обладают температурой стеклования до 350-370°С.

Примеры осуществления изобретения.

Пример 1.

В реактор, снабженный механической мешалкой, обогревом и обратным холодильником, загружали 24,48 масс. % диангидрида бензол-1,2,4,5-тетракарбоновой кислоты, 17,66 масс. % эндикового ангидрида и 24,61% масс, н-бутилового спирта. Включали мешалку и осуществляли нагрев реакционной массы. После гомогенизации реакционной массы (2 часа) в реактор загружали 33,25 масс. % 4,4'-оксидианилина. После этого реакционную массу перемешивали при температуре до полного растворения диамина.

Пример 2.

В реактор, снабженный механической мешалкой, обогревом и обратным холодильником, загружали 34,73 масс. % диангидрида 3,3',4,4'-бензофенонтетракарбоновой кислоты, 16,96 масс. % эндикового ангидрида и 16,7 масс. % спирта этилового синтетического абсолютированного очищенного. Включали мешалку и осуществляли нагрев реакционной массы. После гомогенизации реакционной массы (2 часа) в реактор загружали 31,61 масс. % 4,4'-диаминодифенилметана. После этого реакционную массу перемешивали при температуре до полного растворения диамина.

Пример 3.

В реактор, снабженный механической мешалкой, обогревом и обратным холодильником, загружали 31,76 масс. % смеси диангидридов тетракарбоновых кислот (10,34 масс. % диангидрида 3,3',4,4'-бифенилтетракарбоновой кислоты и 21,42 масс. % 4,4'-оксидифталевого ангидрида), 16,38 масс. % эндикового ангидрида и 18,51 масс. % н-пропилового спирта. Включали мешалку и осуществляли нагрев реакционной массы. После гомогенизации реакционной массы (2 часа) в реактор загружали 33,35 масс. % смеси ароматических диаминов (12,9 масс. % 4,4'-диаминодифенилсульфона и 20,45 масс. % 4,4'-оксидианилина). После этого реакционную массу перемешивали при температуре до полного растворения диамина.

Пример 4.

В реактор, снабженный механической мешалкой, обогревом и обратным холодильником, загружали 42,95 масс. % 4,4'-оксидифталевого ангидрида, 21,78 масс. % эндикового ангидрида и 13,12% масс, метилового спирта. Включали мешалку и осуществляли нагрев реакционной массы. После гомогенизации реакционной массы (2 часа) в реактор загружали 22,15 масс. % м-фенилендиамина. После этого реакционную массу перемешивали при температуре до полного растворения диамина.

Пример 5.

В реактор, снабженный механической мешалкой, обогревом и обратным холодильником, загружали 31,83 масс. % диангидрида 3,3',4,4'-бензофенонтетракарбоновой кислоты, 15,54 масс. % эндикового ангидрида и 23,66 масс. % н-бутилового спирта. Включали мешалку и осуществляли нагрев реакционной массы. После гомогенизации реакционной массы (2 часа) в реактор загружали 28,97 масс. % 4,4'-диаминодифенилметана. После этого реакционную массу перемешивали при температуре до полного растворения диамина.

Связующие по примерам отверждали при температурах до 340°С и давлении до 4 МПа. Далее определяли температуру стеклования отвержденного полимерного связующего методом термомеханического анализа по ГОСТ Р 56723-215 (ISO 11359-3:2002) на термоаналитической установке Netzsch DMA 242 С.

Общее количество летучих веществ, выделяющихся в процессе переработки связующего, вычисляли расчетным путем, исходя из его концентрации и количества низкомолекулярных продуктов реакции имидизации.

Свойства полиимидных связующих приведены в таблице 1.

Сравнительные данные из таблицы 1 показывают, что температура стеклования отвержденных связующих, полученных предлагаемым способом, составляет 359-378°С, в то время как температура стеклования отвержденного связующего, полученного способом-прототипом, составляет 320°С. За счет отсутствия в своем составе растворителей оно также обладает значительно увеличенной технологичностью, а именно: оно обеспечивает сниженное в среднем в 2 раза количество летучих веществ при формовании ПКМ и обеспечивает возможность получения препрегов на его основе расплавным методом. Кроме того, отсутствие растворителей увеличивает срок хранения связующего по меньшей мере в 4 раза.

Предлагаемый способ получения связующего является менее энергозатратным за счет снижения времени 1-ой стадии синтеза, требующей выдержки при повышенной температуре, по меньшей мере в 1,5 раза, а также за счет исключения предварительной сушки диангидрида тетракарбоновой кислоты и эндикового ангидрида.

