Способ обработки фосфатного концентрата редкоземельных элементов

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку фосфатного концентрата РЗЭ, содержащего примеси кальция, тория, алюминия и железа, фосфорной кислотой концентрацией 20-38 мас. % при комнатной температуре в присутствии сульфоксидного катионита. Массовое соотношение концентрата, кислоты и сульфоксидного катионита равно 1:(10-15):(4-6). При необходимости обработку фосфатного концентрата фосфорной кислотой ведут в присутствии пероксида водорода, расход которого составляет 0,25-0,5 г на 1 г церия в фосфатном концентрате. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ и кальций, а фосфор и торий переходят в образовавшуюся пульпу. Пульпу отделяют от катионита и осуществляют десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата. Затем проводят нейтрализацию десорбата аммонийным соединением с получением концентрата РЗЭ. Способ обеспечивает извлечение в нерадиоактивный концентрат 93,7-98,6% РЗЭ при пониженной энергоемкости обработки фосфатного концентрата и может быть реализован при меньшем числе реагентов. 1 з.п. ф-лы, 5 пр.

 

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ.

При переработке на минеральные удобрения апатитового концентрата, содержащего около 1 мас. % оксидов РЗЭ и 0,002-0,003 мас. % тория, широко используется азотнокислотная технология с получением фосфатного концентрата РЗЭ, в который помимо РЗЭ переходит большая часть содержащегося в апатитовом концентрате тория. Основной трудностью при переработке такого концентрата является его очистка от примесей фосфора и тория, которая в настоящее время проводится при повышенных температурах с использованием значительного числа реагентов.

Известен способ обработки фосфатного концентрата РЗЭ, полученного при переработке апатита и содержащего примеси кальция, тория, алюминия и железа (см. Локшин Э.П., Тареева О.А., Елизарова И.Р. Сорбционная конверсия фосфатных концентратов редкоземельных металлов // Журн. прикл. Химии, 2014, т. 87, №8, с. 1053-1058), включающий обработку концентрата раствором 2 мас. % азотной кислоты при температуре 80°С в присутствии сульфоксидного катионита в водородной форме при массовом соотношении концентрата и азотнокислого раствора 1:10 и отношении массы концентрата и объема сульфоксидного катионита 1:10 с переводом фосфора в образовавшуюся пульпу и сорбцией катионитом РЗЭ и основной части примесей кальция, тория, алюминия и железа. Извлечение РЗЭ из исходного фосфатного концентрата в сульфоксидный катионит составляет 95,8-98,3%. Полученную пульпу отделяют от катионита. Десорбцию РЗЭ, кальция, алюминия и железа из катионита осуществляют раствором нитрата аммония с получением десорбата, из которого посредством нейтрализации получают концентрат РЗЭ.

Недостатком данного способа является то, что торий не десорбируется раствором нитрата аммония и при многократном использовании накапливается в сульфоксидном катионите, что делает его радиоактивным материалом, который необходимо выводить из процесса и складировать в специальном хранилище. Недостатком способа также является повышенный расход катионита. Все это снижает эффективность способа.

Известен также принятый в качестве прототипа способ обработки фосфатного концентрата РЗЭ, полученного при переработке апатита и содержащего примеси кальция, тория, алюминия и железа (см. пат. 2612244 РФ, МПК С22В 59/00, 3/06, 3/24 (2006.01), 2017), включающий обработку концентрата 1-2 мас. % азотной кислотой, в которую вводят фтор-ион, при температуре 70-80°С в присутствии сульфоксидного катионита с переводом фосфора и тория в образовавшуюся пульпу и сорбцией РЗЭ и кальция катионитом. В качестве источника фтор-иона используют фторид аммония, бифторид аммония или фтористоводородную кислоту. Обработку фосфатного концентрата ведут при массовом соотношении концентрата и раствора азотной кислоты, содержащего фтор-ион, равном 1:(9-10) и массовом соотношении концентрата и сульфоксидного катионита, равном 1:(5,0-5,5). Образовавшуюся пульпу отделяют от катионита и осуществляют десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата. Затем проводят нейтрализацию десорбата аммонийным соединением до рН 7,35-7,5 с получением концентрата РЗЭ. Извлечение РЗЭ из исходного фосфатного концентрата РЗЭ в нерадиоактивный концентрат достигает 97,2%.

