Способ предотвращения контакта космического аппарата с активно сближающимся объектом

Изобретение относится к космической технике. В способе предотвращения контакта космического аппарата (КА) с активно сближающимся объектом с использованием приемных датчиков регистрации внешнего излучения на внутренней стороне оболочки, выполненной в виде тела вращения вокруг КА, или ее части, согласованно с приемными датчиками внешнего излучения устанавливают твердотельные лазерные источники. Лазерные источники излучают через отверстие в приемном датчике регистрации внешнего излучения по команде от блока управления. Определяют направление на активно сближающийся объект по результату сравнительной обработки показаний приемных датчиков регистрации внешнего излучения и задают режим предупредительного лазерного излучения, а также выдают команды двигателям ориентации на уклонение от сближения с активным объектом и передающей аппаратуре на сообщение в наземный центр управления о факте воздействия на КА. Техническим результатом изобретения является повышение устойчивости и вероятности выполнения заданной программы КА. 6 ил.

 

Изобретение относится к области средств наблюдения или слежения за полетом космических аппаратов (КА) и может быть использовано для предотвращения встречи с активным объектом, преднамеренно сближающимся с космическим аппаратом. Примером таких возможных ситуаций может служить несанкционированный захват и увод космического аппарата орбитального резерва в зону захоронения или сближение с космическим аппаратом с целью несанкционированной инспекции, выявления его предназначения, оценки технических характеристик.

Известны технические решения, направленные на регулирования взаимного положения космических аппаратов. Известно защищенное патентом изобретение - аналог: заявка №2012104591/11, МПК B64G, 2012 год «Метод точного позиционирования и мониторинга подвижных объектов» (В. Заренков, Д. Заренков, В. Дикарев, Б. Койнаш). Метод основан на использовании спутниковой навигации, позволяет определять мобильные координаты объекта и управлять объектом в полете. Метод реализуется с использованием системы технических средств, включающей навигационные космические аппараты, станции коррекции, аппаратные средства телевизионного центра, аппаратные средства космической связи, аппаратные средства контролируемого подвижного объекта и станции контроля за космическим полетом. Все перечисленные средства функционируют одновременно с использованием специально разработанных алгоритмов. Технический результат - высокая надежность и точность дискретных сигналов, которыми обмениваются телевизионные центры и космические объекты, что, в свою очередь, обеспечивает высокую точность позиционирования и мониторинга подвижных объектов. К недостаткам метода следует отнести высокую сложность его реализации.

Известно техническое решение аналог изобретения: заявка №2008133984/09, МПК B64G 4/00, 2007 год «Устройство контроля относительного(ых) положения(ий) путем измерений мощности для космического аппарата группы космических аппаратов при полете строем», предназначенное для управления космическими аппаратами при их перемещении строем. Устройство осуществляет контроль относительных положений космических аппаратов по отношению друг к другу и содержит: комплекс, по меньшей мере, из трех приемоизлучающих антенн, установленных на, по меньшей мере, трех сторонах разного направления относительно данного космического аппарата, и способных излучать/принимать радиочастотные сигналы; средства измерения, предназначенные для определения мощности сигналов, принимаемых каждой из антенн, и выдачи совокупностей мощностей, каждая из которых связана с одним из космических аппаратов группы, расположенных вокруг данного космического аппарата; запоминающие средства, предназначенные для хранения совокупностей картографических данных, каждая из которых характеризует нормализованные мощности сигналов, принятых каждой из антенн в зависимости от выбранных направлений передачи; средства обработки, предназначенные для сравнения каждой совокупности мощностей, выдаваемой средствами измерения, с совокупностями хранящихся картографических данных.

В результате работы устройства определяется каждое из направлений передачи сигналов, излучаемых другими космическими аппаратами группы по отношению к системе координат, привязанной к данному космическому аппарату. Техническим результатом использования способа является обеспечение позиционирования группы космических аппаратов относительно друг друга с точностью, необходимой для совместного выполнения задания.

Известно изобретение «Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом» патент RU №2619168, согласно которому принимают сигналы, излучаемые приближающимся активным объектом, измеряют амплитуду и выполняют обработку принимаемых сигналов. Для приема сигналов применяют детекторы плоской формы. Детекторы располагают на поверхности сферической оболочки ортогонально радиус-вектору из центра сферической оболочки к точке касания с детектором. Внутри сферической оболочки помещают материал - поглотитель излучения. Направление на активный приближающийся объект определяют по радиус-вектору, направленному на детектор с максимальной амплитудой регистрируемого сигнала.

