Способ управления газотурбинным узлом при низкой скорости вращения

Способ относится к управлению газотурбинным узлом во время запуска или остановки. Способ содержит контроль скорости вращения выходного вала и одновременно с этим управление скоростью вращения входного вала после того, как контролируемая скорость вращения выходного вала станет выше нуля или ниже заданной предельной скорости медленного вращения в течение заданного допустимого интервала времени. Технический результат изобретения – оптимальное ограничение интервала времени, в течение которого газотурбинный узел, в том числе газовое уплотнение, вращается со скоростью в диапазоне скоростей медленного вращения. 2 н. и 13 з.п. ф-лы, 7 ил.

 

Настоящее изобретение в целом относится к способу управления газотурбинным узлом при низкой скорости вращения. В частности, настоящее изобретение относится к способу управления газотурбинным узлом во время запуска или остановки.

Газовый компрессор можно приводить в действие с помощью газовой турбины наземного базирования, имеющей одно- или двухвальное исполнение (см., например, публикацию JP 2938856 В1). В одновальном исполнении газовая турбина включает в себя по меньшей мере входной компрессор и силовую турбину, установленную на том же валу, на котором также установлен компрессор.

В двухвальном исполнении газовая турбина содержит так называемый "газогенератор", включающий в себя первый вал и силовую турбину, установленную на втором валу. Газовый компрессор также установлен на втором валу. Газогенератор, как правило, содержит входной компрессор и турбину компрессора, установленные на первом валу, и камеру сгорания, расположенную между входным компрессором и турбиной компрессора. Газогенератор может также состоять из более чем одной пары "компрессор-турбина компрессора". Газогенератор используется для подачи газа при определенных условиях давления и температуры в силовую турбину, посредством соединения между выпускным отверстием турбины компрессора и впускным отверстием силовой турбины.

Газовые компрессоры, приводимые в действие газовыми турбинами наземного базирования с одно- или двухвальным исполнением, как правило, используют так называемые "газовые уплотнения" на своих роторах для предотвращения утечки нагнетаемого газа. Как правило, газовое уплотнение содержит неподвижное кольцо и вращающееся кольцо, имеющее плоскую кольцевую поверхность, которая обращена к неподвижному кольцу, и которая снабжена канавками. Газ обычно находится в очень тонких зазорах между неподвижным кольцом и поверхностью вращающегося кольца, снабженного канавками. Во время работы, когда вращающееся кольцо вращается относительно неподвижного кольца, вязкость газа, протекающего в канавках, поддерживает тонкую газовую подушку между кольцами, тем самым предотвращая износ. Главный недостаток газовых уплотнений состоит в том, что ниже минимальной скорости вращения, например, в компрессорной системе мощностью 5-15 MВт, такая минимальная скорость вращения, как правило, ниже 400 об/мин, подходящая газовая подушка не образуется, и происходит контакт. Поэтому было бы желательным предотвратить вращение компрессора ниже минимальной скорости вращения. Вращение ниже минимальной скорости вращения, которое необходимо для правильной работы уплотнений, упоминается обычно как "медленное вращение".

Тем не менее, также необходимо, чтобы газовые турбины приводились во вращение системой стартера, после их останова, при низкой скорости вращения для того, чтобы охладить двигатель и предотвратить деформацию из-за температурных градиентов в роторах, которая может привести к проблемам вибрации и задеванию движущихся деталей при последующем перезапуске. Неспособность проворачивания ротора вскоре после его остановки, причем период времени зависит от размера газовой турбины и, как правило, находится в пределах нескольких минут, например, для маленькой газовой турбины 15 мин, может привести к значительным задержкам при повторном запуске двигателя (при этом такая задержка упоминается обычно как "блокировка") или может привести к риску повреждения лопаток компрессора и уплотнений.

В одновальных газовых турбинах ротор газовой турбины и газовый компрессор, как правило, механически соединены, например, через соединительную муфту, и поэтому можно добиться совместного вращения с приводом от системы стартера, тогда как в двухвальных газовых турбинах система стартера напрямую приводит в движение входной компрессор газогенератора. Вращение газогенератора может обеспечить достаточный поток для того, чтобы вызвать медленное вращение силовой турбины, и, следовательно, газового компрессора при некоторых или любых обстоятельствах в зависимости от приводимой установки и установочных деталей, а также изменений погодных условий. Таким образом, существует особенно острая потребность в предотвращении медленного вращения двухвальных газовых турбин.

Задача настоящего изобретения состоит в том, чтобы выполнить способ оптимального ограничения интервала времени, в течение которого узел двухвальной газовой турбины, в том числе газовое уплотнение, вращается со скоростью вращения в диапазоне скоростей медленного вращения. Дополнительная задача настоящего изобретения состоит в том, чтобы выполнить способ управления узлом двухвальной газовой турбины при низкой скорости вращения, который, так как причины изменения варьируются при ответных действиях, позволяет постоянно контролировать скорость медленного вращения и принимать действия для ограничения при обнаружении изменений.