Недостатком известного способа является его повышенная энергоемкость и необходимость использования дорогостоящего фторсодержащего реагента, что усложняет способ и снижает его эффективность.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении эффективности обработки фосфатного концентрата за счет снижения энергоемкости способа и уменьшения числа реагентов при обеспечении высокой степени извлечения РЗЭ в нерадиоактивный концентрат.

Технический результат достигается тем, что в способе обработки фосфатного концентрата редкоземельных элементов, полученного при переработке апатита и содержащего примеси кальция, тория, алюминия и железа, включающем кислотную обработку концентрата в присутствии сульфоксидного катионита с переводом фосфора и тория в образовавшуюся пульпу, а РЗЭ и кальция в катионит, отделение пульпы от катионита, десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата и нейтрализацию десорбата аммонийным соединением с получением концентрата РЗЭ, согласно изобретению, обработку фосфатного концентрата осуществляют фосфорной кислотой концентрацией 20-38 мас. % при комнатной температуре и массовом соотношении концентрата, кислоты и сульфоксидного катионита 1:(10-15):(4-6).

Достижению технического результата способствует то, что обработку фосфатного концентрата фосфорной кислотой ведут в присутствии пероксида водорода, расход которого составляет 0,25-0,5 г на 1 г церия в фосфатном концентрате.

Сущность заявленного способа заключается в следующем. Как показали выполненные исследования, фосфатный редкоземельный концентрат достаточно для реализации процесса растворим в фосфорнокислых растворах, при этом кроме РЗЭ выщелачиваются также фосфаты кальция, тория, алюминия, железа. При концентрации фосфорной кислоты 20-38 мас. %, комнатной температуре и массовом соотношении концентрата, кислоты и сульфоксидного катионита 1:(10-15):(4-6) переходящий в пульпу торий в отличие от РЗЭ образует анионные комплексы или недиссоциирующие молекулы, которые не сорбируются катионитом. Поэтому РЗЭ сорбируются сульфоксидным катионитом, а торий и фосфор остаются в пульпе.

Также установлено, что при хранении фосфатного концентрата РЗЭ на воздухе происходит окисление трехвалентного церия в четырехвалентный, вследствие чего растворимость церия в фосфорнокислом растворе становится недопустимо низкой. Это определяет резкое снижение перехода в катионит не только церия, но и других РЗЭ.

Добавленный в фосфорнокислый раствор пероксид водорода восстанавливает церий по реакции

обеспечивая достижение высокой степени извлечения РЗЭ в катионит при обработке концентрата.

Практическое отсутствие тория в катионите и, как следствие, в десорбате позволяет путем нейтрализации десорбата аммонийным соединением выделять нерадиоактивный гидроксидный или карбонатный концентрат РЗЭ. Отделенная от катионита фосфорнокислая пульпа нерадиоактивна. Она может быть присоединена к получающемуся из апатитового концентрата азотно-фосфорнокислому раствору и переработана вместе с ним на азотно-фосфорное удобрение.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Обработка фосфатного концентрата фосфорной кислотой обусловлена тем, что при этом не происходит изменение анионного состава реакционной массы и появляется возможность реализации способа при пониженной температуре. Проведение обработки фосфатного концентрата фосфорной кислотой концентрацией 20-38 мас. % при комнатной температуре позволяет обеспечить перевод тория преимущественно в анионные комплексы или недиссоциирующие молекулы и тем самым предотвратить его поглощение катионитом.

В растворах с концентрацией фосфорной кислоты менее 20 мас. % значительная часть тория даже при комнатной температуре образует катионные комплексы, которые вместе с РЗЭ сорбируются сульфоксидным катионитом, то есть ухудшается разделение РЗЭ и тория. Хотя повышение концентрации фосфорной кислоты более 38 мас. % несколько повышает эффективность разделения РЗЭ и тория, но при этом затрудняется сорбция РЗЭ и снижается извлечение РЗЭ в катионит.

Проведение обработки фосфатного концентрата при повышенной температуре снижает эффективность разделения РЗЭ и тория, поскольку образуемые торием анионные комплексы или недиссоциирующие молекулы при нагревании распадаются с образованием катионных комплексов тория.

