Применение синтетических цеолитов для увеличения селективности при получении 4,4-диметил-1,3-диоксана (варианты)

Изобретение относиться к области основного органического и нефтехимического синтеза и может быть использовано в производстве 4,4-диметил-1,3-диоксана путем конденсации изобутилена и формальдегида. Предложены синтетические цеолиты общей формулы Na12[(AlO2)12(SiO2)12]xH2O марки NaA с диаметром пор 4 или Ca4,5Na3[(AlO2)12(SiO2)12]xH2O марки СаА с диаметром пор 5 в качестве гетерогенных сокатализаторов. При этом синтез ДМД проводят в присутствии фосфорной кислоты, взятой в качестве базового кислотного катализатора. Технический результат: увеличение селективности образования 4,4-диметил-1,3-диоксана. 2 н. и 1 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к области основного органического и нефтехимического синтеза, а именно к гетерогенным пористым сокатализаторам конденсации изобутилена и формальдегида, которые могут быть использованы для синтеза 4,4-диметил-1,3-диоксана.

Одним из наиболее распространенных промышленных способов получения изопрена является диоксановый метод через промежуточный синтез 4,4-диметил-1,3-диоксана (ДМД). ДМД получают жидкофазной конденсацией изобутилена, содержащегося во фракциях С4 углеводородов, с формальдегидом, используемым в виде 20-40% водного раствора, с последующим выделением диметилдиоксана из реакционной массы [Огородников С.К., Идлис Г.С. Производство изопрена. Л: Химия, 1973 стр. 48-58]. Принципиальным недостатком данного способа является низкая селективность процесса. Выход высококипящих побочных продуктов (ВПП) составляет 440-460 кг на 1 тонну изопрена, более 90% которых составляют ВПП со стадии синтеза диметилдиоксана [там же, стр. 72].

Известен способ получения 4,4-диметил-1,3-диоксана из изобутилена и формальдегида при температуре 100-110°С в присутствии серной кислоты. Недостатком данного способа является высокая коррозионная агрессивность реакционной среды и необходимость дополнительной обработки масляного слоя раствором щелочи [Авторское свидетельство СССР №361174, МПК C07D 319/06, опубл. 07.12.1972].

Известны способы получения ДМД в водной среде из изобутилена и формальдегида с использованием в качестве катализатора карбоновой кислоты [Патент Франции №2490642, МПК C07D 319/06, опубл. 26.03.1982], соли полисульфокислоты и металла I или II группы [Патент Франции №2490643, C07D 319/06, опубл. 26.03.1982], щавелевой кислоты [Авторское свидетельство СССР №991715, МПК C07D 319/06, опубл. 27.12.1999; Патент РФ №2255936, МПК C07D 319/06, опубл. 10.07.2005].

Известен способ получения ДМД из формальдегида и изобутилена при весовом соотношении 1,1-1,2 в водном растворе при 90-110°С и давлении 17-25 атм. в присутствии щавелевой кислоты. Для повышения селективности по ДМД и триметилкарбинолу (ТМК) за счет снижения образования побочных продуктов и потерь изобутилена, в зону реакции возвращают 3-6% ТМК в расчете на ДМД и 5-20% ДМД от получаемого количества. По мнению авторов, возврат ТМК в зону реакции позволяет уменьшить образование эфиров ТМК с компонентами ВПП и одновременно замедлить протекание реакции гидролиза ДМД с образованием ВПП [Патент РФ №2062270, МПК C07D 319/06, С07С 31/12, опубл. 20.06.1996].

Недостатком перечисленных способов получения ДМД является недостаточная селективность по целевому ДМД из-за образования ВПП вследствие плохой взаимной растворимости углеводородов и водного слоя, содержащего катализатор и формальдегид.

Известен способ получения 4,4-диметил-1,3-диоксана (ДМД) [Патент РФ №2330848, МПК C07D 319/06, опубл. 10.08.2008] конденсацией водного раствора формальдегида при мольном соотношении формальдегид/изобутилен, равном (1,5-1,6):1 при температуре 80-110°С в присутствии фосфорной кислоты, взятой в качестве катализатора и поверхностно-активных веществ (ПАВ) как сокатализаторов. Снижение селективности образования целевого ДМД, значительный расход ПАВ из-за постоянного уноса ПАВ с реакционной смесью являются основными недостатками указанного способа.

