Способ измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования вентильных металлов. Сущность изобретения заключается в том, что способ определения толщины покрытия включает измерение напряжения в процессе получения покрытия, где измеряют среднее и амплитудное значения напряжения обработки, затем находят их отношение, а толщину покрытия h определяют по формуле

где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым; Ucp и Umax - среднее и амплитудное значения напряжения обработки соответственно. Технический результат: повышение точности определения толщины оксидного покрытия для своевременного прекращения процесса плазменно-электролитического оксидирования. 5 ил., 1 табл.

 

Изобретение относится к области электрохимической обработки, в частности, к плазменно-электролитическому оксидированию и может быть использовано для измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования вентильных металлов, например, алюминия, магния, титана, циркония и сплавов на их основе.

Известен способ контроля толщины покрытий в процессе осаждения, заключающийся в том, что объект контроля размещают в ванне с электролитом, на электроды, одним из которых является объект контроля, подают постоянное напряжение электроосаждения и определяют информативный параметр, по которому судят о толщине нарастающего покрытия, по которому в качестве электролита используют электропроводящий раствор лакокрасочного материала, одновременно с постоянным напряжением электроосаждения подают стабилизированное по амплитуде переменное напряжение, в качестве информативного параметра используют межэлектродную емкость, а в качестве второго электрода используют корпус ванны электроосаждения. (А.С. СССР №1578452 A1, G01B 7/06, 7/08, публ. 15.07.90).

Недостатком данного способа является его применимость только при работе на постоянном токе, а также необходимость наложения переменного напряжения, что может негативно сказываться на технологическом режиме обработки.

Известен способ определения момента окончания процесса плазменно-электролитического оксидирования на основе определения толщины покрытия по величине сдвига фаз, заключающийся в том, что измеряют переменную составляющую тока и анализируют ее изменение во времени, измеряют и анализируют переменную составляющую напряжения, которая периодически или постоянно изменяется с частотой 200-20000 Гц. При этом переменные составляющие тока и напряжения поступают на полосовые фильтры с граничными частотами 200-18000 и 500-20000 Гц, после которых измеряют сдвиг фаз между отфильтрованными сигналами тока и напряжения. Момент окончания процесса определяется по достижении значения сдвига фаз 20-80 градусов (патент РФ №2366765, C25D 11/00, публ. 10.09.2009).

Недостатком данного способа является сложность его практической реализации, которая заключается в необходимости использования дополнительных модуляторов частоты, фильтрации сигналов тока и напряжения, а также использования фазометров для измерения угла сдвига фаз между сигналами тока и напряжения.

Наиболее близким по технической сущности является способ определения толщины покрытия, заключающийся в том, что выполняют измерение амплитуды анодного импульсного поляризационного напряжения Uп, при этом определяют длительность т спада напряжения до порогового значения U1=(0,2…0,8)⋅Uп, а толщину покрытия рассчитывают по формуле:

h=k1+k2⋅τ,

где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым;

τ - длительность спада поляризационного напряжения Uп до порогового значения U1 (патент РФ №2540239, G01B 7/06, публ. 10.02.2015).

Недостатком прототипа является необходимость выделять длительность спада поляризационного напряжения в быстроменяющемся сигнале, что требует значительной технической сложности системы измерения и управления.

Задачей, решаемой заявляемым изобретением, является снижение энергопотребления при плазменно-электролитическом оксидировании вследствие исключения передержки за счет своевременного отключения технологического источника тока при достижении заданной толщины покрытия.

Техническим результатом является повышение точности определения толщины оксидного покрытия для своевременного прекращения процесса плазменно-электролитического оксидирования.

Поставленная задача решается, а технический результат достигается тем, что в способе определения толщины покрытия, включающем измерение напряжения в процессе получения покрытия, согласно изобретению, измеряют среднее и амплитудное значение напряжения обработки, затем находят их отношение, а толщину покрытия h определяют по формуле:

где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым;

Ucp и Umax - среднее и амплитудное значения напряжения обработки соответственно.