В газотурбинном узле, содержащем газовые уплотнения при "низкой скорости вращения", предполагается, что скорость вращения ниже предельной скорости медленного вращения, что обычно происходит во время запуска или остановки. Под фразой "предельная скорость медленного вращения" понимается минимальная скорость вращения, которая требуется для правильной работы газовых уплотнений, то есть во избежание контакта и износа между вращающимися и неподвижными элементами уплотнений.

Для того чтобы решить задачи, определенные выше, выполнен способ управления газотурбинным узлом при низкой скорости вращения и газотурбинным узлом согласно независимому пункту формулы изобретения. Зависимые пункты формулы изобретения описывают преимущественные разработки и модификации изобретения.

Согласно первому аспекту настоящего изобретения выполнен способ управления газотурбинным узлом во время запуска или остановки, причем газотурбинный узел включает в себя двухвальную газовую турбину, содержащую входной и выходной валы и датчик скорости вращения для измерения скорости вращения выходного вала, при этом газотурбинный узел дополнительно содержит ротор, установленный на упомянутом выходном валу и снабженный по меньшей мере газовым уплотнением для предотвращения утечки газа между ротором и газовым уплотнением, причем способ содержит контроль скорости вращения выходного вала и уменьшение или увеличение скорости вращения входного вала после того, как скорость вращения выходного вала станет выше нуля и ниже заданной предельной скорости медленного вращения в течение заданного допустимого интервала времени.

Под фразой "заданный допустимый интервал времени" понимается интервал времени, в течение которого выполняется медленное вращение, либо из-за того, что износ уплотнений находится ниже допустимых пределов, либо по другим причинам, оказывающим влияние на работу. В вариантах осуществления настоящего изобретения такой интервал может быть равен нулю.

Согласно примерным вариантам осуществления настоящего изобретения заданная предельная скорость медленного вращения составляет 200-600 об/мин.

Согласно дополнительному примерному варианту осуществления настоящего изобретения способ настоящего изобретения позволяет управлять двухвальной газовой турбиной во время запуска, и он содержит контроль скорости вращения выходного вала и следующую последовательность операций:

- начало вращения входного вала,

- если после первого заданного допустимого интервала времени скорость вращения выходного вала выше нуля, но остается ниже заданной предельной скорости медленного вращения, то увеличение скорости вращения входного вала,

- если скорость вращения выходного вала остается ниже заданной предельной скорости медленного вращения, то ожидание в течение второго заданного допустимого интервала времени перед дополнительным увеличением скорости вращения входного вала.

Во время запуска, так как увеличение скорости вращения выходного вала начинается с нуля, нельзя полностью избежать медленного вращения. Предпочтительно, когда скорость вращения ниже предельной скорости медленного вращения обнаруживается после первого заданного допустимого интервала времени, способ сначала пытается довести вращение выходного вала выше предельной скорости медленного вращения, увеличивая при этом скорость вращения входного вала. Если скорость вращения на выходе по причинам, вытекающим из особенностей конструкции или функционирования газовой турбины, остается ниже такого предела, скорость медленного вращения может оставаться неизменной в течение второго допустимого интервала времени, который в газовых турбинах обычно совпадает с временем продувки. Фраза "время продувки" означает время, в течение которого газовая турбина продолжается вращаться посредством системы стартера без поджига камеры сгорания для того, чтобы любой горючий газ протекал в направлении выхлопа. Продолжительность времени продувки зависит от установки, то есть в основном от размеров внутренних объемов газотурбинного узла вместе с его трубопроводной системой и любыми системами рекуперации отходящего тепла.

Согласно примерным вариантам осуществления настоящего изобретения первый заданный допустимый интервал времени находится между 10 сек и 30 сек.

Согласно примерным вариантам осуществления настоящего изобретения второй заданный допустимый интервал времени находится между 60 сек и 300 сек. Второй заданный допустимый интервал времени обычно совпадает с временем продувки, то есть с временем, которого при низкой скорости вращения достаточно для 3-5-кратного вытеснения общего внутреннего объема газотурбинного узла.

Согласно дополнительному примерному варианту осуществления настоящего изобретения способ настоящего изобретения позволяет управлять двухвальной газовой турбиной во время остановки и содержит контроль скорости вращения выходного вала и следующую последовательность операций:

- ожидание до тех пор, пока выходной вал не остановится,

- ожидание в течение заданного времени ожидания,

- вращение входного вала с первой заданной скоростью вращения,

- если скорость вращения выходного вала остается в течение третьего заданного допустимого интервала времени выше нуля, но ниже заданной предельной скорости медленного вращения, то увеличение скорости вращения входного вала до второй заданной скорости вращения, которая больше, чем первая заданная скорость вращения.

