Способ получения нанокапсул сухого экстракта можжевельника

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта можжевельника в оболочке из альгината натрия. Способ характеризуется тем, что сухой экстракт можжевельника добавляют в суспензию альгината натрия в бензоле в присутствии поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают дихлорметан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использован в фармацевтической и пищевой промышленности. 3 пр.

 

Изобретение относится к области нанотехнологии, медицины, фармакологии и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул, отличающийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - сухой экстракт можжевельника, при получении нанокапсул методом осаждения нерастворителем с применением дихлорметана в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием дихлорметана в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и сухого экстракта можжевельника - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул сухого экстракта можжевельника.

ПРИМЕР 1 Получение нанокапсул сухого экстракта можжевельника, соотношение ядро:болочка 1:3

1 г сухого экстракта можжевельника добавляют в суспензию 3 г альгината натрия в бензоле в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 6 мл дихлорметана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул сухого экстракта можжевельника, соотношение ядрогоболочка 1:1

1 г сухого экстракта можжевельника добавляют в суспензию 1 г альгината натрия в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 6 мл бдихлорметана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

Пример 3 Получение нанокапсул сухого экстракта можжевельника, соотношение ядроюболочка 1:2

1 г сухого экстракта можжевельника добавляют в суспензию 2 г альгината натрия в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 6 мл дихлорметана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка нанокапсул. Выход составил 100%.

Способ получения нанокапсул сухого экстракта можжевельника, характеризующийся тем, что в качестве оболочки нанокапсул используют альгинат натрия, в качестве ядра - сухой экстракт можжевельника, при этом сухой экстракт можжевельника добавляют в суспензию альгината натрия в бензоле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают дихлорметан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.



 

Похожие патенты:

Изобретение относится к жаростойким бетонам. Состав для изготовления корундового жаростойкого бетона, включающий: связующее, электроплавленный корундовый заполнитель, тонкомолотый электроплавленный корунд, тонкомолотый технический глинозем, тонкомолотый диатомит и нагретую воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6,5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния в соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой при указанной температуре не более 0,5 ч, и дополнительно - природный аморфный тонкодисперсный кремнезем с содержанием 20% нанодисперсных частиц, имеющий следующий химический состав, мас.
Изобретение относится к технологии получения кристаллов магнетита (Fe3O4), которые могут найти применение в качестве контрастных агентов, средств доставки лекарств, при магнитной гипертермии.

Изобретение относится к нанотехнологии. Порошок дзета-положительных гидрированных наноалмазов получают нагреванием частиц наноалмазов в атмосфере, содержащей 1-10 % газообразного водорода, при давлении от 5 мбар до 20 бар и температуре 300-1000 °С в течение 1-15 ч.

Изобретение относится к области получения кристаллов на основе твердых растворов бромида серебра (AgBr) и иодида одновалентного таллия (TlI). Кристаллы прозрачны от видимой до дальней инфракрасной (ИК) области спектра (0,5-67,0 мкм), пластичны, не обладают эффектом спайности, поэтому из них изготавливают методом горячего прессования оптические изделия (линзы, окна, пленки) и получают методом экструзии микроструктурированные световоды для среднего ИК-диапазона (2,0-25,0 мкм).

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур.
Группа изобретений относится к области слоистых полимерных композиционных материалов, в частности для получения стеклопластиковых профильных изделий и касается наноструктурированного нанопластика и способа его получения.
Группа изобретений относится к области слоистых полимерных композиционных материалов для получения стеклопластиковых профильных изделий и касается наноструктурированного стеклопластика и изделия из него.
Изобретение относится к пищевой промышленности. Предложенный способ производства шоколадного мороженого с экстрактом родиолы розовой предусматривает внесение в процессе производства в получаемый продукт шоколада с 72%-ным содержанием какао и наноструктурированной добавки, включающей экстракт родиолы розовой в альгинате натрия, или экстракт родиолы розовой в ксантановой камеди, или экстракт родиолы розовой в каррагинане, или экстракт родиолы розовой в конжаковой камеди, или экстракт родиолы розовой в геллановой камеди, или экстракт родиолы розовой в натрий-карбоксиметилцеллюлозе, или экстракт родиолы розовой в агар-агаре, или экстракт родиолы розовой в высокоэтерифицированном или низкоэтерифицированном яблочном или цитрусовом пектине из расчета 0,8 г наноструктурированной добавки на 1000 г готового мороженого.