Известен способ получения изопрена, формальдегида и изобутилена [Авторское свидетельство СССР №460720, МПК С07С 11/18, С07С 47/04, С07С 11/09, С07С 1/20, опубл. 30.01.1983] расщеплением высококипящих побочных продуктов синтеза диметилдиоксана над окисью алюминия при повышенной температуре, при этом пары продуктов расщепления дополнительно контактируют с кальцийфосфатным катализатором при 300-400°С в присутствии водяного пара.

Известно использование гетерогенного катализатора для синтеза 4,4-диметил-1,3-диоксана из изобутилена и формальдегида [Авторское свидетельство СССР №1163902, МПК B01J 23/78, С07С 11/18, опубл. 30.01.1983], включающий алюмосиликат, дополнительно содержащий оксиды железа, магния, кальция и титана. Известный катализатор обеспечивает расщепление высококипящих побочных продуктов синтеза ДМД. Небольшой срок службы катализатора и низкий выход ДМД являются основными недостатками двух ранее представленных способов.

Задачей предлагаемого изобретения является увеличение селективности при получении ДМД.

Решение поставленной задачи достигается путем применения синтетического цеолита общей формулы Na12[(AlO2)12(SiO2)12]xH2O марки NaA с диаметром пор 4 , а также синтетического цеолита общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]xH2O марки СаА с диаметром пор 5 в качестве гетерогенных сокатализаторов для увеличения селективности образования 4,4-диметил-1,3-диоксана при конденсации изобутилена и формальдегида. При этом синтез ДМД проводят в присутствии фосфорной кислоты, взятой в качестве базового кислотного катализатора.

Сутью изобретения является то, что для увеличения селективности образования ДМД в реакционную смесь дополнительно вводят синтетические цеолиты в качестве гетерогенного сокатализатора при синтезе ДМД в присутствии фосфорной кислоты, взятой в качестве базового катализатора. Использование синтетических цеолитов общей формулы Na12[(AlO2)12(SiO2)12]xH2O марки NaA с дидметром пор 4 или общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]xH2O марки СаА с диаметром пор 5 обеспечивает более высокую степень превращения исходных реагентов - изобутилена и формальдегида - величению селективности образования ДМД из-за снижения образования высококипящих побочных продуктов в виде гидрированных пиранов (ГП).

Рассматриваемый процесс конденсации изобутилена и формальдегида с образованием ДМД относится к числу гетерогенных жидкофазных каталитических реакций. Раздел фаз в реакторе, обусловленный взаимной нерастворимостью водного слоя, содержащего формальдегид и катализатор, и углеводородного, содержащего изобутилен, является основной проблемой процесса конденсации изобутилена с формальдегидом. Для решения этой проблемы и увеличения химического сродства компонентов гетерогенной смеси предлагается использование пористых сокатализаторов с определенным диаметром пор. Введение в реакционную массу пористых сокатализаторов с определенным диаметром пор обеспечивает более интенсивное протекание реакции конденсации изобутилена с формальдегидом, способствует увеличению выхода ДМД и снижению образования ГП.

В настоящее время синтетические цеолиты применяются очистки газов, разделения многокомпонентных смесей, в процессах крекинга и реформинга и выпускаемые промышленностью путем, путем термической обработки водно-щелочных алюмосиликатных смесей.

Осуществление предлагаемого способа получения ДМД иллюстрируют приведенные ниже примеры.

Пример 1 (для сравнения, без сокатализатора).

В реактор вносят фосфорную кислоту концентрацией 81% Н3РО4 в количестве 5,0-5,5% от массы реакционной смеси и проводят процесс конденсации формальдегида и изобутилена, взятых в мольном отношении формальдегид : изобутилен, равном 1,55:1 в течение 1 часа. Температура процесса 82°С, давление 6 атм. Затем масляный и водный слои отдельно подвергают дальнейшей переработке. Из масляного слоя ДМД выделяют экстракцией. Получают ДМД с выходом 36% от теоретического возможного количества, молярное отношение ДМД/ВПП составляет 2:1.