Массовое соотношение фосфатного концентрата РЗЭ, фосфорной кислоты и сульфоксидного катионита, равное 1:(10-15):(4-6), обусловлено следующим.

Соотношение концентрата РЗЭ и фосфорной кислоты 1:(10-15) обеспечивает получение нерадиоактивной фосфорнокислой пульпы, которая может быть утилизирована в производстве минеральных удобрений. При расходе фосфорной кислоты менее 10 в предлагаемом массовом соотношении не может быть гарантировано получение нерадиоактивной фосфорнокислой пульпы. При расходе фосфорной кислоты более 15 в предлагаемом соотношении будет иметь место избыточный расход кислотного реагента без существенного повышения эффективности выщелачивания и неоправданное увеличение объема оборудования.

Массовое соотношение фосфатного концентрата РЗЭ и сульфоксидного катионита 1:(4-6) обеспечивает высокую эффективность поглощения РЗЭ катионитом, при этом в пульпу кроме фосфора и тория попадает основная часть железа и алюминия. Снижение концентрации этих элементов в катионите облегчает его дальнейшую переработку. При расходе сульфоксидного катионита менее 4 в предлагаемом массовом соотношении не обеспечивается высокая эффективность поглощения РЗЭ катионитом. При расходе сульфоксидного катионита более 6 в предлагаемом соотношении непроизводительно увеличивается расход катионита и снижается содержание в нем РЗЭ, а также неоправданно увеличивается объем используемого оборудования.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в снижении энергоемкости способа и уменьшении числа реагентов при обеспечении высокой степени извлечения РЗЭ в нерадиоактивный концентрат, что повышает эффективность обработки фосфатного концентрата.

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и реагенты.

Проведение обработки фосфатного концентрата фосфорной кислотой в присутствии пероксида водорода обеспечивает более эффективное растворение фосфатного редкоземельного концентрата в растворах фосфорной кислоты, что позволяет производить обработку лежалого концентрата.

Расход пероксида водорода 0,25-0,5 г на 1 г церия в фосфатном редкоземельном концентрате обеспечивает эффективную обработку концентрата. Расход пероксида водорода в рамках заявленного интервала значений зависит от продолжительности и условий хранения концентрата и устанавливается экспериментально.

При расходе пероксида водорода менее 0,25 г на 1 г церия снижается эффективность обработки лежалого концентрата, а расход пероксида водорода более 0,5 является технологически неоправданным.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения обеспечения возможности обработки как свежеполученного, так и лежалого фосфатного концентрата.

Сущность заявляемого способа может быть пояснена следующими примерами.

Пример 1. Берут 1 кг фосфатного концентрата РЗЭ, полученного при азотнокислотной переработке апатита. Концентрат содержит, мас. %: 26,84 ∑Тr2O3, 4,16 СаО, 0,25 Na2O, 0,05 MgO, 0,76 Аl2O3, 1,75 F, 33,6 P2O5, 1,81 ТiO2, 7,71 Fe2O3, 0,0759 ThO2. Концентрат обрабатывают при температуре 20°С в течение 4 часов 9 л раствора фосфорной кислоты концентрацией 20 мас. % в присутствии сульфоксидного катионита КУ-2-8чС в водородной форме, взятого в количестве 6 кг. Массовое соотношение фосфатного концентрата, раствора фосфорной кислоты и сульфоксидного катионита равно 1:10:6. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ, примеси кальция и частично другие катионные примеси, а фосфор, торий и остаточная часть катионных примесей переходят в фосфорнокислую пульпу. Извлечение в катионит составило, %: ∑Тr 98,63, Th 11,54, Al 53,72, Fe 16,06, Ti 2,03. He поглощенный катионитом торий остается в фосфорнокислой пульпе, величина удельной эффективной радиоактивности которой составляет Аэфф=211 Бк/кг.

Полученную пульпу отделяют от сульфоксидного катионита, содержание тория в котором составило 0,0015 мас. % при величине удельной эффективной радиоактивности Аэфф=46 Бк/кг. Из катионита РЗЭ и кальций десорбируют 27,5 л раствора нитрата аммония концентрацией 320 г/л с получением нитратного десорбата с рН 1, который нейтрализуют аммонийным соединением в виде смеси газообразного аммиака и углекислого газа, взятых в мольном соотношении 2:1, до обеспечения рН 7,5 с образованием и отделением фильтрацией карбонатного концентрата РЗЭ.