- если скорость вращения выходного вала остается ниже заданной предельной скорости медленного вращения, то остановку входного вала, затем

- ожидание в течение времени, равного времени ожидания, затем

- вращение входного вала с третьей заданной скоростью вращения, которая ниже, чем первая заданная скорость вращения,

- если скорость вращения выходного вала больше нуля, то остановку входного вала, затем

- ожидание в течение времени, равного времени ожидания, затем

-периодическое вращение входного вала до четвертой заданной скорости вращения, которая ниже, чем третья заданная скорость вращения, и остановку входного вала в течение временного интервала,

- если скорость вращения выходного вала больше нуля, то остановку входного вала, и

- предотвращение перезапуска газотурбинного узла в течение времени покоя.

Согласно примерным вариантам осуществления настоящего изобретения третий заданный допустимый момент времени находится между 10 сек и 30 сек.

Предпочтительно, после остановки последовательно проверяются следующие условия вращения входного вала для того, чтобы решить основные задачи охлаждения двигателя и предотвращения перекоса из-за температурных градиентов в роторах:

a) вращение входного вала с первой или второй заданной скоростью вращения для того, чтобы заставить выходной вал вращаться со скоростью вращения выше предельной скорости медленного вращения;

b) вращение входного вала с третьей заданной скоростью вращения, которая ниже, чем первая заданная скорость вращения, для того, чтобы поддерживать выходной вал в неподвижном состоянии;

c) вращение входного вала в короткие толчки с четвертой заданной скоростью вращения ниже, чем третья заданная скорость вращения для того, чтобы поддерживать выходной вал в неподвижном состоянии.

Эти стратегии a)-c) для газотурбинного узла проверяются в последовательности от наиболее выгодной до наименее выгодной, и только в том случае, если ни одна из них не является эффективной при предотвращении недопустимого вращения приводимого в действие газового компрессора, система управления прекращает вращение и обеспечивает последовательные задержки для перезапуска газовой турбины.

Согласно примерным вариантам осуществления настоящего изобретения первая заданная скорость вращения составляет 10-20 процентов от номинальной скорости вращения силовой турбины. Например, при номинальной скорости вращения силовой турбины 10000 об/мин первая заданная скорость вращения составляет 1000-2000 об/мин.

Согласно примерным вариантам осуществления настоящего изобретения вторая заданная скорость вращения составляет 20-40 процентов от номинальной скорости вращения силовой турбины. Например, при номинальной скорости вращения силовой турбины 10000 об/мин вторая заданная скорость вращения составляет 2000-4000 об/мин.

Согласно примерным вариантам осуществления настоящего изобретения третья заданная скорость вращения составляет 5-10 процентов от номинальной скорости вращения силовой турбины. Например, при номинальной скорости вращения силовой турбины 10000 об/мин третья заданная скорость вращения составляет 500-1000 об/мин.

Согласно примерным вариантам осуществления настоящего изобретения четвертая заданная скорость вращения составляет менее 1-го процента от номинальной скорости вращения силовой турбины (например, 50-100 об/мин, если номинальная скорость вращения силовой турбины составляет 10000 об/мин), и временной интервал между двумя последующими толчками при четвертой заданной скорости равен 2-3 мин.

Согласно примерным вариантам осуществления настоящего изобретения время ожидания перед применением каждой из этих трех стратегий, определенных выше, равно 2-3 мин.

Согласно примерным вариантам осуществления настоящего изобретения время нахождения в состоянии покоя находится в интервале от 10 мин до 4 ч. Если способ является неудачным при предотвращении вращения выходного вала ниже предельной скорости медленного вращения, то предотвращается перезапуск газовой турбины в течение продолжительного периода (4 ч), если отсутствует перезапуск в течение более короткого интервала (10 мин).

Согласно примерным вариантам осуществления настоящего изобретения газотурбинный узел содержит газовый компрессор, включающий в себя ротор и газовое уплотнение, предназначенное для защиты от износа согласно настоящему способу.

Аспекты, определенные выше, и дополнительные аспекты настоящего изобретения очевидны из примеров варианта осуществления, которые будут описаны ниже и объяснены со ссылкой на примеры варианта осуществления. Изобретение будет описано ниже более подробно со ссылкой на примеры варианта осуществления, но которыми не ограничивается изобретение. На чертежах:

фиг.1A - блок-схема, иллюстрирующая способ управления газотурбинным узлом во время запуска согласно настоящему изобретению;

фиг.1B - блок-схема, иллюстрирующая способ управления газотурбинным узлом во время остановки согласно настоящему изобретению;

фиг.2 - схематичный вид двухвальной газовой турбины, к которой применим способ настоящего изобретения;

фиг.3 - схематичный вид одного компонента, показанного на фиг.2; и

фиг.4-7 - четыре графика переменных газовой турбины, которыми можно управлять с помощью способа настоящего изобретения.