Сущность изобретения поясняется изображениями. На Фиг. 1 и Фиг. 2 представлены осциллограммы напряжения после 5 мин и 35 мин обработки соответственно, на которых наблюдается увеличение напряжения во время паузы между импульсами. На Фиг. 3 показан график изменения во времени для отношения среднего напряжения к амплитудному. На Фиг. 4 показан график изменения толщины покрытия во времени. На Фиг. 5 показана тарировочная кривая, построенная по этим зависимостям.

Физически сущность способа объясняется тем, что в начале процесса толщина оксидного покрытия мала, его активное сопротивление также сравнительно невелико и емкость двойного электрического слоя покрытия разряжается с малой постоянной времени (Фиг. 1). Далее, с ростом оксидной пленки, ее активное сопротивление растет и постоянная времени разряда емкости значительно увеличивается (Фиг. 2), что вызывает повышение среднего значения напряжения при постоянной амплитуде импульсов. Между указанными величинами наблюдается высокая степень корреляции (R2>0,95), что позволяет построить тарировочную кривую (Фиг. 5), которая может быть использована для определения толщины оксидного слоя в ходе процесса. Таким образом, предлагаемый способ имеет ясный физический смысл и простую реализацию, а также обладает высокой помехозащищенностью, так как измеряемые уровни напряжений имеют значительные величины и мало подвержены внешним искажениям.

Пример конкретной реализации способа.

Образцы из алюминия обрабатывали методом плазменно-электролитического оксидирования в растворе, содержащем 1 г/л КОН, 2 г/л Na4P2O7⋅10Н2О и 2 г/л Na2SiO3 при температуре 20°С в течение 45 минут в режиме импульсного напряжения с фиксированной амплитудой импульса 580 В и частотой 1 кГц. В процессе получения покрытия измеряли среднее и амплитудное значения напряжения, а толщину покрытия определяли по формуле:

где эмпирические коэффициенты

k1=80,87±0,94 мкм;

k2=51,44±0,67 мкм,

соответствующие обрабатываемому материалу и указанному составу электролита, были рассчитаны по тарировочной кривой (Фиг. 5).

После обработки толщину покрытия на образцах также измеряли вихретоковым толщиномером. Результаты приведены в таблице:

Как видно из таблицы, заявляемый способ позволяет определять толщину покрытия с разбросом, сравнимым с неравномерностью толщины покрытия по поверхности детали. Так, после 30 минут обработки толщина покрытия, измеренная вихретоковым толщиномером составила 18,1±1,4 мкм, а измеренная в соответствии с заявляемым способом - 17,6±1,2 мкм.

Итак, заявляемое изобретение позволяет измерять толщину покрытия в ходе плазменно-электролитического оксидирования вентильных металлов без вмешательства в ход технологического процесса за счет измерения напряжений, участвующих в формировании оксидного слоя.

Способ определения толщины покрытия, включающий измерение напряжения в процессе получения покрытия, отличающийся тем, что измеряют среднее и амплитудное значения напряжения обработки, затем находят их отношение, а толщину покрытия h определяют по формуле

где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым;

Uср и Umax - среднее и амплитудное значения напряжения обработки соответственно.



 

Похожие патенты:

Предлагается способ для проверки свойства поверхности, обеспечивающий проверку состояния обработки поверхности обработанного материала, подвергнутого обработке поверхности.

Изобретение относится к технологиям нанесения покрытий на детали и может быть использовано для контроля толщины покрытия в процессе его химического осаждения на детали.

Изобретение относится к устройствам контроля толщины изоляции проводов. Новым является то, что в емкостный датчик, выполненный в виде резервуара, заполненного жидкой рабочей средой, резервуар выполнен в виде тройника, состоящего из вертикального и горизонтального патрубков, в горизонтальном патрубке высверлено сквозное цилиндрическое отверстие, на торцах горизонтального патрубка выполнены фланцы с отверстиями под крепежные детали, в торцах горизонтального патрубка выполнены цилиндрические проточки, в которые размещены уплотняющие сальники, для сжатия которых изготовлены прижимные фланцы с отверстиями под крепежные детали, соответствующие отверстиям во фланцах, выполненных на торцах горизонтального патрубка, прижимные фланцы крепятся к фланцам на торце горизонтального патрубка при помощи крепежных деталей, при этом прижимные фланцы выполнены в виде плоских дисков, по центральной оси которых высверлено сквозное отверстие, вертикальный патрубок выполнен в виде стакана, внутренняя полость которого сообщается с внутренней полостью горизонтального патрубка, образуя Т-образную сообщающуюся полость, при этом в качестве рабочей среды использована вода или электролит, залитые в упомянутую Т-образную полость.