Пример 2. В реактор вносят фосфорную кислоту концентрацией 81% Н3РО4 в количестве 5,0-5,5%) от массы реакционной смеси и синтетический цеолит общей формулы Na12[(A1O2)12(SiO2)12]xH2O марки NaA по ТУ 2163-003-05766557-97 с диаметром пор 4 в количестве 3,5-5,0%) от массы реакционной смеси, проводят процесс конденсации формальдегида и изобутилена, взятых в мольном отношении формальдегид: изобутилен, равном 1,55:1 в течение 1 часа. Температура процесса 82°С, давление 6 атм. Затем масляный и водный слои отдельно подвергают дальнейшей переработке. Из масляного слоя ДМД выделяют экстракцией. Получают ДМД с выходом 41,0% от теоретического возможного количества. Высококипящие побочные продукты, в том числе гидрированные пираны в реакционной массе отсутствуют.

Пример 3. В реактор вносят фосфорную кислоту концентрацией 81% Н3РО4 в количестве 5,0-5,5% от массы реакционной смеси и синтетический цеолит общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]xH2O марки СаА по ТУ 2163-004-05766557-97 с диаметром пор 5 в количестве 3,5-5,0% массы от реакционной смеси, проводят процесс конденсации формальдегида и изобутилена, взятых в мольном отношении формальдегид: изобутилен, равном 1,55:1 в течение 1 часа. Температура процесса 82°С, давление 6 атм. Затем масляный и водный слои отдельно подвергают дальнейшей переработке. Из масляного слоя ДМД выделяют экстракцией. Получают ДМД с выходом 44,0% от теоретического возможного количества. Высококипящие побочные продукты, в том числе гидрированные пираны в реакционной массе отсутствуют.

Эффективны синтетические цеолиты общей формулы Na12[(A1O2)12(SiO2)12]xH2O марки NaA с диаметром пор 4 или общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]xH2O марки СаА с диаметром пор 5 как сокатализаторы для селективного образования ДМД. Оптимальным является содержание пористого сокатализатора в количестве 3,5-5,0 мас. % от реакционной массы.

Целесообразность выбранных пределов показателей технологического процесса конденсации представлена в таблице 1. Условия синтеза ДМД: содержание фосфорной кислоты в количестве 5,0-5,5% от массы реакционной смеси, мольное соотношение формальдегид : изобутилен=1,55:1, температура 82°С, давление 6 атм, продолжительность синтеза 1 час.

Использование синтетического цеолита марки КА общей формулы K12[(AlO2)12(SiO2)12]xH2O с диаметром пор 3 , а также марки NaX общей формулы Na86[(AlO2)86(SiO2)106]xH2O с диаметром пор 9 ведет к уменьшению выхода и селективности образования целевого ДМД.

Использование синтетических цеолитов общей формулы Na12[(AlO2)12(SiO2)12]xH2O марки NaA с диаметром пор 4 или общей формулы Ca4,5Na3[(A1O2)12(SiO2)12]xH2O марки СаА с диаметром пор 5 в качестве пористого сокатализатора позволяет повысить селективность процесса образования ДМД за счет уменьшения количества образующихся высококипящих побочных продуктов, в том числе гидрированных пиранов. Применение для процесса синтетических цеолитов с диаметрами пор 4 или 5 в количестве меньше, чем 3,5% масс, приводит к значительному снижению выхода ДМД, а более чем 5,0% мас. - не приводит к увеличению выхода ДМД, но обуславливает дополнительный расход реагента.

1. Применение синтетического цеолита общей формулы Na12[(AlO2)12(SiO2)12]xH2O марки NaA с диаметром пор 4 в качестве гетерогенного сокатализатора для увеличения селективности образования 4,4-диметил-1,3-диоксана при конденсации изобутилена и формальдегида.

2. Применение синтетического цеолита общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]xH2O марки СаА с диаметром пор 5 в качестве гетерогенного сокатализатора для увеличения селективности образования 4,4-диметил-1,3-диоксана при конденсации изобутилена и формальдегида.

