Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя (ТРД) относится к авиадвигателестроению. Предварительно расчетно-экспериментальным методом определяют коэффициент К, учитывающий изменение температуры газа перед турбиной при изменении частоты вращения ротора высокого давления на 1%, и коэффициент С, учитывающий увеличение температуры газа перед турбиной при включении форсажного насоса на полном форсированном режиме, а при испытаниях двигателей измеряют на максимальном режиме работы двигателя частоту вращения ротора высокого давления n2М, затем выводят двигатель на форсажный режим работы, измеряют частоту ротора высокого давления n, суммарный расход воздуха через двигатель GВΣ, суммарный расход топлива Gт. Далее приводится формула для определения температуры газа перед турбиной на форсажном режиме работы ТГФ. Способ позволяет определять температуру газа на форсажном режиме как при одинаковых частотах вращения роторов двигателя на максимальном и форсажном режимах, так и на форсажном режиме, отличающемся по частоте вращения роторов двигателя от максимального режима работы двигателя, и таким образом повысить надежность работы двигателя.

 

Изобретение относится к авиадвигателестроению и предназначено для определения температуры газа при испытаниях и эксплуатации турбореактивных двигателей на форсажных режимах.

Известен способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя (патент RU 2511814 класса G01M 15/14, опубл. 10.04.2014).

При реализации известного способа не предусмотрена возможность определения температуры газов для форсажных режимов, отличающихся по частоте вращения роторов двигателя от максимального режима работы двигателя.

Техническим результатом, достигаемым при использовании настоящего изобретения, является возможность определения температуры газа перед турбиной на форсажном режиме работы, отличающемся по частоте вращения роторов двигателя от максимального режима работы двигателя.

Указанный технический результат достигается тем, что в известном способе определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя, включающем определение температуры газа перед турбиной на максимальном режиме, предварительно расчетно-экспериментальным методом определяют коэффициент К, учитывающий изменение температуры газа перед турбиной при изменении частоты вращения ротора высокого давления на 1%, и коэффициент С, учитывающий увеличение температуры газа перед турбиной при включении форсажного насоса на полном форсированном режиме, а при испытаниях двигателей измеряют на максимальном режиме работы двигателя частоту вращения ротора высокого давления n, затем выводят двигатель на форсажный режим работы, измеряют частоту ротора высокого давления n, суммарный расход воздуха через двигатель G, суммарный расход топлива Gт, причем температуру газа перед турбиной на форсажном режиме работы ТГФ определяют по формуле:

где ТГМ - температура газа перед турбиной на максимальном режиме работы двигателя;

αΣрасч - расчетный коэффициент избытка воздуха для полного форсированного режима;

αΣ - коэффициент избытка воздуха, определяемый по формуле , где Lo - количество воздуха в кг, необходимое для сжигания 1 кг топлива.

Способ реализуют следующим образом.

Пример

Предварительно для данного типа двигателя расчетно-экспериментальным путем определяют коэффициент К=20, учитывающий изменение температуры газа перед турбиной при изменении частоты вращения ротора высокого давления на 1% и коэффициент С=25, учитывающий увеличение температуры газа перед турбиной при включении форсажного насоса на полном форсированном режиме. Расчетный коэффициент избытка воздуха для полного форсированного режима αΣрасч=1,12, количество воздуха в кг, необходимое для сжигания 1 кг топлива Lo=13,9.

При испытаниях двигателя на максимальном режиме работы двигателя частоту вращения ротора высокого давления n2M=94%, определяют температуру газа перед турбиной любым известным способом ТГМ=1500 К, затем выводят двигатель на форсажный режим работы, измеряют частоту ротора высокого давления n=97%, суммарный расход воздуха через двигатель G=115 кг/с, суммарный расход топлива Gт=7 кг/с, рассчитывают коэффициент избытка воздуха и определяют температуру газа перед турбиной на форсажном режиме по формуле .

Способ позволяет определять температуру газа на форсажном режиме как при одинаковых частотах вращения роторов двигателя на максимальном и форсажном режимах, так и на форсажном режиме, отличающемся по частоте вращения роторов двигателя от максимального режима работы двигателя, и таким образом повысить надежность работы двигателя.

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя, включающий определение температуры газа перед турбиной на максимальном режиме, отличающийся тем, что предварительно расчетно-экспериментальным методом определяют коэффициент К, учитывающий изменение температуры газа перед турбиной при изменении частоты вращения ротора высокого давления на 1%, и коэффициент С, учитывающий увеличение температуры газа перед турбиной при включении форсажного насоса на полном форсированном режиме, а при испытаниях двигателей измеряют на максимальном режиме работы двигателя частоту вращения ротора высокого давления n2M, затем выводят двигатель на форсажный режим работы, измеряют частоту ротора высокого давления n, суммарный расход воздуха через двигатель G, суммарный расход топлива Gт, причем температуру газа перед турбиной на форсажном режиме работы ТГФ определяют по формуле:

где ТГМ - температура газа перед турбиной на максимальном режиме работы двигателя;

αΣрасч - расчетный коэффициент избытка воздуха для полного форсированного режима;

αΣ - коэффициент избытка воздуха, определяемый по формуле , где Lo - количество воздуха в кг, необходимое для сжигания 1 кг топлива.



