Способ определения в ледовом бассейне дистанции торможения крупнотоннажного судна при проводке его ледоколом

Изобретение относится к области морского транспорта и способам проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Способ включает приготовление в ледовом бассейне ледяных полей, имитирующих различные ледовые условия, формирование в выбранном ледовом поле ледяного канала с заполнением его отдельными ледовыми фрагментами и осуществление в нем движения модели крупнотоннажного судна с последующим измерением дистанции торможения модели с момента начала ее торможения. Ледяной канал в ледовом поле формируют путем проведения по выбранному ледовому полю самоходной модели лидирующего ледокола, выполненной в одном и том же масштабе с моделью крупнотоннажного судна. В процессе проведения модели лидирующего ледокола частоту вращения его движительного комплекса задают в соответствии с прогнозируемой скоростью движения ледокола в выбранных ледовых условиях. Затем, в созданном таким образом ледяном канале, проводят уже самоходные испытания модели крупнотоннажного судна, последовательно выбирая режимы работы его движительного комплекса и измеряя дистанцию торможения модели. Технический результат заключается в повышении достоверности результатов модельных испытаний моделей крупнотоннажных судов в ледовом опытовом бассейне и получении объективных экспериментальных данных, путем создания условий проведения модельного эксперимента, подобных натурным. 1 ил.

 

Изобретение относится к области морского транспорта и способам проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах.

Известен способ расчетного определения дистанции торможения судна, двигающегося по ледяному каналу, проложенному проводящим судно ледоколом (Методические указания по выполнению расчета допустимых режимов движения судна во льдах. НД №2-039901-003. СПб: РМРС, 2012, 18 с.), который базируется на решении дифференциального уравнения движения судна. Для определения дистанции торможения судна, двигающегося по ледяному каналу, при выполнении расчетов необходимо знать зависимость полного ледового сопротивления от скорости движения судна в рассматриваемых ледовых условиях. Такая зависимость может быть определена по результатам расчетов или на основании проведения экспериментов в ледовом бассейне.

Недостатком известного способа является необходимость проведения большого количества экспериментальных исследований, особенно в случае изучения дистанции торможения крупнотоннажного судна. В последнем случае практически невозможно использовать расчетные процедуры из-за отсутствия адекватного математического описания состояния растрескавшихся после прохождения ледокола кромок ледяного канала, которые вынужден доламывать корпус двигающегося по ледяному каналу крупнотоннажного судна.

Известен также способ проведения самоходных испытаний судов, в ледовом опытовом бассейне (патент на изобретение RU №2384828 от 20.03.2008 г.), принятый в качестве прототипа. Сущность известного способа состоит в том, что перед проведением самоходных испытаний модели судна в канале, указанный канал формируют, вырезая в намороженном ледяном поле полосу, шириной, равной ширине ледокола. Лед, составляющий вырезанную полосу, разбивают на отдельные фрагменты и заполняют ими канал, в котором проводят испытания самоходной модели при различных режимах работы его движительного комплекса, а также измерения дистанции торможения самоходной модели.

Недостатком указанного способа является неполное воспроизведение ледовых условий в образованном таким образом канале. Одним из основных среди которых является то, что при вырезании полосы из неразрушенного ледяного покрова кромки канала не подвергаются растрескиванию, как это происходит при движении модели ледокола. Это обстоятельство при испытании модели крупнотоннажного судна, ширина которого превышает ширину канала, проложенного ледоколом, приводит к искажению в опасную сторону величины дистанции торможения. Еще одним недостатком указанного способа является несоответствие распределения заполнения обломками льда канала, так как не воспроизводится взаимодействие указанных обломков льда со струями, исходящими от гребных винтов модели крупнотоннажного судна.

Предполагаемое изобретение решает задачу повышения достоверности результатов модельных испытаний моделей крупнотоннажных судов в ледовом опытовом бассейне и получения объективных экспериментальных данных, необходимых для обеспечения безопасности проводки таких судов во льдах, в том числе путем создания условий проведения модельного эксперимента подобных натурным.

Для этого по способу определения в ледовом бассейне дистанции торможения крупнотоннажного судна при проводке его ледоколом, включающему приготовление в ледовом бассейне ледяных полей, имитирующих различные ледовые условия, формирование в выбранном ледовом поле ледяного канала с заполнением его отдельными ледовыми фрагментами и осуществление в нем движения модели крупнотоннажного судна с последующим измерением дистанции торможения модели с момента начала ее торможения, по изобретению ледяной канал в ледовом поле формируют путем проведения по выбранному ледовому полю самоходной модели лидирующего ледокола, выполненной в одном и том же масштабе с моделью крупнотоннажного судна. В процессе проведения модели лидирующего ледокола частоту вращения его движительного комплекса задают в соответствии с прогнозируемой скоростью движения ледокола в выбранных ледовых условиях. Затем, в созданном таким образом ледяном канале, проводят уже самоходные испытания модели крупнотоннажного судна, последовательно выбирая режимы работы его движительного комплекса и измеряя дистанцию торможения модели.