Изобретение относится к области оптоэлектронной техники и может быть использовано для создания дешевых и эффективных солнечных элементов на основе слоев аморфного гидрогенизированного кремния.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул препарата биопага-Д в оболочке из альгината натрия.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул препарата биопага-Д в оболочке из альгината натрия.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул этилнитрата в оболочке из альгината натрия.
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности, а именно к способу получения нанокапсул. Способ получения нанокапсул сухого экстракта алоэ, при этом в качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - сухой экстракт алоэ, при этом сухой экстракт алоэ добавляют в суспензию альгината натрия в бутаноле в присутствии 0,01 г сложного Е472с в качестве поверхностно-активного вещества при перемешивании 1100 об/мин, далее приливают 6 мл диэтилового эфира, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологий и ветеринарной медицине. Способ получения нанокапсул ветеринарного препарата биопага-Д характеризуется тем, что в качестве оболочки нанокапсул используется конжаковая камедь, а в качестве ядра - порошок биопага-Д, при этом к суспензии конжаковой камеди в бутаноле прибавляют 0,01 г Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, после чего добавляют порошок биопага-Д, затем добавляют 5 мл хлороформа, далее полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет в нанокапсулах 1:1, или 1:3, или 1:5.
Изобретение относится к способу получения нанокапсул стрептоцида в оболочке из ксантановой камеди. Способ получения нанокапсул стрептоцида характеризуется тем, что в качестве оболочки нанокапсул используется ксантановая камедь, при этом стрептоцид порциями добавляют в суспензию 0,5 г или 1,0 г ксантановой камеди в бутаноле, содержащую 0,01 г препарата Е472 с в качестве поверхностно-активного вещества, при массовом соотношении ядро:оболочка 1:1 или 1:2, смесь перемешивают, затем добавляют 5 мл ацетонитрила, полученную суспензию нанокапсул отфильтровывают и сушат.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул биопага-Д в оболочке из конжаковой камеди.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул препарата биопага-Д. Способ характеризуется тем, что в качестве оболочки нанокапсул используется геллановая камедь, при этом, к суспензии геллановой камеди в метаноле прибавляют 0,01 г Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, после чего добавляют 1 г порошка биопага-Д, затем добавляют 5 мл диэтилового эфира, далее полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет в нанокапсулах 1:1, или 1:3, или 1:5.

Группа изобретений относится к липидным наночастицам и их применению в качестве фармацевтических композиций для ранозаживления. Раскрыта липидная наночастица для ранозаживления, включающая эпидермальный фактор роста (EGF), твердый при комнатной температуре липид, выбранный из группы, содержащей глицерилпальмитостеарат, глицерилмоностеарат и глицерилбегенат и их смеси, жидкий при комнатной температуре липид, выбранный из группы, содержащей триглицерид каприловой кислоты и каприновой кислоты, соевое масло, изопропилмиристат, касторовое масло и их смеси, и неионное поверхностно-активное вещество, выбранное из группы, содержащей сложные эфиры сорбитана, полиэтоксилированные сложные эфиры сорбитана, полиэтилен-полипропилен гликоль и их смеси.

Группа изобретений относится к липидным наночастицам и их применению в качестве фармацевтических композиций для ранозаживления. Раскрыта липидная наночастица для ранозаживления, включающая эпидермальный фактор роста (EGF), твердый при комнатной температуре липид, выбранный из группы, содержащей глицерилпальмитостеарат, глицерилмоностеарат и глицерилбегенат и их смеси, жидкий при комнатной температуре липид, выбранный из группы, содержащей триглицерид каприловой кислоты и каприновой кислоты, соевое масло, изопропилмиристат, касторовое масло и их смеси, и неионное поверхностно-активное вещество, выбранное из группы, содержащей сложные эфиры сорбитана, полиэтоксилированные сложные эфиры сорбитана, полиэтилен-полипропилен гликоль и их смеси.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул стрептоцида в оболочке из каппа-каррагинана.

Изобретение относится к области фармацевтической промышленности, а именно к биосовместимой системе доставки лекарственного средства с замедленным высвобождением для инъецирования в стекловидную полость глаза пациента с сухой возрастной дегенерацией желтого пятна (ВДЖП) для лечения сухой ВДЖП, причем система содержит от 5 мкг до 20 мкг бевацизумаба, гомогенно диспергированного в носителе из полимерной гиалуроновой кислоты, и высвобождает от 14 нг до 120 нг бевацизумаба ежедневно в течение периода времени от трех месяцев до шести месяцев.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта можжевельника в оболочке из альгината натрия. Способ характеризуется тем, что сухой экстракт можжевельника добавляют в суспензию альгината натрия в бензоле в присутствии поверхностно-активного вещества при перемешивании 1000 обмин, далее приливают дихлорметан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использован в фармацевтической и пищевой промышленности. 3 пр.

Наверх