3. Применение синтетического цеолита по п. 1 и 2, отличающееся тем, что синтез 4,4-диметил-1,3-диоксана проводят в присутствии фосфорной кислоты, взятой в качестве базового кислотного катализатора.



 

Похожие патенты:

Изобретение относится к области основного органического и нефтехимического синтеза и может быть использовано в производстве 4,4-диметил-1,3-диоксана путем конденсации изобутилена и формальдегида.

Изобретение относится к области основного органического и нефтехимического синтеза, а именно к способу получения 4,4-диметил-1,3-диоксана (ДМД) из изобутилена и формальдегида путем конденсации изобутилена с водным раствором формальдегида в присутствии фосфорной кислоты при повышенных температуре и давлении и последующего выделения ДМД из реакционной массы, при этом конденсацию проводят в присутствии пористого полифениленфталида (1), содержание которого выдерживают в количестве 3,5-5 мас.

Изобретение относится к области основного органического и нефтехимического синтеза и может быть использовано в производстве 4,4-диметил-1,3-Диоксана путем конденсации изобутилена и формальдегида.

Изобретение относится к способу получения 4,4-диметил-1,3-диоксана (ДМД) из изобутилена и формальдегида путем конденсации изобутилена с водным раствором формальдегида в присутствии фосфорной кислоты при повышенных температуре и давлении в присутствии синтетических цеолитов NаА с диаметром пор 4 или СаА с диаметром пор 5 , содержание которых выдерживают в количестве 3,5-5,0 мас.% от реакционной массы, и последующим выделением ДМД из реакционной массы.

Изобретение относится к способам получения золькеталя - смеси изомеров 2,2-диметил-4-гидроксиметил-1,3-диоксолана и 2,2-диметил-5-гидроксиметил-1,3-диоксолана - путем взаимодействия глицерина и ацетона на кислотном гетерогенном катализаторе, например катионообменной смоле КУ2-8 или цеолите бета, и может быть использовано при производстве оксигенатов, улучшающих эксплуатационные свойства топлив для двигателей внутреннего сгорания.
Изобретение относится к способам получения золькеталя - смеси изомеров 2,2-диметил-4-гидроксиметил-1,3-диоксолана и 2,2-диметил-1,3-диоксан-5-ола - путем взаимодействия глицерина и ацетона на гетерогенном катализаторе, например катионообменных смолах или цеолитах, и может быть использовано при производстве оксигенатов, улучшающих эксплуатационные свойства топлив для двигателей внутреннего сгорания.

Изобретение относится к способу получения 4,4-диметил-1,3-диоксана (ДМД) из изобутилена и формальдегида путем конденсации изобутилена с водным раствором формальдегида в присутствии фосфорной кислоты при повышенных температуре и давлении в присутствии углеродных нанотрубок с диаметром пор 7-11 Å содержание которых выдерживают в количестве 3,5-5 мас.