Полученный в количестве 0,44 кг карбонатный концентрат содержал 59,5 мас. % ∑Тr2O3 с величиной удельной эффективной радиоактивности Аэфф=600 Бк/кг, то есть карбонатный концентрат относится к 1 классу материалов, обращение с которыми в производственных условиях осуществляется без ограничений. Извлечение РЗЭ из исходного фосфатного концентрата РЗЭ в нерадиоактивный концентрат составило 97,5%. Примеси фосфора и фтора в концентрате отсутствуют.

Пример 2. Берут 1 кг фосфатного концентрата РЗЭ, полученного при азотнокислотной переработке апатита. Концентрат содержит, мас. %: 26,84 ∑Тr2O3, 4,16 СаО, 0,25 Na2O, 0,05 MgO, 0,76 А12O3, 1,75 F, 33,6 Р2O5, 1,81 ТiO2, 7,71 Fe2O3, 0,0759 ThO2. Концентрат обрабатывают при температуре 18°С в течение 4 часов 12 л раствора фосфорной кислоты концентрацией 38 мас. % в присутствии сульфоксидного катионита КУ-2-8чС в водородной форме, взятого в количестве 4 кг. Массовое соотношение фосфатного концентрата, раствора фосфорной кислоты и сульфоксидного катионита равно 1:15:4. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ, примеси кальция и частично другие катионные примеси, а фосфор, торий и остаточная часть катионных примесей переходят в фосфорнокислую пульпу. Извлечение в катионит составило, %: ∑Тr 93,83, Th 6,4, Аl 53,3, Fe 24,3, Ti 1,77. Не поглощенный катионитом торий остается в фосфорнокислой пульпе, величина удельной эффективной радиоактивности которой составляет Аэфф=149 Бк/кг.

Полученную пульпу отделяют от сульфоксидного катионита, содержание тория в котором составило 0,00125 мас. % при величине удельной эффективной радиоактивности Аэфф=38 Бк/кг. Из катионита РЗЭ и кальций десорбируют 27,5 л раствора нитрата аммония концентрацией 300 г/л с получением нитратного десорбата с рН 1, который нейтрализуют аммонийным соединением в виде смеси газообразного аммиака и углекислого газа, взятых в мольном соотношении 2:1, до обеспечения рН 7,35 с образованием и отделением фильтрацией карбонатного концентрата РЗЭ.

Полученный в количестве 0,45 кг карбонатный концентрат содержал 55,89 мас. % ∑Тr2О3 с величиной удельной эффективной радиоактивности Аэфф=325 Бк/кг, то есть карбонатный концентрат относится к 1 классу материалов, обращение с которыми в производственных условиях осуществляется без ограничений. Извлечение РЗЭ из исходного фосфатного концентрата РЗЭ в нерадиоактивный концентрат составило 93,7%. Примеси фосфора и фтора в концентрате отсутствуют.

Пример 3. Берут 1 кг фосфатного концентрата РЗЭ, полученного при азотнокислотной переработке апатита. Концентрат содержит, мас. %: 26,84 ∑Тr2O3, 4,16 СаО, 0,25 Na2O, 0,05 MgO, 0,76 Аl2О3, 1,75 F, 33,6 Р2O5, 1,81 ТiO2, 7,71 Fe2O3, 0,0759 ThO2. Концентрат обрабатывают при температуре 22°С в течение 4 часов 10,2 л раствора фосфорной кислоты концентрацией 30 мас. % в присутствии сульфоксидного катионита КУ-2-8чС в водородной форме, взятого в количестве 5 кг. Массовое соотношение фосфатного концентрата, раствора фосфорной кислоты и сульфоксидного катионита равно 1:12:5. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ, примеси кальция и частично другие катионные примеси, а фосфор, торий и остаточная часть катионных примесей переходят в фосфорнокислую пульпу. Извлечение в катионит составило, %: ∑Тr 97,94, Th 9,31, Аl 48,0, Fe 20,1, Ti 1,90. Не поглощенный катионитом торий остается в фосфорнокислой пульпе, величина удельной эффективной радиоактивности которой составляет Аэфф=180 Бк/кг.

