Способ корпусирования отражательной линии задержки

Изобретение относится к области разработки и производства электронных компонентов, в частности линий задержки, функционирующих на поверхностных акустических волнах. Техническим результатом предлагаемого решения является снижение паразитных емкостей отражательной линии задержки (ОЛЗ) и повышение амплитуды импульсов информационного сигнала многоканальной ОЛЗ на поверхностной акустической волне. Для этого ОЛЗ помещают на основание корпуса через диэлектрическую прокладку с низким значением диэлектрической проницаемости, на поверхности которой выполнена металлизация с топологическим рисунком, повторяющим топологический рисунок элементов отражательной линии задержки, с одной стороны прокладки и сплошная металлизация с другой стороны прокладки. 1 ил.

 

Изобретение относится к области разработки и производства электронных компонентов, в частности линий задержки, функционирующих на поверхностных акустических волнах.

Известны многоканальные отражательные линии задержки (ОЛЗ) [1] (прототип), в которых пьезоэлектрическая подложка с выполненной топологией элементов многоканальной ОЛЗ устанавливается на основании металлического корпуса. Конструктивно топология ОЛЗ содержит входной/выходной (вх/вых) преобразователь, отражательные элементы, выполненные в виде встречно-штыревых преобразователей (ВШП), и контактные площадки. Так как перечисленные элементы выполняются напылением на пьезоэлектрической подложке слоя металлизации, то при ее установке в корпус между металлизированными элементами (вх/вых преобразователем, отражательными элементами, контактными площадками) и основанием возникают паразитные емкости, которые снижают эффективность преобразования электромагнитной энергии в поверхностную акустическую волну (ПАВ), что приводит к снижению амплитуды импульсов выходного сигнала. Влияние паразитных емкостей при работе на высоких (свыше 300 МГц) частотах сказывается на амплитуде импульсов выходного сигнала, так как в многоканальной ОЛЗ его формирование осуществляется двойным прохождением ПАВ от вх/вых преобразователя до отражательных элементов и обратно.

Одним из способов снижения паразитных емкостей в СВЧ-технике является использование экрана Фарадея, представляющего собой заземленный проводник, расположенный между источником воздействия и контуром, который необходимо экранировать [2]. Однако данный метод применим для снижения паразитных емкостей дорожек печатных плат, где в качестве диэлектрической прокладки используется воздушный зазор.

В работе [3] был предложен способ снижения статических емкостей, однако, его недостатком является отсутствие возможности снизить паразитные емкости отражательных элементов, а уменьшенное значение статической емкости вх/вых преобразователя является конечным.

Простым решением снижения паразитных емкостей могло бы быть увеличение толщины пьезоэлектрической подложки. Однако, как показано в научно-технической литературе [4], эффективность преобразования электромагнитной энергии встречно-штыревым преобразователем в ПАВ возрастает по мере уменьшения толщины пьезоэлектрической подложки, которая ограничивается технологическими возможностями. Это приводит к тому, что на практике толщина пьезоэлектрической подложки всегда превышает несколько длин волн.

Таким образом, для получения наиболее эффективного преобразования электромагнитной энергии в ПАВ и обратно, необходимо применять тонкую подложку, что приводит к увеличению паразитных емкостей.

Техническим результатом предлагаемого решения является снижение паразитных емкостей ОЛЗ и повышение амплитуды импульсов информационного сигнала многоканальной ОЛЗ на ПАВ.

Технический результат достигается тем, что отражательную линию задержки (ОЛЗ), помещают на основание корпуса через диэлектрическую прокладку с низким значением диэлектрической проницаемости на поверхности которой выполнена металлизация с топологическим рисунком, повторяющим топологический рисунок элементов отражательной линии задержки, с одной стороны прокладки и сплошная металлизация с другой стороны прокладки.

На фигуре схематически представлено расположение ОЛЗ и диэлектрической прокладки в корпусе (корпус не показан).