Применение для формирования ледяного канала модели ледокола, выполненной в одном и том же масштабе, что и модель крупнотоннажного судна, позволяет смоделировать в ледовом бассейне реальный ледяной канал. Для этого модель лидирующего ледокола должна быть выполнена не только в одном масштабе с моделью крупнотоннажного судна, но и быть точной копией одного из основных ледоколов, осуществляющих проводку крупнотоннажных судов, например, атомного ледокола «Арктика» (пр. 22220) или проектируемого атомного ледокола-лидера мощностью 120 МВт. Реалистичность созданного в ледовом бассейне ледяного канала определяется характерной именно для выбранной модели ледокола волнистостью кромок канала, а также специфической структурой их растрескивания, которое зависит от формы обводов корпуса ледокола, а также скорости его движения в заданных ледовых условиях.

Обеспечение заданной скорости движения модели ледокола при формировании ледяного канала осуществляется путем задания необходимой частоты вращения его движителей. Необходимая частота вращения движителей определяется расчетным путем на основании расчета ледового сопротивления ледокола в заданных ледовых условиях и расчета характеристик его ледовой ходкости в этих условиях. Для этого используются общеизвестные и новые методики (см., например, Каштелян В.И., Позняк И.И., Рывлин А.Я. Сопротивление льда движению судна. Л.: Судостроение, 1968, 238 с.). Помимо обеспечения заданной скорости движения модели ледокола задание соответствующей необходимой частоты вращения движителей позволяет сформировать в канале за ледоколом реальное распределение обломков льда по поверхности канала, так как в этом случае моделируется воздействие на обломки льда струй от гребных винтов ледокола.

В сформированном таким образом ледяном канале проводят самоходные испытания модели крупнотоннажного судна, последовательно выбирая режимы работы его движительного комплекса и измеряя дистанцию торможения модели. В качестве режимов работы движительного комплекса судна могут быть использованы следующие маневры: «Стоп» - движение модели, имеющей заданную скорость, с выключенными движителями; «Реверс» - движение модели, имеющей заданную скорость, с движителями, работающими в обратную сторону; «Выход и канала» - перекладка органа управления на один из бортов; и другие.

Описанная выше процедура может быть использована для определения дистанции торможения не только в сплошных ровных льдах, но и в любых других ледовых условиях, например, в наслоенных льдах, торосистых образованиях, битых льдах и т.п. Эти условия создаются в ледовом бассейне до формирования ледяного канала с помощью модели ледокола, причем при формировании канала моделью скорость ее движения и частота вращения ее движителей выбираются соответствующие заданным ледовым условиям.

Сущность изобретения поясняется фиг. 1, где схематично показан вид сверху на ледовый бассейн с моделями ледокола-лидера и крупнотоннажного судна.

В ледовом бассейне 1 наморожено ледяное поле 2, в котором с помощью самоходной модели лидирующего ледокола 3 сформирован реалистичный ледяной канал 4, содержащий волнистые кромки. В ледяном канале 4 распределены обломки льда 5. По каналу движется модель крупнотоннажного судна 6, которая выполняет заданный маневр для определения дистанции торможения 7.

Предлагаемый способ определения в ледовом бассейне дистанции торможения крупнотоннажного судна при проводке его ледоколом работает следующим образом.

В ледовом бассейне 1 приготавливается поле 2 ровного льда, в котором с помощью модели лидирующего ледокола 3 создается реалистичный ледяной канал 4. Для этого самоходная модель лидирующего ледокола 3 движется в ледяном поле 2 с заданной скоростью, для чего задается заранее определенная частота вращения ее движителей. При движении модели лидирующего ледокола 3 в ледяном поле 2 формируется реалистичный ледяной канал 4 с волнистыми кромками и с отдельными ледовыми фрагментами. В канале благодаря моделированию струй от гребных винтов модели ледокола 3 создается реальное распределение обломков льда 5. По созданному таким образом каналу 4 движется самоходная модель крупнотоннажного судна 6, на которой выполняется один из режимов работы ее движительного комплекса. В ходе эксперимента измеряют дистанцию торможения крупнотоннажного судна 7, начиная с момента задания режима работы движительного комплекса до полной остановки модели.

Предлагаемый способ определения в ледовом бассейне дистанции торможения крупнотоннажного судна при проводке его ледоколом позволяет определять дистанцию торможения непосредственным измерением в ледовом бассейне и пересчетом ее на натурные условия в соответствии с критериями моделирования, предотвращая таким образом столкновения крупнотоннажного судна с проводящим его по ледяному полю ледоколом, чем выгодно отличается от прототипа.