Полученные разработанным способом связующие предлагается использовать для получения низкопористых ПКМ, работоспособных до 350-370°С.

Способ получения полиимидного связующего полимеризационного типа, включающий смешивание по меньшей мере одного диангидрида тетракарбоновой кислоты, эндикового ангидрида и алифатического спирта, выдержку и нагрев полученной смеси до получения моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты, добавление в полученную смесь по меньшей мере одного ароматического диамина и ее нагрев, отличающий тем, что используют первичный алифатический спирт, который смешивают по меньшей мере с одним диангидридом тетракарбоновой кислоты и эндиковым ангидридом в эквимолярном соотношении, а по меньшей мере один ароматический диамин добавляют в расплав смеси моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты.



 

Похожие патенты:

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с полимерной мембраной, для создания микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей, суперконденсаторов, сенсоров и биосенсоров, солнечных батарей, дисплеев.

Изобретение относится к блок-сополиимиду, к вариантам способа его получения, к асимметричной цельной мембране или асимметричной цельной плоской мембране, к модулям на основе такой мембраны, а также к способу разделения газов и устройству для разделения газов.

Изобретение относится к растворимому в воде алкоксилированному полиалкиленимину или полиамину и к способу его получения. Алкоксилированный полиалкиленимин или полиамин имеет общую формулу I, в которой R представляет собой идентичные или различные линейные или разветвленные алкиленовые радикалы, содержащие от 2 до 12 атомов углерода или эфиралкильное звено; В представляет собой удлинение алкоксилированного полиалкиленимина посредством разветвления; Е является звеном алкиленокси формулы II, в которой R1 представляет собой 1,2-пропилен, 1,2-бутилен и/или 1,2-пентен; R2 представляет собой водород и/или алкил, содержащий от 1 до 22 атомов углерода, и/или аралкил, содержащий от 7 до 22 атомов углерода; у и z каждый составляют от 0 до 150, m является целым числом, имеющим значение в интервале от 5 до 18; n является целым числом, имеющим значение в интервале от 1 до 5; р является целым числом, имеющим значение в интервале от 2 до 14.

Изобретение относится к способу получения пористых частиц, содержащих по меньшей мере один полиимид, к пористым частицам, а также к изделиям и материалам, содержащим пористые частицы.

Настоящее изобретение относится к способу получения водных растворов полианилина, а также к способу получения многокомпонентных композиционных графеновых материалов на основе полианилина.
Изобретение относится к области синтеза сшитых полимеров полигуанидинового ряда и может быть использовано в качестве основы для создания новых лекарственных форм.

Изобретение относится к способу получения полимерных полиимидных материалов, содержащих краун-эфирные и полисилоксановые фрагменты и обладающих ионной проводимостью, которые могут быть использованы при изготовлении твердополимерных электролитов в различных областях техники.

Изобретение относится к отверждаемым композициям, полезным, например, для покрытий, герметиков, адгезивов, в частности для антикоррозийных покрытий, а также для изделий, содержащих подложку и отверждаемую композицию.

Изобретение относится к получению водных растворов полианилина. Способ получения его включает обработку полианилина водным раствором полимерного реагента.

Изобретение относится к электрохромному модулю, содержащему: первую подложку, вторую подложку, где первая и/или вторая подложки обладают электропроводностью или приобретают электропроводность благодаря соответственно первому электропроводящему покрытию или второму электропроводящему покрытию, покрытие на основе электрохромного полимера, нанесенное на первую подложку или первое проводящее покрытие, слой накопления ионов, размещенный на второй подложке или втором проводящем покрытии, и электрически последовательно соединенный электролит, размещенный между электрохромным покрытием и слоем накопления ионов.

Изобретение относится к блок-сополиимиду, к вариантам способа его получения, к асимметричной цельной мембране или асимметричной цельной плоской мембране, к модулям на основе такой мембраны, а также к способу разделения газов и устройству для разделения газов.

Изобретение относится к блок-сополиимиду, к вариантам способа его получения, к асимметричной цельной мембране или асимметричной цельной плоской мембране, к модулям на основе такой мембраны, а также к способу разделения газов и устройству для разделения газов.