 

Похожие патенты:

Изобретение относится к области диагностики двигателя внутреннего сгорания с использованием лазерной системы зажигания. Технический результат заключается в снижении сложности и трудоемкости диагностики двигателя.

Изобретение относится способам и системам для использования лазерной системы зажигания для выполнения визуального контроля двигателя и диагностирования различных компонентов и условий цилиндра на основании позиционных измерений в двигателе.

Изобретение относится способам и системам для использования лазерной системы зажигания для выполнения визуального контроля двигателя и диагностирования различных компонентов и условий цилиндра на основании позиционных измерений в двигателе.

Изобретение относится к области авиации, в частности к способам контроля и диагностики технического состояния агрегатов авиационных приводов по вибрации их корпусов при работающих двигателях.

Изобретение относится к области технических средств диагностирования двигателей внутреннего сгорания по акустическим сигналам и предназначено для упрощения процесса диагностики, повышения ее точности с указанием причины поломки, а также указанием узла или элемента, приведшего к ухудшению работы двигателя.

Изобретение относится к системам диагностики. В способе диагностирования неисправности диагностируют неисправность объекта наблюдения, имеющего рабочее состояние, включающее в себя неустойчивое состояние.

Изобретение относится к двигателям внутреннего сгорания, в частности, для выявления и подавления пропусков зажигания. Технический результат заключается в улучшении выявления пропусков зажигания в двигателе на более высоких числах оборотов двигателя, в том числе и для отдельных цилиндров.

Техническое решение относится к области испытательных средств для испытания стрелочного привода. Устройство содержит горизонтальный конструктивный элемент (43), который установлен с возможностью перемещения по меньшей мере на одной горизонтальной линейной направляющей (6), вертикальный конструктивный элемент (41, 42), который смонтирован перпендикулярно на горизонтальном конструктивном элементе (43), ориентирован поперечно к горизонтальной линейной направляющей (6) и имеет выемку, которая обеспечивает возможность проведения объекта параллельно горизонтальной линейной направляющей (6).

Изобретение относится к машиностроению, а именно к измерительной технике, и может быть использовано для контроля и учета наработки (моторесурса) двигателя внутреннего сгорания (ДВС) автотракторной техники в условиях эксплуатации.

Изобретение относится к определению влажности окружающего воздуха посредством датчика выхлопных газов, связанного с системой выпуска отработавших газов двигателя внутреннего сгорания.

Изобретение относится к области контроля машин. Способ акустического анализа машины, включающий в себя получение, по меньшей мере, одного акустического сигнала, вызываемого, по меньшей мере, одним микрофоном, установленным внутри машины, при этом способ дополнительно содержит этапы, на которых: разделяют, по меньшей мере, один акустический сигнал на множество исходных источников звука, при этом указанный сигнал моделируют как смесь составляющих, каждая из которых соответствует одному исходному источнику звука, по меньшей мере, для одного из исходных источников звука определяют характеристическую акустическую сигнатуру, по меньшей мере, одну характеристическую акустическую сигнатуру сравнивают, по меньшей мере, с одной контрольной акустической сигнатурой, записанной в базе контрольных данных. Изобретение позволяет улучшить диагностику и прогнозирование дефектов машины. 2 н. и 9 з.п. ф-лы, 4 ил.

Изобретение относится к области испытания и технического диагностирования машин, в частности к способу определения эффективной мощности двигателя внутреннего сгорания. Сущность изобретения заключается в следующем. При проведении бестормозных испытаний двигателя посредством измерительного прибора фиксируют усилие, передаваемое на раму транспортного средства через опоры в процессе разгона двигателя от минимального до максимального значения. Эффективную мощность определяют по среднему значению усилия, передаваемого двигателем раме транспортного средства: при первичном испытании аналитически находят функцию эффективной мощности двигателя от измеренного усилия, передаваемого двигателем раме транспортного средства, при последующих испытаниях двигателя измеряют среднее значение усилия, передаваемого раме транспортного средства, и, используя полученную ранее зависимость, определяют эффективную мощность двигателя. Таким образом, возможно создать достаточно простой способ определения эффективной мощности двигателя внутреннего сгорания на основе бестормозных испытаний. Техническим результатом является снижение трудоемкости и повышение оперативности диагностирования. 2 ил.

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя относится к авиадвигателестроению. Предварительно расчетно-экспериментальным методом определяют коэффициент К, учитывающий изменение температуры газа перед турбиной при изменении частоты вращения ротора высокого давления на 1, и коэффициент С, учитывающий увеличение температуры газа перед турбиной при включении форсажного насоса на полном форсированном режиме, а при испытаниях двигателей измеряют на максимальном режиме работы двигателя частоту вращения ротора высокого давления n2М, затем выводят двигатель на форсажный режим работы, измеряют частоту ротора высокого давления n2ф, суммарный расход воздуха через двигатель GВΣ, суммарный расход топлива Gт. Далее приводится формула для определения температуры газа перед турбиной на форсажном режиме работы ТГФ. Способ позволяет определять температуру газа на форсажном режиме как при одинаковых частотах вращения роторов двигателя на максимальном и форсажном режимах, так и на форсажном режиме, отличающемся по частоте вращения роторов двигателя от максимального режима работы двигателя, и таким образом повысить надежность работы двигателя.

Наверх