Сигналы от приближающегося активного объекта регистрируются одновременно всеми детекторами, т.е. в соответствии с принятой геометрической схемой расположения детекторов данные поступают одновременно со всех возможных направлений движения активного объекта. Сигналы, регистрируемые в области задней полусферы по отношению к направлению движения активного объекта, имеют меньшую амплитуду по сравнению с сигналами от детекторов, расположенных в области передней полусферы, что связано с поглощением излучения в конструкционных материалах внутри сферической оболочки. При равной площади детекторов амплитуда сигналов пропорциональна косинусу угла падения регистрируемого излучения. Один из детекторов передней полусферы, зарегистрирует сигнал с максимальной амплитудой, что соответствует направлению на приближающийся активный объект. При необходимости это направление может быть определено более точно по результатам математической обработки показаний детекторов, расположенных в окрестности детектора с максимальной амплитудой. Быстродействие заявляемого способа определяется временем обработки электрических сигналов, поэтому способ обеспечивает оперативное принятие решений в условиях контролируемых ситуаций.

Изобретение по патенту №2619168 выбрано в качестве прототипа.

Недостатком способа по прототипу является отсутствие ответной реакции космического аппарата при обнаружении сближения с ним активного объекта, направленной на предотвращение негативных последствий в результате столкновения с этим объектом.

Целью предлагаемого изобретения является предотвращение контакта космического аппарата с активно сближающимся объектом.

Сущность предлагаемого изобретения заключается в создании возможности выполнения космическим аппаратом ответных действий после определения направления на активно сближающий объект, использующий лазерное излучение, например лидарного локатора, которые заключаются в предупредительном ответном встречном излучении заданной интенсивности и периодичности, выполнении уклоняющего маневра двигателями космического аппарата, сообщении в наземный центр управления о складывающейся оперативной ситуации и выполнении его команд.

Указанная цель в заявляемом способе достигается выполнением этих операций.

Согласно способу излучение активного объекта принимают плоскими детекторами (приемными датчиками), расположенными на поверхности сферической оболочки. Система управления по анализу показаний приемных датчиком вычисляет направление на активно сближающийся объект, определяя радиус-вектор из центра сферической оболочки к детектору с максимальной амплитудой регистрируемого сигнала. Приемные датчики изготовляют с центральным отверстием для обеспечения выпуска луча расположенного под ним источника лазерного излучения.

Способ предотвращения контакта космического аппарата с активно сближающимся объектом с использованием приемных датчиков регистрации внешнего излучения, расположенных на оболочке, выполненной в виде тела вращения вокруг космического аппарата, или ее части, заключается в том, что на внутренней стороне оболочки согласованно с приемными датчиками внешнего излучения устанавливают твердотельные лазерные источники, которые излучают через отверстие в приемном датчике регистрации внешнего излучения по команде от блока управления, в котором определяют направление на активно сближающийся объект по результату сравнительной обработки показаний приемных датчиков регистрации внешнего излучения и задают режим предупредительного лазерного излучения, а также выдают команды двигателям ориентации на уклонение от сближения с активным объектом и передающей аппаратуре на сообщение в наземный центр управления о факте воздействия на космический аппарат.

Предупредительное встречное освещение активно сближающегося объекта, формируемое импульсами лазерного излучения пакетом импульсов различной длительности и интенсивности, служит для достижения следующих целей:

информирование активно сближающегося объекта о недопустимости предпринимаемого маневра, для чего разрабатывают и публикуют известный неограниченному кругу лиц код предупреждения;

противодействие оптическим системам активно сближающего объекта.

Космический аппарат оснащают программой управления, учитывающей различные варианты изменение ситуации и поведение активно сближающегося аппарата при отсутствии его реакции на предупредительное излучение. Программа обеспечивает включение космическим аппаратом автоматических команд для маневрирования по уклонению от контакта с активно сближающимся объектом, передачу информации на наземный пункт управления и прием его управляющих команд.

В результате мер по предупредительному воздействию на активно сближающийся объект и/или за счет одновременного маневрирования космического аппарата обеспечивают предотвращение контакта космического аппарата с этим объектом.

Реализацию предлагаемого способа иллюстрируют следующие рисунки:

фиг. 1 - упрощенная схема конструктивного выполнения космического аппарата для реализации предлагаемого способа;

фиг. 2 - траектории движения космического аппарата и активно сближающегося объекта;

фиг. 3 - включение лидара активно сближающимся объектом с излучением, направленным на космический аппарат;

фиг. 4 - определение космическим аппаратом направления на активно сближающийся объект по характеристике его лазерного излучения;

фиг. 5 - выполнение пакета ответного предупредительного лазерного излучения в направлении активно сближающегося объекта и передача сообщения в наземный центр управления об оперативной ситуации;

фиг. 6 - выполнение автоматической команды маневра по уклонению от контакта с активно сближающимся объектом с учетом принимаемых команд наземного пункта управления.