Полученную пульпу отделяют от сульфоксидного катионита, содержание тория в котором составило 0,00175 мас. % при величине удельной эффективной радиоактивности Аэфф=54 Бк/кг. Из катионита РЗЭ и кальций десорбируют 27,5 л раствора нитрата аммония концентрацией 315 г/л с получением нитратного десорбата с рН 1, который нейтрализуют газообразным аммиаком до обеспечения рН 7,5 с образованием и отделением фильтрацией гидроксидного концентрата РЗЭ.

Полученный в количестве 0,413 кг гидроксидный концентрат содержал 63,5 мас. % ∑Тr2О3 с величиной удельной эффективной радиоактивности Аэфф=540 Бк/кг, то есть гидроксидный концентрат относится к 1 классу материалов, обращение с которыми в производственных условиях осуществляется без ограничений. Извлечение РЗЭ из исходного фосфатного концентрата РЗЭ в нерадиоактивный концентрат составило 97,7%. Примеси фосфора и фтора в концентрате отсутствуют.

Пример 4. Берут 1 кг хранившегося 2 суток фосфатного концентрата РЗЭ, полученного при азотнокислотной переработке апатита. Концентрат содержит, мас. %: 27,12 ∑Тr2O3, в том числе 105,7 г Се, 4,27 СаО, 0,25 Na2O, 0,04 MgO, 0,95 Аl2О3, 1,48 F, 32,35 Р2O5, 2,05 ТiO2, 7,89 Fe2O3, 0,063 ThO2. Концентрат обрабатывают при температуре 22°С в течение 4 часов 8 л раствора фосфорной кислоты концентрацией 38 мас. %, в который введено 80 мл (88 г) 30 мас. % раствора пероксида водорода (0,25 г на 1 г церия в фосфатном концентрате), в присутствии сульфоксидного катионита КУ-2-8чС в водородной форме, взятого в количестве 6 кг. Массовое соотношение фосфатного концентрата, раствора фосфорной кислоты и сульфоксидного катионита равно 1:10:6. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ, примеси кальция и частично другие катионные примеси, а фосфор, торий и остаточная часть катионных примесей переходят в фосфорнокислую пульпу. Извлечение в катионит составило, %: ∑Тr 95,25, Th 8,77, Аl 49,51, Fe 22,59, Ti 0,53. Не поглощенный катионитом торий остается в фосфорнокислой пульпе, величина удельной эффективной радиоактивности которой составляет Аэфф=181 Бк/кг.

Полученную пульпу отделяют от сульфоксидного катионита, содержание тория в котором составило 0,00136 мас. % при величине удельной эффективной радиоактивности Аэфф=42 Бк/кг. Из катионита РЗЭ и кальций десорбируют 27,5 л раствора нитрата аммония концентрацией 300 г/л с получением нитратного десорбата с рН 1, который нейтрализуют аммонийным соединением в виде смеси газообразного аммиака и углекислого газа, взятых в мольном соотношении 2:1, до обеспечения рН 7,45 с образованием и отделением фильтрацией карбонатного концентрата РЗЭ.

Полученный в количестве 0,45 кг карбонатный концентрат содержал 57,25 мас. % ∑Тr2O3 с величиной удельной эффективной радиоактивности Аэфф=387 Бк/кг, то есть карбонатный концентрат относится к 1 классу материалов, обращение с которыми в производственных условиях осуществляется без ограничений. Извлечение РЗЭ из исходного фосфатного концентрата РЗЭ в нерадиоактивный концентрат составило 95%. Примеси фосфора и фтора в концентрате отсутствуют.