Изобретение касается технологии получения нанокомпозитов на основе наноструктурированного карбида бора с полиимидной матрицей. Предложен способ получения полиимидного композитного материала, армированного наноструктурированным карбидом бора, осуществляемый реакцией конденсации диангидридов ароматических поликарбоновых кислот и ароматических диаминов в присутствии наноструктурированного карбида бора, который в виде суспензии в сухом органическом растворителе, содержащей 2-60 мас.% карбида бора от веса получаемого композита, перемешивается под воздействием ультразвука в токе инертного газа с органическим диамином, охлаждается до 10-25°С, после чего к образовавшейся реакционной массе порционно при перемешивании добавляется диангидрид ароматической поликарбоновой кислоты, вводимый в эквимолярном количестве по отношению к органическому диамину, и бензойная кислота, вводимая в количестве, соответствующем молярному соотношению бензойной кислоты по отношению к диангидриду ароматической поликарбоновой кислоты, равному 1:(0,1-2), после чего образовавшаяся реакционная масса подвергается воздействию ультразвука при 30-40°С в течение 10-30 мин, затем перемешивается при 60-85°С в течение 3-8 ч и затем при 170-200°С в течение 12-22 ч с одновременной отгонкой образующейся воды, после чего полученная дисперсия выливается в этиловый спирт или раствор этилового спирта в воде, фильтруется и сушится при нагреве от 70 до 90°С в течение 3-8 ч в вакууме с последующим вакуумным охлаждением или охлаждением в токе инертного газа.

Изобретение относится к способу получения пористых частиц, содержащих по меньшей мере один полиимид, к пористым частицам, а также к изделиям и материалам, содержащим пористые частицы.

Изобретение относится к способу получения пористых частиц, содержащих по меньшей мере один полиимид, к пористым частицам, а также к изделиям и материалам, содержащим пористые частицы.

Изобретение относится к области получения композитных материалов с применением нанотехнологии, а именно касается технологии получения нанокомпозитов на основе наноструктурированного карбида кремния и углеродного волокна с полиимидной матрицей, которые могут быть применены в различных областях техники, в частности при изготовлении конструкционных материалов, используемых в ракетостроении, в авиационной и космической отрасли.

Изобретение относится к способу получения полимерных полиимидных материалов, содержащих краун-эфирные и полисилоксановые фрагменты и обладающих ионной проводимостью, которые могут быть использованы при изготовлении твердополимерных электролитов в различных областях техники.

Изобретение относится к способу получения полимерных полиимидных материалов, содержащих краун-эфирные и полисилоксановые фрагменты и обладающих ионной проводимостью, которые могут быть использованы при изготовлении твердополимерных электролитов в различных областях техники.

Изобретение относится к области изготовления нанокомпозитных материалов на основе ароматического полиимида и смесей наночастиц различных типов, которые могут найти применение для изготовления композиционных материалов, а именно стеклопластиков, углепластиков, органопластиков.

Изобретение относится к полимеру, к способу его получения, к мембране для разделения газов, а также к способу разделения компонентов жидкости. Полимер содержит повторяющиеся звенья следующих формул I-III: ; ; и где формула I может быть связана с формулой II или III, но не может быть связана сама с собой; формула II может быть связана с формулой I или III, но не может быть связана сама с собой; и формула III может быть связана с формулой I или II, или сама с собой, в которых Ar1 представляет собой ; Ar2 представляет собой ;Ar1' представляет собой двухвалентную группу, полученную из Ar1; Ar1'' представляет собой трехвалентную группу, полученную из Ar1; X и Y выбирают из О, S и N-фенила.

Изобретение относится к области высокомолекулярной химии, а именно к способу получения полиимидного связующего полимеризационного типа, применяемого для изготовления полимерных композиционных материалов, которые могут быть использованы в теплонагруженных элементах конструкций изделий аэрокосмической, судостроительной, автомобильной и других высокотехнологичных областей промышленности. Способ получения полиимидного связующего заключается в том, что смешивают по меньшей мере один диангидрид тетракарбоновой кислоты, эндиковый ангидрид и первичный алифатический спирт в эквимолярном соотношении. Далее выдерживают и нагревают полученную смесь до получения моноалкоксиэфира 5-норборнен-эндо-2,3-дикарбоновой кислоты и по меньшей мере одного диалкоксиэфира тетракарбоновой кислоты. Затем в полученный расплав добавляют по меньшей мере один ароматический диамин и нагревают. Изобретение позволяет снизить количество выделяемых летучих веществ в процессе формования полимерных композиционных материалов, снизить время и энергозатраты на синтез связующего, повысить срок хранения связующего и рабочую температуру полимерных композиционных материалов на его основе. 1 табл., 5 пр.

Наверх