Изобретение относится к информационно-измерительной технике и автоматике, в частности к устройствам контроля толщины изоляции проводов. Новым является то, что в устройство для контроля толщины изоляции микропровода, содержащее емкостный датчик, с отверстиями для пропускания через них микропровода в процессе измерения, и подключенный к датчику измерительный блок, при этом электрод емкостного датчика выполнен в виде полого цилиндра, в торцах которого выполнены цилиндрические проточки, в которые введены уплотняющие сальники, прижатые крепежными деталями к торцам цилиндра при помощи фланцев, в центральной части которых выполнено сквозное отверстие, во внутреннюю полость цилиндра залита вода или электролит, в измерительный блок введен двухчастотный генератор, измерительный усилитель, синхронный детектор, аналого-цифровой преобразователь, преобразователь двоичного кода в двоично-десятичной последовательно-параллельный код, блок сопряжения, блок вычислительный и блок управления, причем к первому выходу генератора подключен электрод емкостной ячейки, а контролируемый провод, служащий вторым электродом ячейки, соединен с входом измерительного усилителя, второй выход генератора соединен с управляющим входом синхронного детектора, измерительный усилитель соединен с входом синхронного детектора, выход которого соединен с аналого-цифровым преобразователем, выход аналого-цифрового преобразователя подключен к преобразователю двоичного кода в двоично-десятичный последовательно-параллельный код, выход преобразователя соединен с блоком сопряжения, выход которого соединен с входом блока управления, информационный выход блока сопряжения соединен с входом вычислительного блока, выходы блока управления подключены к входу генератора и второму входу аналого-цифрового преобразователя соответственно.

В изобретении раскрыт способ мониторинга и измерения толщины стенки ванны алюминиевого электролизера, который позволяет постоянно и непрерывно отслеживать температуру кожуха электролизера, выполняя при этом отбор проб и анализ электролита для получения температуры ликвидуса электролита.

В изобретении раскрыт способ мониторинга и измерения толщины стенки ванны алюминиевого электролизера, который позволяет постоянно и непрерывно отслеживать температуру кожуха электролизера, выполняя при этом отбор проб и анализ электролита для получения температуры ликвидуса электролита.

Изобретение относится к области неразрушающего контроля изделий. Электромагнитно-акустический преобразователь (ЭМАП) содержит корпус, в котором размещен слой из диэлектрика, источник постоянного магнитного поля и блок катушек индуктивности, причем источник постоянного магнитного поля и блок катушек индуктивности расположены в корпусе с возможностью взаимодействия, а блок катушек индуктивности содержит генераторную катушку и по меньшей мере одну приемную катушку.

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является повышение точности измерения толщины покрытий.

Изобретение относится к теплоэнергетике и может быть использовано для определения толщины солеотложения в оборудовании химических, нефтехимических предприятий, а также тепловых, геотермальных, атомных энергоустановок.

Изобретение относится к средствам неразрушающего контроля немагнитных металлических изделий и может быть использовано для контроля их толщины и удельной электрической проводимости материала.

Использование: для измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования вентильных металлов. Сущность изобретения заключается в том, что способ определения толщины покрытия включает измерение напряжения в процессе получения покрытия, где измеряют среднее и амплитудное значения напряжения обработки, затем находят их отношение, а толщину покрытия h определяют по формуле где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым; Ucp и Umax - среднее и амплитудное значения напряжения обработки соответственно. Технический результат: повышение точности определения толщины оксидного покрытия для своевременного прекращения процесса плазменно-электролитического оксидирования. 5 ил., 1 табл.

Наверх