Для реализации предлагаемого способа космический аппарат 1 (фиг. 1) оснащают оболочкой 2, выполненной в виде тела вращения вокруг приборного и двигательного отсека 3 космического аппарата с необходимыми технологическими отверстиями 4 в этой поверхности, например для работы двигателей, антенных, оптико-электронных устройств.

На поверхности оболочки 2 размещают приемные датчики 5 электромагнитного излучения, подключаемые к системе 6 измерения их показаний и вычисления суммарного результата для выдачи управляющих команд.

В центре каждого приемного датчика 5 (показаны выборочно) выполняют отверстия 7 для выхода излучения твердотельного лазера 8, который прикрепляют к внутренней поверхности оболочки под приемным датчикам 5 и подключают к системам энергопитания и управления приборного отсека 8 космического аппарата 1.

В процессе выполнения функционального задания космическим аппаратом 1 на орбите 10 (фиг. 2) возможно появление объекта 11, активно сближающегося с космическим аппаратом 1, что определяется средствами наблюдения по процессу маневрирования 12 этого объекта около его начальной орбиты 13.

На этапе сближения с космическим аппаратом 1, к зоне его безопасности 14, объект 11 (фиг. 3) создает электромагнитного излучения 15, направленное на космический объект 1, например, в результате работы средств локации.

Приемные датчики 5 на оболочке космического аппарата 2 фиксируют излучение 15 и по интенсивности показаний этих датчиков in система измерений вычисляет мгновенный вектор направления R на активно сближающийся объект 11, в собственный координатах, где единичный вектор r находится в центре тяжести М космического аппарата 1 и направлен на центр приемного датчика 5 с максимальным значением принимаемого сигнала.

По результатам оценки интенсивности излучения и определения направления R на активно сближающийся объект 11 (фиг. 4) выдают команду на включение твердотельного лазера 8 находящегося под приемным датчиком 5, через который проходит вектор направления R на активно сближающийся объект 11, и генерацию излучения 17.

Команда на выполнение пакета предупредительного излучения 17 (фиг. 5), обеспечивает создание серии импульсов заданной периодичности t по времени Т и интенсивности Е.

С космического аппарата 1 передают информацию 18 на наземный пункт управления о складывающейся оперативной обстановки используя радиоканал приемо-передающего блока.

В случае продолжения активного сближения объектом 11 (фиг. 6) и отсутствием реакции на предупредительное излучение 17 космический аппарат 1 выполняет маневрирование 19 по уклонению от столкновения с помощью включения двигательной установки 20. Команду включения двигателей предусматривают в программе системы бортового управления или это включение осуществляют по команде наземного пункта управления с использованием получаемых расчетных баллистических данных.

Такие действия реакции космического аппарата на складывающуюся ситуацию, с возможным необходимым повторением, обеспечивают предотвращение контакта космического аппарата с активно сближающимся объектом.

Технико-экономический эффект изобретения заключается в повышении устойчивости и вероятности выполнения заданной программы космическим аппаратом за счет обеспечении реализации штатного срока активного существования космического аппарата при установке и применении средств ответной реакции на действия активного объекта с выдачей предупредительного сигнала лазерным излучением, использованием уклоняющего маневрирования космического аппарата и регистрацией факта воздействия на космический аппарат.

Предлагаемый способ не требует использования дорогостоящей оптико-электронной системы наведения на активно сближающийся объект.

Способ предотвращения контакта космического аппарата с активно сближающимся объектом с использованием приемных датчиков регистрации внешнего излучения, расположенных на оболочке, выполненной в виде тела вращения вокруг космического аппарата, или ее части, отличающийся тем, что на внутренней стороне оболочки согласованно с приемными датчиками внешнего излучения устанавливают твердотельные лазерные источники, которые излучают через отверстие в приемном датчике регистрации внешнего излучения по команде от блока управления, в котором определяют направление на активно сближающийся объект по результату сравнительной обработки показаний приемных датчиков регистрации внешнего излучения и задают режим предупредительного лазерного излучения, а также выдают команды двигателям ориентации на уклонение от сближения с активным объектом и передающей аппаратуре на сообщение в наземный центр управления о факте воздействия на космический аппарат.