Изобретение относится к соединению формулы I, где R1 обозначает -OR7; R2a выбран из -СН2ОН, -СН2ОР(O)(ОН)2 и -СН2ОС(О)СН(R37)NH2; или R2a вместе с R7 образует -CH2O-CR18R19-; R2b выбран из Н и -СН3; Z обозначает -СН-; X выбран из пиразола, имидазола, триазола, бензотриазола, оксазола, изоксазола, пиримидина, пиридазина, бензимидазола, пирана и триазоло[4,5-b]пиридина; R3 отсутствует или выбран из Н; галогена; -С0-5алкилен-ОН; -C1-6алкила; -C(O)R20; -С0-1алкилен-COOR21; -С(О)NR22R23; =O; фенила, в случае необходимости замещенного одной или двумя группами, независимо выбранными из галогена; и пиридинила; R4 отсутствует или выбран из Н; -ОН; галогена; -C1-6алкила; -CH2OC(O)CH(R36)NH2; -СН[СН(СН3)2]-NHC(О)O-C1-6алкила; и фенила или бензила; а=0; b=0 или целое число от 1 до 3; каждый R6 независимо выбран из галогена; R7 выбран из Н, -С1-8алкила, -C1-3алкилен-С6-10арила, [(СН2)2О]1-3СН3, -C1-6алкилен-ОС(О)R10, -С1-6алкилен-NR12R13, -C1-6алкилен-С(О)R31, -С0-6алкиленморфолинила, -С1-6алкилен-SO2-С1-6алкила; структурных формул (а1), (а2), (а3) и (а4); R10 выбран из -C1-6алкила, -O-C1-6алкила, -С3-7циклоалкила, -О-С3-7циклоалкила и -СН[СН(СН3)2]-NH2; и R12 и R13 независимо выбраны из Н, -C1-6алкила и бензила, или R12 и R13 вместе образуют -(CH2)5- или -(СН2)2О(СН2)2-; R31 выбран из -О-бензила и -NR12R13; и R32 обозначает -C1-6алкил; R18 и R19 независимо выбраны из Н и -C1-6алкила; R20 выбран из Н и -C1-6алкила; R21 обозначает H; R22 и R23 независимо выбраны из Н, -C1-6алкила, -(СН2)2ОСН3 и -С0-1алкилен-С3-7циклоалкила; или R22 и R23 вместе образуют насыщенный -С3-5гетероцикл, выбранный из азетидина или пирролидина; и в случае необходимости содержащий атом кислорода в кольце; R36 выбран из Н, -СН(СН3)2, фенила и бензила; и R37 выбран из Н и -СН(СН3)2; и; где метиленовый линкер на бифениле может быть замещен одной или двумя -C1-6алкильными группами; или его фармацевтически приемлемой соли.

Изобретение относится к способу получению 1,4-диоксанкарбоксилатов, который заключается в том, что проводят расширение 1,3-диоксоланового кольца при взаимодействии моно-, ди- и тризамещенных 1,3-диоксоланов с метилдиазоацетатом в условиях микроволнового излучения (230 Вт) в течение 0,5-1,5 часов в среде хлористого метилена.

Изобретение относится к способу получения 4,4-диметил-1,3-диоксана конденсацией изобутилена с формальдегидом в присутствии кислотного катализатора. Способ характеризуется тем, что в качестве кислотного катализатора используют хлорную кислоту или смесь хлорной кислоты с органическими и/или неорганическими кислотами.

Каталитическая микросфера каталитического крекинга со взвешенным катализатором, содержащая цеолит, где указанная микросфера сформирована из пульпы, содержащей: i) каолин, который прокаливали вне его экзотермического перехода; и или ii) кристаллы цеолита, или iii) гидратированный каолин и/или метакаолин, пульпа была смешана с 0.005-0.5 мас.% катионоактивного полиэлектролита относительно массы i) + ii) или i) + iii) перед или во время формирования указанной микросферы.

Изобретение относится к катализатору для обработки выхлопных газов при селективном каталитическом восстановлении оксидов азота, содержащему: (a) от 1 до 99 масс.% октаэдрического молекулярного сита (OMS), содержащего оксид марганца; и (b) от 1 до 99 масс.% молекулярного сита (молекулярных сит) со средними порами и/или с крупными порами, где катализатор представляет собой композитный катализатор и октаэдрическое молекулярное сито (OMS) сформировано в присутствии молекулярного сита.
Изобретение относится к катализатору, пригодному для получения авиационного керосина из синтетического нефтепродукта Фишера-Тропша из биомассы, и способу его приготовления.

Изобретение относится к способу получения компонентов транспортных топлив углеводородного состава из сырья биологического происхождения. Способ одностадийного получения компонентов транспортного топлива углеводородного состава из липидных фракций базидиальных грибов включает пропускание смеси водорода и указанного сырья биологического происхождения через неподвижный слой катализатора на основе мезопористого алюмосиликата типа Al-HMS в соотношении SiO2/Al2O3 от 5 до 40, площадью поверхности более 600 м2/г, объемом пор в диапазоне от 0,5 до 1,5 см3/г, средним диаметром пор 40 , который модифицирован одним и/или более металлами, выбранными из ряда Pd, Pt, Ni, Ru, Rh, Mo, W, Co, в количестве не более 5 мас.