На фигуре показано:

1 - пьезоэлектрическая подложка;

2 - вх/вых преобразователь;

3 - отражательные элементы;

4 - контактные площадки;

5 - диэлектрическая прокладка с низким значением диэлектрической проницаемости ε;

6 - металлизация под областью расположения вх/вых преобразователя 2;

7 - металлизация под областью расположения отражательных элементов 3;

8 - металлизация под областью расположения контактных площадок 4;

9 - сплошной слой металлизации;

С1 - емкость, образованная элементами вх/вых преобразователя 2 на подложке 1 и металлизацией 6 на подложке 5;

С2 - емкость, образованная отражательными элементами 3 на подложке 1 и металлизацией 7 на прокладке 5;

С3-емкость, образованная контактными площадками 4 на подложке 1 и металлизацией 8 на прокладке 5;

С4, С5, С6 - емкости, образованные металлизациями 6, 7, 8 на поверхности прокладки 5 и металлизацией 9 на ее обратной стороне.

В предлагаемой конструкции ОЛЗ пьезоэлектрическая подложка 1 с топологическим рисунком ОЛЗ, содержащей вх/вых преобразователь 2, отражательные элементы 3 и контактные площадки 4 установлена на основании корпуса (на фиг. 1 не показан) через диэлектрическую прокладку 5. На поверхности диэлектрической прокладки 5 под областями расположения вх/вых преобразователя 2, отражательных элементов 3 и контактных площадок 4 выполнены участки металлизации 6, 7, 8, повторяющие топологический рисунок элементов ОЛЗ. Обратная сторона диэлектрической прокладки 5 металлизирована полностью 9.

В рассматриваемом конструктивном исполнении ОЛЗ между элементами вх/вых преобразователя 2 на пьезоэлектрической подложке 1 и металлизацией 6 на диэлектрической прокладке 5, а также соответственно между элементами 3 и 7, 4 и 8 образуются емкости C1, С2, С3. Кроме того между металлизированными участками 6, 7, 8 на поверхности диэлектрической прокладки 5 и слоем сплошной металлизации 9, на обратной стороне так же образуются емкости С4, С5, С6. Поскольку металлизация прокладки 5 электрически соединена с металлическим основанием корпуса, паразитные емкости C1, С2, С3 подключаются последовательно к емкостям С4, С5, С6. При этом формируются емкостные цепочки С1-С4; С2-С5; С3-С6. Из курса общей физики известно, что общая емкость последовательно соединенных конденсаторов определяется, например, для цепочки С1-С4 выражением

В предлагаемой конструкции отвод энергии паразитной емкостью снижается пропорционально уменьшению ее исходной величины, что позволяет повысить амплитуду информационного сигнала.

Таким образом, поставленная техническая задача - снижение паразитной емкости и, как следствие, повышение амплитуды импульсов информационного сигнала выполнена.

Предлагаемая конструкция многоканальной отражательной линии задержки может найти применение в системе дистанционного контроля объектов.

Литература

1. Многоканальная отражательная линия задержки на поверхностных акустических волнах: RU 2522886 С2 / И.А. Князев, А.С. Салов, С.П. Дорохов - №2012145915/08; Заявл. 26.10.2012. Опубл. 20.07.2014 Бюл. №20.

2. Емкости и конденсаторы / С. Груздев. М.: Схемотехника №1, октябрь 2000. - 64 с.

3. Многоканальная отражательная линия задержки RU 2610415 С1 / С,П. Дорохов, А.С Салов - №2015146785; Заявл. 29.10.2015. Опубл. 10.02.2017 Бюл. №4.

4. Акустоэлектронные радиокомпоненты: элементы и устройства на поверхностных акустических волнах / В.И. Речицкий. М. - Сов. радио, 1980. - 264 с.

Способ корпусирования отражательной линии задержки, отличающийся тем, что отражательную линию задержки (ОЛЗ) помещают на основание корпуса через диэлектрическую прокладку с низким значением диэлектрической проницаемости, на поверхности которой выполнена металлизация с топологическим рисунком, повторяющим топологический рисунок элементов отражательной линии задержки, с одной стороны прокладки и сплошная металлизация с другой стороны прокладки.



 

Похожие патенты:

Группа изобретений относится к области радиочастотной идентификации объектов с использованием поверхностных акустических волн (ПАВ) и может применяться при организации систем контроля и управления доступом.

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами.

Полосно-пропускающий СВЧ фильтр относится к технике сверхвысоких частот и может быть использован в селективных трактах приемных и передающих систем. Фильтр содержит диэлектрическую подложку (1), на одну сторону которой нанесено заземляемое основание (2), а на вторую - нанесены полосковые проводники (2-19) трех электромагнитно связанных резонаторов.