На фиг.1A и 1B показан способ 100, 200 согласно настоящему изобретению управления газотурбинным узлом 10 во время запуска или остановки. Ниже приводится подробное описание газотурбинного узла 10.

Способ 100, 200 содержит:

- контроль скорости вращения выходного вала 21 газотурбинного узла 10, и одновременно

- уменьшение или увеличение скорости вращения входного вала 13 газотурбинного узла 10 после того, как контролируемая скорость вращения выходного вала 21 станет выше нуля и ниже заданной предельной скорости медленного вращения nL в течение заданного допустимого интервала времени T1, T2, T3.

На фиг.2 схематично показан узел 10 двухвальной газовой турбины, которым можно управлять при низкой скорости вращения, то есть при запуске и остановке, с помощью способа 100, 200 согласно настоящему изобретению. Газотурбинный узел 10 включает в себя газовую турбину 5 и компрессор 30, которые механически соединены друг с другом посредством выходного вала 21. Газовый компрессор 30 приводится в действие газовой турбиной 5 для сжатия технологического газа, вытекающего из впускного отверстия 30a в выпускное отверстие 30b газового компрессора 30.

Газовая турбина 5 содержит газогенератор 11 и силовую турбину 12. Силовая турбина 12 имеет номинальную скорость вращения 10000 об/мин. Согласно другим возможным вариантам осуществления можно использовать силовую турбину при различной номинальной скорости вращения турбины.

Газогенератор 11 содержит входной компрессор 15, турбину компрессора 16 и входной вал 13, на котором установлены входной компрессор 15 и турбина компрессора 16. Газовая турбина 5 дополнительно содержит электрический двигатель 17 с регулируемой скоростью вращения, который присоединен к входному валу 13 на осевом конце со стороны входного компрессора 15. Электрический двигатель 17 действует в качестве системы стартера для газогенератора 11.

В газогенераторе 11 между входным компрессором 15 и турбиной компрессора 16 предусмотрена камера 18 сгорания. В камере 18 сгорания топливо 19 впрыскивается для сжигания с помощью сжатого воздуха, действуя в качестве горючего, поступающего из входного компрессора 15. После процесса горения горячий газ, содержащий продукты горения выходит из камеры 18 сгорания и поступает в турбину компрессора 16, где газ расширяется. Из выпускного отверстия 16a турбины компрессора 16 расширившийся газ подается во впускное отверстие 12a силовой турбины 12, которая установлена на первом осевом конце 21a выходного вала 21. В силовой турбине 12 газ дополнительно расширяется для того, чтобы вырабатывать механическую мощность на выходном валу, которая передается компрессору 30, установленному на втором осевом конце 21b выходного вала 21. После расширения в силовой турбине 12 газ выпускается в атмосферу через выхлопное отверстие 12b. Газовая турбина 5 дополнительно содержит датчик 40 скорости вращения для контроля скорости вращения выходного вала 21. Значение скорости вращения выходного вала 21, измеренное датчиком 40, принимает контроллер 50, который управляет электрическим двигателем 17, как это лучше объяснено ниже со ссылкой на фиг.1A, 1B и 4-7.

Газовые компрессоры 30 содержат один или несколько роторов 31, которые механически связаны с выходным валом 21 и многочисленными газовыми уплотнениями 35, расположенными между ротором(ами) 31 и выходным валом 21 для предотвращения утечки технологического газа.

На фиг.3 схематично показано газовое уплотнение 35, включающее в себя неподвижное кольцо 41 и вращающееся кольцо 42. Неподвижное кольцо прижимается к вращающемуся кольцу с помощью пружины 45. Вращающаяся пружина 42 изготовлена из твердого материала, например, типа карбида вольфрама или карбида кремния, и она предусмотрена на поверхности 42a, обращенной к неподвижному кольцу 41 с многочисленными канавками 43. Каждая канавка 43 имеет форму логарифмической спирали или другую удобную форму, например, любую форму в двунаправленном исполнении для того, чтобы при вращении вращающегося кольца 42 относительно неподвижного кольца 41 канавки могли бы вырабатывать гидродинамические силу, заставляющую неподвижное кольцо отделяться и создавать газовую подушку между двумя кольцами 41, 42, тем самым предотвращая износ.

На фиг.1A показана блок-схема способа 100 управления газотурбинным узлом 10 во время запуска согласно настоящему изобретению. Способ 100 содержит контроль скорости вращения выходного вала 21 посредством датчика 40. Контроллер 50 принимает от датчика 40 значение скорости вращения выходного вала 21 и управляет электрическим двигателем 17 для выполнения способа 100.

Способ 100 содержит последовательность этапов 110-130, которые выполняются одновременно с этапом контроля скорости вращения выходного вала 21.