Группа изобретений относится к цеолитсодержащим материалам и их использованию в качестве катализаторов. Предложен катализатор безводородной депарафинизации углеводородного сырья, в частности дизельного топлива, на основе гранулированной смеси алюмосиликатного цеолита ZSM-5 с мольным отношением SiO2/Al2O3, равным 23-80, со связующим (Al2O3 или SiO2), модифицированной фторидом цинка до 1,5-5,0%-ного содержания цинка, характеризующийся остаточным содержанием ионов натрия менее 0,1%.

Изобретение относится к способу производства катализаторов и может быть использовано для процесса алкилирования изопарафиновых углеводородов олефинами в нефтеперерабатывающей и нефтехимической промышленности.

Изобретение относится к композиции катализатора для обработки NOx в отработавшем газе от сгорания обедненной топливной смеси, включающей в себя смесь алюмосиликатного молекулярного сита с каркасом СНА и кремнийалюмофосфатного молекулярного сита с каркасом СНА.

Изобретение относится к цеолитсодержащим материалам и их использованию в качестве катализатора. Предложен катализатор для безводородной депарафинизации сырья, в частности дизельного топлива, на основе алюмосиликатного цеолита ZSM-5, который характеризуется мольным отношением SiO2/Al2O3, равным 23-80, остаточным содержанием ионов натрия менее 0,1% и модифицирован оксидом цинка в количестве 1,0-4,0 мас.% (в пересчете на цинк).
Изобретение относится к способу получения катализатора гидрокрекинга, который включает стадии: (а) перемешивания цеолита Y, характеризующегося размером элементарной ячейки в диапазоне от 24,42 до 24,52 Å, валовым молярным соотношением между диоксидом кремния и оксидом алюминия (SAR) в диапазоне от 10 до 15 и площадью удельной поверхности в диапазоне от 910 до 1020 м2/г, со связующим компонентом на основе оксида алюминия и двумя или более каталитически активными металлсодержащими компонентами, где данные металлсодержащие компоненты содержатся в одном или нескольких растворах, где цеолит Y присутствует в количестве, составляющем 40 мас.% или более, при расчете на совокупную массу цеолита Y и связующего компонента на основе оксида алюминия; (b) экструдирования смеси, полученной на стадии (а); (с) высушивания экструдированной смеси, полученной на стадии (b); (d) прокаливания высушенной и экструдированной смеси, полученной на стадии (с); и (е) перемешивания прокаленного продукта, полученного на стадии (d), с двумя или более каталитически активными металлсодержащими компонентами, где данные металлсодержащие компоненты содержатся в одном или нескольких растворах.
Изобретение относится к катализатору гидрокрекинга углеводородного сырья, содержащему по меньшей мере один металл, выбранный из группы, состоящей из металлов группы VIB и группы VIII периодической системы, используемых по отдельности или в смеси, и подложки, содержащей по меньшей мере один цеолит NU-86, по меньшей мере один цеолит Y и по меньшей мере одну неорганическую пористую матрицу, содержащую по меньшей мере алюминий и/или по меньшей мере кремний, причем указанный катализатор содержит, мас.% от общей массы катализатора: 0,2-10 по меньшей мере одного цеолита NU-86, 0,4-40 по меньшей мере одного цеолита Y, 0,5-50 по меньшей мере одного гидрирующего-дегидрирующего металла, выбранного из группы, состоящей из металлов группы VIB и группы VIII, 1-99 по меньшей мере одной неорганической пористой матрицы, содержащей по меньшей мере алюминий и/или по меньшей мере кремний.

Изобретение относится к способу карбонилирования диметилового эфира монооксидом углерода в присутствии катализатора с получением продукта реакции - метилацетата, где способ карбонилирования проводят при температуре, равной от 240 до 320°C, в присутствии водорода при молярном отношении количества водорода к количеству монооксида углерода, равном более 1, и катализатором является цеолит, полученный из смеси для синтеза, содержащей по меньшей мере один органический направляющий реагент для формирования структуры.
Наверх