Изобретение относится к области радиотехники и может быть использовано в фильтрах гармоник усилителей мощности диапазонных радиопередатчиков. Технический результат - снижение уровня гармонических составляющих передаваемого сигнала при одновременном обеспечении согласования фильтра гармоник во всем рабочем диапазоне частот радиопередатчика.

Изобретение относится к области радиотехники и может быть использовано для создания генераторов сверхвысокочастотного (СВЧ) диапазона. Технический результат заключается в повышении добротности резонаторов на ПАВ на высоких частотах более 1 ГГц.

Изобретение относится к средствам передачи информации от забоя скважины на поверхность с использованием импульсной телеметрии. Техническим результатом является обеспечение более высокой производительности передачи данных, увеличение срока эксплуатации элементов телеметрической системы.

Изобретение относится к области радиотехники, в частности к пьезотехнике и акустоэлектронике. Резонатор на поверхностных акустических волнах содержит подложку из пьезоэлектрического материала с высоким коэффициентом электромеханической связи, на поверхности которой сформированы встречно-штыревой преобразователь и не менее двух отражающих структур, состоящих из массивов отражателей, выполненных с шириной и периодом следования, кратным определенной доле длины волны.

Изобретение относится к устройствам акустоэлектроники, в частности к отражательным линиям задержки, функционирующим на поверхностных акустических волнах. Техническим результатом предлагаемой конструкции ОЛЗ является увеличение амплитуды информационного сигнала и расширение ее функциональных возможностей.

Изобретение относится к СВЧ электроакустике и является основой для создания стабилизированных генераторов сетки частот, узкополосных фильтров, высокочувствительных сенсоров и других СВЧ частотозадающих элементов для средств связи, автоматики и радиолокации.

Изобретение относится к области радиотехники и может быть использовано в усилителях мощности широкодиапазонных радиопередатчиков. Технический результат - обеспечение согласования во всем рабочем диапазоне частот радиопередатчика при одновременном упрощении процессов настройки.

Изобретение относится к области радиолокации и может быть использовано в системах вторичной радиолокации при определении координат цели в системе «запрос-ответ». Достигаемый технический результат изобретения - повышение точности определения координат цели (ответчика) при любом положении антенны запросчика относительно носителя запросчика и при любом положении носителя запросчика в пространстве.

Изобретение относится к области техники радиотехнический средств позиционирования и может быть использовано, например, для управления движением подвижных объектов.

Изобретение относится к радиолокационным станциям (РЛС) освещения обстановки. Технический результат - определение количества и азимутальных координат целей, находящихся в области тени на одинаковых расстояниях от антенны РЛС.

Изобретение относится к области радиолокации и может быть использовано в системах вторичной радиолокации, преимущественно имеющих в своем составе антенну, раскрыв которой образован одномерной линейкой излучателей, при определении координат цели в системе запрос-ответ.

Изобретение относится к нелинейной радиолокации и может быть использовано для дистанционного обнаружения и распознавания объектов, находящихся вне зоны визуального наблюдения.

Изобретение относится к области радиотехники и может быть использовано при построении систем радиочастотной идентификации. Технический результат заключается в снижении вносимых потерь и уменьшении «паразитных» откликов за счет разделения во времени приема и передачи импульсов кодовой последовательности.

Изобретение относится к мониторингу и идентификации продуктов. Технический результат - точность и эффективность отслеживания инвентаря.

Предлагаемый способ относится к области радиолокации, в частности к области радиолокационных систем активного запроса-ответа (САЗО), и может быть использован для управления движением судов как надводных, так и воздушных в сложных метеоусловиях вплоть до полного отсутствия видимости.

Изобретение относится к устройствам обнаружения пассивных маркеров-ответчиков, являющимся вторичными источниками электромагнитного излучения, в частности параметрическими рассеивателями.

Предлагаемые способ и система относятся к системам радиочастотной идентификации подвижных и неподвижных объектов (RFID-системы). Технической задачей изобретения является расширение функциональных возможностей известных технических решений путем автоматического определения местоположения разыскиваемых транспондеров.
Наверх