Способ 100 содержит первый этап 110, во время которого электрический двигатель 17 начинает вращать входной вал 13. На втором этапе 140 способа 100 скорость вращения выходного вала 21 непрерывно контролируется для того, чтобы проверять следующее выражение:

0<nOUT<nL, (A)

где nOUT - скорость вращения выходного вала 21, и nL - заданная предельная скорость медленного вращения.

Значение nL зависит от каждой установки и находится, как правило, ниже 400 об/мин для газотурбинного узла мощностью 5-15MВт. Согласно другим примерным вариантам осуществления настоящего изобретения заданная предельная скорость медленного вращения составляет 200-600 об/мин.

Если выражение A выполняется, то способ 100 повторяет несколько раз второй этап 140 до тех пор, пока не будет соблюдено заданное условие, например, пока скорость вращения выходного вала 21 не достигнет конечного заданного значения, и способ 100 завершается.

Если выражение A не выполняется после первого заданного допустимого интервала времени T1, то способ 100 содержит третий этап 120 увеличения скорости вращения входного вала 13 для того, чтобы увеличить также скорость вращения выходного вала 21.

В первый заданный допустимый момент времени T1 находится, как правило, между 10 сек и 30 сек.

Более предпочтительно, согласно возможным вариантам осуществления настоящего изобретения первый заданный допустимый момент времени T1 находится между 10 сек и 20 сек.

На следующем четвертом этапе 150 способа 100, скорость вращения выходного вала 21 непрерывно контролируется для того, чтобы проверить следующее выражение:

nOUT>nL. (B)

Если выражение B выполняется, то способ 100 повторяет несколько раз четвертый этап 150 до тех пор, пока не будет соблюдено заданное условие, например, пока не будет завершен запуск, и способ 100 завершается.

Если выражение B не выполняется, то способ 100 содержит пятый этап 130 ожидания в течение второго заданного допустимого момента времени T2 перед дополнительным увеличением скорости вращения входного вала 13.

Второй заданный допустимый момент времени T2 находится, как правило, между 120 сек и 300 сек и совпадает с временем продувки, то есть с временем, которого при скорости вращения выходного вала 21 ниже nL достаточно для 3-5-кратного вытеснения общего внутреннего объема газотурбинного узла 10.

Более предпочтительно, согласно возможным вариантам осуществления настоящего изобретения второй заданный допустимый момент времени T2 находится между 60 сек и 300 сек.

В конце пятого этапа 130 способ 100 завершается.

На фиг.1B показана блок-схема способа 200 управления газотурбинным узлом 10 во время остановки согласно настоящему изобретению.

На фиг.4-7 показаны графики скорости вращения входного вала 13 (сплошная линия) и выходного вала 21 (пунктирная линия) со ссылкой на заданную предельную скорость медленного вращения nL (штрихпунктирная линия).

Способ 200 содержит контроль скорости вращения выходного вала 21 посредством датчика 40. Контроллер 50 принимает от датчика 40 значение скорости вращения выходного вала 21 и управляет электрическим двигателем 17 для выполнения способа 200.

Способ 200 содержит последовательность этапов 205-295, которые выполняются одновременно с этапом контроля скорости вращения выходного вала 21.

Способ 200 содержит первый этап 205 ожидания до тех пор, пока выходной вал 21 не достигнет полной остановки после нормального функционирования. Далее, способ 200 содержит второй этап 210 ожидания в течение заданного времени ожидания Tw. Согласно примерным вариантам осуществления настоящего изобретения заданное время ожидания Tw равняется 2-3 мин, при этом точное значение зависит от размера и характеристик газовой турбины 5 и компрессора 30.

Далее, способ 200 содержит третий этап 215 вращения входного вала 13 с первой нормальной заданной скоростью вращения n1. Первая заданная скорость вращения, как правило, находится в диапазоне 1000-3000 об/мин. Более конкретно, согласно другому варианту осуществления настоящего изобретения первая заданная скорость вращения, как правило, находится в диапазоне 1000-2000 об/мин, то есть составляет 10-20 процентов от номинальной скорости вращения силовой турбины.

На четвертом этапе 206 способа 200 скорость вращения выходного вала 21 непрерывно контролируется для того, чтобы проверить выражение A. Если выражение A выполняется (фиг.4), способ 200 повторяет несколько раз четвертый этап 206 до тех пор, пока не будет соблюдено заданное условие, и способ 200 завершается. Например, заданным условием, которое должно быть выполнено, могло быть истечение удобного времени, которое гарантирует, что температуры в газотурбинном узле 10 стали ниже опасных значений для перекоса компонентов.

Если выражение A не выполняется в течение третьего заданного допустимого интервала времени T3, то способ 200 содержит пятый этап 218 увеличения скорости вращения входного вала до второй заданной скорости вращения n2, которая больше, чем первая заданная скорость вращения n1. Третий заданный допустимый момент времени T3 находится, как правило, между 10 сек и 20 сек, и вторая заданная скорость вращения n2 находится, как правило, в диапазоне 2000-4000 об/мин, то есть составляет 20-40 процентов от номинальной скорости вращения силовой турбины.