Пример 5. Берут 1 кг хранившегося 6 суток фосфатного концентрата РЗЭ, полученного при азотнокислотной переработке апатита. Концентрат содержит, мас. %: 27,12 ∑Тr2O3, в том числе 105,7 г Се, 4,27 СаО, 0,25 Na2O, 0,04 MgO, 0,95 Аl2O3, 1,48 F, 32,35 Р2O5, 2,05 ТiO2, 7,89 Fe2O3, 0,063 ThO2. Концентрат обрабатывают при температуре 20°С в течение 4 часов 13,5 л раствора фосфорной кислоты концентрацией 38 мас. %, в который введено 160 мл (176 г) 30 мас. % раствора пероксида водорода (0,5 г на 1 г церия в фосфатном концентрате), в присутствии сульфоксидного катионита КУ-2-8чС в водородной форме, взятого в количестве 4 кг. Массовое соотношение фосфатного концентрата, раствора фосфорной кислоты и сульфоксидного катионита равно 1:15:4. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ, примеси кальция и частично другие катионные примеси, а фосфор, торий и остаточная часть катионных примесей переходят в фосфорнокислую пульпу. Извлечение в катионит составило, %: ∑Tr 98,86, Th 11,7, Al 48,2, Fe 20,1, Ti 1,43. He поглощенный катионитом торий остается в фосфорнокислой пульпе, величина удельной эффективной радиоактивности которой составляет Аэфф=117 Бк/кг.

Полученную пульпу отделяют от сульфоксидного катионита, содержание тория в котором составило 0,00184 мас. % при величине удельной эффективной радиоактивности Аэфф=56 Бк/кг. Из катионита РЗЭ и кальций десорбируют 27,5 л раствора нитрата аммония концентрацией 315 г/л с получением нитратного десорбата с рН 1, который нейтрализуют газообразным аммиаком до обеспечения рН 7,5 с образованием и отделением фильтрацией гидроксидного концентрата РЗЭ.

Полученный в количестве 0,417 кг гидроксидный концентрат содержал 64,12 мас. % ∑Тr2O3 с величиной удельной эффективной радиоактивности Аэфф=557 Бк/кг, то есть гидроксидный концентрат относится к 1 классу материалов, обращение с которыми в производственных условиях осуществляется без ограничений. Извлечение РЗЭ из исходного фосфатного концентрата РЗЭ в нерадиоактивный концентрат составило 98,6%. Примеси фосфора и фтора в концентрате отсутствуют.

Из вышеприведенных Примеров видно, что заявляемый способ является более эффективным по сравнению с прототипом. Извлечение РЗЭ из исходного фосфатного концентрата в нерадиоактивный концентрат РЗЭ составляет 93,7-98,6% при пониженной энергоемкости способа. Способ может быть реализован при меньшем числе реагентов с использованием стандартного оборудования.

1. Способ обработки фосфатного концентрата редкоземельных элементов (РЗЭ), полученного при переработке апатита и содержащего примеси кальция, тория, алюминия и железа, включающий кислотную обработку концентрата в присутствии сульфоксидного катионита с переводом фосфора и тория в образовавшуюся пульпу, а РЗЭ и кальция - в катионит, отделение пульпы от катионита, десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата и нейтрализацию десорбата аммонийным соединением с получением концентрата РЗЭ, отличающийся тем, что обработку фосфатного концентрата осуществляют фосфорной кислотой концентрацией 20-38 мас. % при комнатной температуре и массовом соотношении концентрата, кислоты и сульфоксидного катионита 1:(10-15):(4-6).

2. Способ по п. 1, отличающийся тем, что обработку фосфатного концентрата фосфорной кислотой ведут в присутствии пероксида водорода, расход которого составляет 0,25-0,5 г на 1 г церия в фосфатном концентрате.



 

Похожие патенты:
Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано для получения концентратов редких и редкоземельных элементов из монацита.

Изобретение относится к комплексной переработке фосфогипса. Технология может быть использована при производстве концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов.

Изобретение относится к способу извлечения редкоземельных элементов из отходов производства минеральных удобрений - фосфогипса. Способ включает выщелачивание и сорбцию редкоземельных элементов из раствора с использованием сорбента с последующей десорбцией редкоземельных элементов раствором сульфата аммония.
Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими фильтрацией полученного осадка, его промывкой этиловым спиртом и сушкой.

Изобретение относится к переработке золошлаковых отходов ТЭЦ с целью извлечения из них редкоземельных металлов и скандия и последующем использовании их в производстве строительных материалов.

Изобретение относится к извлечению редкоземельных металлов из сырьевых материалов, содержащих эти элементы. Селективное извлечение осуществляют из насыщенных маточных растворов в виде оксалатов РЗЭ.