Способ определения в ледовом бассейне дистанции торможения крупнотоннажного судна при проводке его ледоколом, включающий приготовление в ледовом бассейне ледяных полей, имитирующих различные ледовые условия, формирование в выбранном ледовом поле ледяного канала с заполнением его отдельными ледовыми фрагментами и осуществление в нем движения модели крупнотоннажного судна с последующим измерением дистанции торможения модели с момента начала ее торможения, отличающийся тем, что ледяной канал в ледовом поле формируют путем проведения по выбранному ледовому полю самоходной модели лидирующего ледокола, выполненной в одном и том же масштабе с моделью крупнотоннажного судна, при этом частоту вращения движительного комплекса модели лидирующего ледокола задают в соответствии с прогнозируемой скоростью его движения в выбранных ледовых условиях, и затем в созданном таким образом ледяном канале проводят уже самоходные испытания модели крупнотоннажного судна, последовательно выбирая режимы работы его движительного комплекса и измеряя дистанцию торможения модели.



 

Похожие патенты:

Изобретение относится к области судостроения, в частности к экспериментальному определению характеристик остойчивости судов. Предложен способ испытаний моделей корпусов судов, позволяющий оценивать остойчивость судна путем проведения опыта кренования, заключающегося в проведении серии последовательных перемещений на судне крен-балласта в поперечном направлении с целью создания ряда наклонений и измерения соответствующих углов крена.

Изобретение относится к средствам экспериментальной гидромеханики, в частности к способам создания искусственного волнения внутри электропроводящей жидкости (волнопродукторам).

Изобретение относится к области гидродинамики. Предлагается стенд для создания движения группы по меньшей мере двух плавучих объектов в ограниченном пространстве по предварительно заданным траекториям, при этом упомянутые объекты представляют собой продольно вытянутые тела с положительной плавучестью, в передних и задних частях которых установлен магнитный элемент, а на выступающей из жидкости части установлен маркер.

Изобретение относится к устройствам для проведения аэродинамических испытаний. В аквааэродинамической трубе испытания проводятся путем погружения испытуемого объекта в водную среду.
Изобретение относится к области учебного лабораторного оборудования и может быть использовано в учебном процессе, при проведении лабораторных работ и практических занятий.

Изобретение относится к экспериментальной гидромеханике морских инженерных сооружений и касается методов испытания трансформации волн в опытовом бассейне на наклонном дне и оборудования для его проведения.

Заявляемое изобретение относится к области экспериментальной техники, в частности к нагружателям гидравлическим, и может быть использовано преимущественно в стендах прочностных испытаний натурных конструкций, в том числе авиационных.

Настоящее изобретение относится к области лабораторных теплофизических измерений и, в частности, к определению тепловых, аэродинамических и гидравлических параметров рекуперативных теплообменных аппаратов различных типов, выполняемых в ходе учебной подготовки специалистов в области теплотехнического оборудования, испытаний теплообменных аппаратов с целью определения их основных параметров.

Изобретение относится к океанографической технике, а именно к морским измерительным системам. Профилирующая измерительная система включает морскую стационарную платформу (9), на которой установлен снабженный средством контроля своего положения приборный контейнер (1) с датчиками.

Изобретение относится к экспериментальной гидромеханике и касается определения характеристик моделей погруженных морских сооружений в опытовых ледовых бассейнах.

Изобретение относится к области морского транспорта и способам проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Способ включает приготовление в ледовом бассейне ледяных полей, имитирующих различные ледовые условия, формирование в выбранном ледовом поле ледяного канала с заполнением его отдельными ледовыми фрагментами и осуществление в нем движения модели крупнотоннажного судна с последующим измерением дистанции торможения модели с момента начала ее торможения. Ледяной канал в ледовом поле формируют путем проведения по выбранному ледовому полю самоходной модели лидирующего ледокола, выполненной в одном и том же масштабе с моделью крупнотоннажного судна. В процессе проведения модели лидирующего ледокола частоту вращения его движительного комплекса задают в соответствии с прогнозируемой скоростью движения ледокола в выбранных ледовых условиях. Затем, в созданном таким образом ледяном канале, проводят уже самоходные испытания модели крупнотоннажного судна, последовательно выбирая режимы работы его движительного комплекса и измеряя дистанцию торможения модели. Технический результат заключается в повышении достоверности результатов модельных испытаний моделей крупнотоннажных судов в ледовом опытовом бассейне и получении объективных экспериментальных данных, путем создания условий проведения модельного эксперимента, подобных натурным. 1 ил.

Наверх