Более предпочтительно, согласно возможным вариантам осуществления настоящего изобретения третий заданный допустимый момент времени T3 находится между 10 сек и 20 сек.

На шестом этапе 207 способа 200 скорость вращения выходного вала 21 непрерывно контролируется для того, чтобы проверить выражение B.

Если выражение B выполняется (фиг.5), способ 200 повторяет несколько раз шестой этап 207 до тех пор, пока не будет соблюдено заданное условие (например, истекло удобное время, которое гарантирует, что температуры в газотурбинном узле 10 стали ниже опасных значений), и способ 100 завершается.

Если выражение B не выполняется, то способ 200 переходит к седьмому этапу 220 остановки входного вала 13, и последующему восьмому этапу 230 проверки того, что выходной вал 21 достиг полной остановки.

Далее, способ 200 содержит девятый этап 240 ожидания в течение времени, равного времени ожидания Tw, и десятый этап 250 вращения входного вала 13 с третьей заданной скоростью вращения n3, которая ниже, чем первая заданная скорость вращения n1.

Третья заданная скорость вращения n3 находится в диапазоне 500-1000 об/мин (то есть составляет 5-10 процентов от номинальной скорости вращения силовой турбины) при этой самой низкой допустимой скорости вращения для газовой турбины 12. Третья заданная скорость вращения n3 должна обеспечить вращение входного вала 13 для того, чтобы предотвратить температурные деформации, в то время как выходной вал 21 должен оставаться неподвижным во избежание износа газового уплотнения 35.

На следующем одиннадцатом этапе 260 способа 200 скорость вращения выходного вала 21 непрерывно контролируется для того, чтобы проверить выражение A.

Если выражение A не выполняется (фиг.6), то есть выходной вал 21 остается неподвижным, способ 200 повторяет несколько раз одиннадцатый этап 260 до тех пор, пока не будет соблюдено заданное условие (например, истекло удобное время, которое гарантирует, что температуры в газотурбинном узле 10 стали ниже опасных значений без какого-либо перекоса компонентов), и способ 200 завершается.

Если выражение A выполняется, что означает, что выходной вал 21 вращается со скоростью вращения ниже предельной скорости медленного вращения nL, способ 200 переходит к двенадцатому этапу 270 остановки входного вала 13, и последующему тринадцатому этапу 280 проверки того, что выходной вал 21 достиг полной остановки.

Далее, способ 200 содержит четырнадцатый этап 282 ожидания в течение времени, равного времени ожидания Tw, и пятнадцатый этап 285 периодического вращения входного вала 13 до четвертой заданной скорости вращения n4, которая ниже, чем третья заданная скорость вращения n3. Четвертая заданная скорость вращения обычно равна 50-100 об/мин, то есть составляет менее 1-го процента от номинальной скорости вращения силовой турбины.

Каждый толчок входного вала 13 при скорости вращения n4 сопровождается остановкой в течение интервального времени Ts, которое находится между 2 и 3 мин.

Пятнадцатый этап 285 должен гарантировать, что перекосы из-за температуры минимизируются путем изменения угла входного вала 13 относительно температурного градиента, в то время как выходной вал 21 остается неподвижным, тем самым предотвращая износ газового уплотнения 35.

На следующем шестнадцатом этапе 290 способа 200 скорость вращения выходного вала 21 непрерывно контролируется для того, чтобы проверить следующее выражение:

nOUT=0. (C)

Если выражение C выполняется (фиг.6), то способ 200 повторяет несколько раз шестнадцатый этап 290 до тех пор, пока не будет соблюдено заданное условие (например, истекло удобное время, которое гарантирует, что температуры в газотурбинном узле 10 стали ниже опасных значений без какого-либо перекоса компонентов), и способ 200 завершается.

Если выражение C не выполняется, что означает, что выходной вал 21 вращается со скоростью вращения ниже предельной скорости медленного вращения nL, способ 200 переходит к семнадцатому этапу 292 остановки входного вала 13 и к окончательному восемнадцатому этапу 295 предотвращения перезапуска газотурбинного узла 10 в течение времени Tr нахождения в состоянии покоя, который находится между 10 мин и 4 ч, то есть, если отсутствует перезапуск в пределах короткого заданного интервала (как правило, 10-15 мин), то предотвращается перезапуск газотурбинного узла 10 в течение более продолжительного периода времени, как правило, порядка 4 ч.

В конце восемнадцатого этапа 295 способ 200 завершается.