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной кислотой.
Изобретение относится к способам переработки эвдиалитового концентрата и может быть использовано для получения соединений циркония, редкоземельных элементов (РЗЭ) и диоксида кремния.

Изобретение относится к способу восстановления скандия и ионов, содержащих скандий, из сырьевого потока, который может представлять собой, без какого-либо ограничения, щелок или пульпу от выщелачивания.

Изобретение относится к способу переработки красного шлама при получении скандийсодержащего концентрата и оксида скандия, в котором ведут карбонизационное выщелачивание, сорбцию скандия на фосфорсодержащем ионите, десорбцию скандия и осаждение скандиевого концентрата.

Изобретение относится к области гидрометаллургии редких металлов, а именно к способам разделения галлия и алюминия в виде анионных гидроксокомплексов из щелочных растворов с привлечением ионообменных смол.

Изобретение относится к способу переработки сульфидных золотосодержащих концентратов флотации, содержащих сорбционно-активный органический углерод, для извлечения золота.

Изобретение относится к способу извлечения редкоземельных элементов из отходов производства минеральных удобрений - фосфогипса. Способ включает выщелачивание и сорбцию редкоземельных элементов из раствора с использованием сорбента с последующей десорбцией редкоземельных элементов раствором сульфата аммония.

Изобретение относится к переработке золошлаковых отходов ТЭЦ с целью извлечения из них редкоземельных металлов и скандия и последующем использовании их в производстве строительных материалов.

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной кислотой.

Изобретение относится к пористым частицам привитого сополимера, предназначенным для получения адсорбирующего материала, которые адсорбируют металлы и другие вещества, способу их производства и адсорбенту, в котором они применяются.

Изобретение относится к извлечению урана из подземных вод. Способ включает синтез сорбционной композиции из механоактивированного шунгита, прокаленного фосфогипса и модифицирующего раствора в соотношении 1:1:1.

Cпособ относится к области гидрометаллургии редких и рассеянных элементов, в частности к сорбционному извлечению ванадия из руд. Способ заключается в том, что полученные при кислотном выщелачивании рудного сырья сернокислые растворы сорбируют на анионообменную смолу, после чего маточные растворы сорбционного извлечения ванадия обрабатывают подготовленным раствором - ферригелем в количестве 12,5-25,0 г на 1 г ванадия, который после фильтрации подают на операцию сернокислого выщелачивания исходной руды, для повышения извлечения целевого компонента.

Изобретение относится к извлечению благородных металлов из цианистых растворов и/или пульп по угольно-сорбционной технологии. При автоклавной десорбции получают горячие растворы элюатов, при этом дополнительно концентрируют металл на угле.

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано для разделения платины, меди и цинка в солянокислых растворах сорбционным методом.

Изобретение относится к технологии получения оксида магния из магнийсодержащего минерального сырья. Способ получения оксида магния из отходов серпентинитовой руды включает подготовку отходов серпентинитовой руды, мокрую магнитную сепарацию для отделения магнийсодержащей суспензии от магнетита, выщелачивание с помощью минеральной кислоты, карбонизацию и отжиг.

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов, получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку фосфатного концентрата РЗЭ, содержащего примеси кальция, тория, алюминия и железа, фосфорной кислотой концентрацией 20-38 мас. при комнатной температуре в присутствии сульфоксидного катионита. Массовое соотношение концентрата, кислоты и сульфоксидного катионита равно 1::. При необходимости обработку фосфатного концентрата фосфорной кислотой ведут в присутствии пероксида водорода, расход которого составляет 0,25-0,5 г на 1 г церия в фосфатном концентрате. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ и кальций, а фосфор и торий переходят в образовавшуюся пульпу. Пульпу отделяют от катионита и осуществляют десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата. Затем проводят нейтрализацию десорбата аммонийным соединением с получением концентрата РЗЭ. Способ обеспечивает извлечение в нерадиоактивный концентрат 93,7-98,6 РЗЭ при пониженной энергоемкости обработки фосфатного концентрата и может быть реализован при меньшем числе реагентов. 1 з.п. ф-лы, 5 пр.

Наверх