 

Похожие патенты:

Изобретение относится к системам управления движением в атмосфере Земли летательных аппаратов (ЛА) и кораблей и может быть применено при управлении средствами поисково-спасательного обеспечения спускаемых космических аппаратов (КА).

Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов.

Изобретение относится к спутниковым системам обнаружения, наблюдения и мониторинга небесных тел Солнечной системы, угрожающих столкновением с Землей. Способ включает размещение двух космических аппаратов с телескопами Т1 (КА Т1) и Т2 (КА Т2) на орбите Земли (2) вокруг Солнца (1).

Изобретение относится к способам получения детальных изображений космического мусора и других объектов вблизи геостационарной орбиты (ГСО). Обзор производят с космического аппарата (КА) на полусуточной высокоэллиптической орбите (ВЭО) с апогеем A на 200 км ниже или на 500 км выше ГСО и перигеем до 5000 км, с наклонением от 0 до 5°.

Изобретение относится к способу измерения дальности до космического аппарата (КА). Для измерения дальности до КА генерируют сигнал, модулируют на его основе цифровой или аналоговый сигнал, переносят на несущую частоту и передают его с наземного комплекса управления КА, принимают сигнал бортовой аппаратурой командно-измерительной системы КА, демодулируют, формируют сигнал на ответной частоте и ретранслируют на наземный комплекс управления, получают искомое значение дальности по сдвигу фазы принятого сигнала относительно исходного либо с помощью пересчета времени задержки распространения сигнала.
Изобретение относится к наблюдению за полётом космических аппаратов (КА), например, при инспекциях КА или при несанкционированном уводе в зону захоронения с низких околоземных орбит.

Группа изобретений относится к способу обмена данными с космическими аппаратами (КА) и наземному комплексу управления. Наземный комплекс управления содержит два комплекса средств управления полетом КА, соответствующие первому и второму центру управления полетом (ЦУП1 и ЦУП2), наземную станцию командно-измерительной системы (НС КИС), связанных через линию передачи данных управляющих воздействий, телеметрической информации (ТМИ) и информации функционального контроля (ИФКТ) определенным образом.
Изобретение относится к способу территориального размещения мобильных командно-измерительных приёмо-передающих станций (мобильных станций). Для реализации способа определяют текущее положение мобильных станций и космических аппаратов, проводящих дистанционное зондирование заданного района Земли с помощью измерительных средств, прогнозируют траектории и рассчитывают трассы полета космических аппаратов с помощью вычислительных средств, определяют геометрический центр зондируемого района и антиподную точку на поверхности Земли с учетом ее угловой скорости вращения, периодов обращения космических аппаратов и ограничений по размещению мобильных станций, определяют место размещения мобильных станций и в соответствии с ними осуществляют их перемещение.

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт.

Изобретение относится к комплексам защиты Земли от космических объектов. Система определения параметров движения астероида содержит передатчик, дуплексер, приемопередающую антенну, приемные антенны, опорный генератор, генератор импульсов, электронный коммутатор, гетеродин, смеситель, фильтр разностной частоты, усилители высокой частоты, перемножители, полосовые фильтры, линию задержки, фазовые детекторы, фазовращатель на 90°, блок регистрации, фильтр нижних частот, фазометр и вычислительный блок.

Изобретение относится к спутниковым системам навигационных космических аппаратов (НКА). Cлужебная информация выделяется в первой приемопередающей антенне (ППА 1), усиливается в приемном устройстве (1) и попадает через блоки (2), (3), (4), (11) в бортовой центральный вычислительный комплекс (БЦВК) (12). Навигационный сигнал от спутников, находящихся в пределах радиовидимости, принимается ППА 2, преобразуется в приемнике (10) и также попадает в БЦВК (12). Дальномерные сигналы от упомянутых спутников формируют с участием блоков (5, 6, 7) локальное навигационное поле. Т.к. все НКА системы (например, ГЛОНАСС) одновременно связаны путём обмена радионавигационными сигналами, то создаются условия для формирования собственной орбитальной системы координат (ОСК). ОСК обеспечивает позиционирование всех НКА в реальном времени, что позволяет вносить уточняющие коррективы в излучаемый радионавигационный сигнал НКА. Тем самым достигается оперативность контроля и информирования о целостности навигационного поля НКА, синхронности бортовых шкал времени НКА и главных параметрах радионавигационного сигнала. Сокращаются объемы рутинной работы на Земле. Технический результат состоит в повышении точности и надёжности работы спутниковой системы. 1 ил.
Наверх