1. Способ (100, 200) управления газотурбинным узлом во время запуска или остановки, причем газотурбинный узел (10) включает в себя двухвальную газовую турбину (5), содержащую входной вал (13) и выходной вал (21), и датчик (40) скорости вращения для измерения скорости вращения выходного вала (21), при этом газотурбинный узел (10) дополнительно содержит ротор (31), установленный на выходном валу (21) и снабженный по меньшей мере газовым уплотнением (35) для предотвращения утечки газа между ротором (31) и газовым уплотнением (35), причем способ (100, 200) включает:

контроль скорости вращения выходного вала (21) и одновременно с этим

управление скоростью вращения входного вала (13) после того, как контролируемая скорость вращения выходного вала (21) станет выше нуля или ниже заданной предельной скорости медленного вращения (nL) в течение заданного допустимого интервала времени (T1, T2, T3).

2. Способ (100) по п.1, при котором этап управления скоростью вращения входного вала (13) дополнительно включает следующую последовательность операций:

начало вращения (110) входного вала,

если после первого заданного допустимого интервала времени (T1) скорость вращения выходного вала остается ниже заданной предельной скорости медленного вращения (nL), то увеличение (120) скорости вращения входного вала,

если скорость вращения выходного вала остается ниже заданной предельной скорости медленного вращения (nL), то ожидание (130) в течение второго заданного допустимого момента времени (T2) перед дополнительным увеличением скорости вращения входного вала.

3. Способ (200) по п.1, при котором этап управления скоростью вращения входного вала (13) дополнительно включает следующую последовательность операций:

ожидание (205) до тех пор, пока выходной вал не остановится,

ожидание (210) в течение заданного времени ожидания (Tw),

вращение (215) входного вала с первой заданной скоростью вращения (n1),

если скорость вращения выходного вала остается в течение третьего заданного допустимого интервала времени (T3) выше нуля, но ниже заданной предельной скорости медленного вращения (nL), то увеличение (218) скорости вращения входного вала до второй заданной скорости вращения (n2), которая больше, чем первая заданная скорость (n1),

если скорость вращения выходного вала остается ниже заданной предельной скорости медленного вращения (nL), то остановку (220) входного вала,

ожидание (240) в течение времени, равного времени ожидания (Tw), затем

вращение (250) входного вала с третьей заданной скоростью (n3), которая ниже, чем первая заданная скорость (n1),

если скорость вращения выходного вала больше нуля, то остановку (270) входного вала, затем

ожидание (282) в течение времени, равного времени ожидания (Tw), затем

периодическое вращение (285) входного вала до четвертой заданной скорости вращения (n4), которая ниже, чем третья заданная скорость вращения (n3), и остановку входного вала в течение временного интервала (Ts),

если скорость вращения выходного вала больше нуля, то остановку (292) входного вала, и

предотвращение (295) перезапуска газотурбинного узла (10) в течение времени (Tr) нахождения в состоянии покоя.

4. Способ (100, 200) по п.1, при котором заданная предельная скорость медленного вращения (nL) составляет 200-600 об/мин.

5. Способ (100) по п.2, при котором первый заданный допустимый момент времени (T1) составляет 10-30 сек.

6. Способ (100) по п.2, при котором второй заданный допустимый момент времени (T2) составляет 60-300 сек.

7. Способ (200) по п.3, при котором третий заданный допустимый момент времени (T3) составляет 10-30 сек.

8. Способ (200) по п.3, при котором первая заданная скорость вращения (n1) составляет 10-20% от номинальной скорости вращения силовой турбины.

9. Способ (200) по п.3, при котором вторая заданная скорость (n2) составляет 20-40% от номинальной скорости вращения силовой турбины.

10. Способ (200) по п.3, при котором третья заданная скорость (n3) составляет 5-10% от номинальной скорости вращения силовой турбины.

11. Способ (200) по п.3, при котором время ожидания (Tw) равно 2-3 мин.

12. Способ (200) по п.3, при котором временной интервал (Ts) равен 2-3 мин.

13. Способ (200) по п.3, при котором время (Tr) нахождения в состоянии покоя находится в интервале от 10 мин до 4 ч.

14. Способ (100, 200) по п.1, при котором газотурбинный узел содержит компрессор, включающий в себя ротор и газовое уплотнение.

15. Газотурбинный узел, содержащий:

двухвальную газовую турбину (5), содержащую входной вал (13) и выходной вал (21),

датчик (40) скорости вращения для измерения скорости вращения выходного вала (21), и

ротор (31), установленный на выходном валу (21) и снабженный по меньшей мере газовым уплотнением (35) для предотвращения утечки газа между ротором (31) и газовым уплотнением (35),

при этом скорость вращения выходного вала (21) является контролируемой и скорость вращения входного вала (13) можно уменьшать и увеличивать после того, как контролируемая скорость вращения выходного вала (21) остается выше нуля и ниже заданной предельной скорости медленного вращения (nL) в течение заданного допустимого интервала времени (T1, T2, T3).



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) газотурбинных двигателей (ГТД).

Изобретение относится к газовой турбине с двумя валами и способу управления входной направляющей лопаткой газовой турбины. Техническим результатом изобретения является подавление снижения производительности компрессора во время работы при низких температурах даже в газовой турбине с двумя валами, состоящей из газогенератора и турбины низкого давления.

Объектом изобретения является способ контроля степени коксования на уровне динамических прокладок газотурбинного двигателя. Cпособ содержит этапы, на которых: во время фазы авторотации газотурбинного двигателя измеряют скорость вращения вала газогенератора и на основании изменения во времени измеряемой скорости вращения определяют cтепень коксования на уровне динамических прокладок.

Настоящие изобретения относятся к способу для определения значения отклонения параметра работоспособности, в частности параметра производительности или эффективности по меньшей мере одного компонента газовой турбины и блоку управления для газовой турбины.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронно-гидромеханических и гидромеханических системах автоматического управления (САУ) ГТД.

Способ коррекции базовой цифровой модели (5), например, для регулирования турбореактивного двигателя, содержит: этап (Е10) обнаружения стабильного состояния по меньшей мере одного первого параметра (Т25) указанной модели, причем этот первый параметр характеризует сигнал, выдаваемый датчиком (3); этап (Е60) получения параметра коррекции (GainF) указанной модели во время стабильного состояния указанного первого параметра (Т25) в зависимости от указанного первого параметра, от второго параметра (PCN12R) указанной модели и от указанной базовой цифровой модели (5); и этап (Е70) получения модели, скорректированной на основании базовой цифровой модели (5) и параметра коррекции (GainF).

Изобретение относится к способу и системе обнаружения первых признаков неисправности клапана авиационного двигателя, содержащей средства сбора, выполненные с возможностью сбора измерений выходного давления указанного клапана и данных управления и обстановки, связанных с указанным клапаном, средства обработки, выполненные с возможностью определения совокупности показателей первых признаков неисправности в зависимости от указанных измерений выходного давления и от указанных данных обстановки и управления, средства обработки, выполненные с возможностью контроля изменения по времени каждого показателя из указанной совокупности показателей первых признаков неисправности, и средства обработки, выполненные с возможностью обнаружения возможного отклонения по меньшей мере одного показателя среди указанной совокупности показателей, при этом указанное отклонение отображает признаки неисправности указанного клапана.

Изобретение относится к области управления электронно-гидромеханической автоматикой авиационных ГТД и может быть использовано для управления авиационным ГТД во всех условиях эксплуатации летательного аппарата, в том числе аварийных.

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем. При останове двигателя генерируемую вращением вала ротора низкого давления электроэнергию передают на электродвигатель-генератор вала ротора высокого давления, для создания дополнительного ускорения, обеспечивающего отношение продолжительности выбега вала ротора высокого давления к продолжительности выбега вала ротора низкого давления, равное 1,5…6,0.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления ГТД.

Изобретение относится к измерительной технике, а именно к способам определения угла перекоса опоры, максимальной осевой нагрузки, действующей на нее, и неравномерности этой нагрузки, и может найти применение при сборке, или испытаниях, или эксплуатации опор с подшипниками различных изделий. Техническим результатом изобретения является обеспечение высокой точности определения требуемых значений, а также снижение трудоемкости, связанное с отсутствием препарации и проведения наименьшего числа испытаний, а также возможности принятия решения по результатам проведенного способа о дальнейшей работоспособности опоры. Чувствительный элемент содержит упругий элемент с легкодеформируемым элементом, причем в способе определяют жесткость упругого элемента С и начальный длинновой размер упругого элемента, затем устанавливают по окружности на одной исследуемой поверхности по меньшей мере три чувствительных элемента таким образом, чтобы торцы легкодеформируемого элемента контактировали с одной стороны с упругим элементом, а с другой стороны с опорным торцом детали конструкции опоры, осуществляют сборку, или испытания, или эксплуатацию опоры подшипника, затем опору разбирают после сборки, или испытания, или эксплуатации и измеряют толщину каждого легкодеформируемого элемента после сборки, или испытания, или эксплуатации определяют деформацию каждого легкодеформируемого элемента после сборки, или испытания, или эксплуатации из полученных значений определяют максимальное и минимальное значение деформации по найденным значениям максимальной и минимальной деформации в зависимости от координат расположения легкодеформируемых элементов в опоре строят плоскость, определяют угол наклона построенной плоскости от вертикальной плоскости, который является искомым углом перекоса исследуемой поверхности, определяют значение осевой нагрузки после сборки, или испытания, или эксплуатации для максимального и минимального значения деформаций при известной жесткости упругого элемента Pmax, Pmin, рассчитывают неравномерность осевой нагрузки, определяемой как разность между максимальным и минимальным значениями полученной осевой нагрузки, по полученным значениям осевых нагрузок судят о работоспособности опоры подшипника. 4 ил., 1 табл.
Наверх