Способ приготовления катализатора изомеризации парафинов на основе байеритного оксида алюминия

Настоящее изобретение относится к способу приготовления катализатора изомеризации парафинов на основе байерита, который получается путем осаждения из раствора алюмината натрия и азотной кислоты. Катализатор изомеризации состоит из платины и хлора, нанесенных на поверхность получаемого из байерита путем прокаливания эта-оксида алюминия. Предлагаемый способ приготовления катализатора изомеризации парафинов на основе байеритного оксида алюминия, состоящего из платины и хлора, нанесенных на поверхность эта-оксида алюминия, готовят путем осаждения из растворов алюмината натрия нейтрализующим раствором при высоких pH 10,4-10,8, старения осадка в течение 2-2,5 часов, отмывки осадка от примесей щелочного металла натрия, высушивания при 100-150°C, прокаливания при температуре 500-550°C, нанесения платины и хлора и повторного прокаливания. После старения осадка проводят подкисление пульпы до значения pH 9,1-9,2 - точки нулевого заряда байерита. Для нейтрализующего раствора используют азотную кислоту, карбонаты, бикарбонаты натрия. Получаемый гидроксид алюминия содержит не менее 75% байерита, (сопутствующими фазами служат псевдобемит и аморфный гидроксид) и не содержит значительных количеств примесей щелочных металлов (не более 0,025 мас.% Na2O). Катализатор на основе получаемого гидроксида алюминия пригоден для использования в качестве компонента катализаторов нефтепереработки, в частности для изомеризации н-парафинов. 1 з.п. ф-лы, 6 пр.

 

Настоящее изобретение относится к способам получения катализаторов изомеризации парафинов на основе байеритного гидроксида алюминия, точнее к способам приготовления тригидратабайерита. Байерит используется для синтеза катализаторов конверсии нефтяных фракций, особенно для изомеризации нормальных парафинов- бутана, пентана и пентан-гексановых фракций (Бурсиан Н.Р. Технология изомеризации парафиновых углеводородов. - Л.: Химия, 1985. - 192 с.). Ключевыми параметрами для эффективности катализаторов изомеризации являются содержание байерита и получаемого из него эта-оксида (активность от содержания байерита/эта-оксида растет по линейно) и содержание натрия (зависит значительно от этого параметра вплоть до содержания 0,01% Na2O). Поэтому рассматриваются патенты на способы получения байерита и эта-оксида алюминия на его основе.

Известен электрохимический способ получения гидроксида алюминия байерита и катализатора на его основе, включающий анодное растворение металлического алюминия в хлорсодержащем растворе электролита, отмывку, выдержку и сушку осадка при заданной анодной плотности тока (50-300 А/м2) (RU. Патент №2412905, МПК C01F 7/42, 2011). Этот способ непригоден для получения чистого байерита, а также сопряжен с большими энергозатратами.

Известен также способ получения высокодисперсного гидроксида алюминия, преимущественно байерита, путем обработки золя гидроксида в коаксиальном электролизере, причем для анодного растворения применяют металлический титан с оксидно-рутениевым покрытием и катод из нержавеющей стали Х18Н10Т (RU. Патент №2465205, МПК C07F /02, 2012).

Указанный способ позволяет получать наноразмерные частицы гидроксида алюминия постоянного состава с монофазной байеритовой структурой и оксида алюминия, в том числе используемого как катализатор на его основе с диапазоном размеров частиц 10-500 нм. Однако, и этот способ малопригоден для приготовления чистых осадков гидроксида алюминия и сложен для реализации в промышленных условиях.

Известен также непрерывный способ получения гидроксидов или оксидов алюминия и одновременно водорода, заключающийся в том, что из мелкодисперсного металлического алюминия с размером частиц не более 20 мкм готовят суспензию порошкообразного алюминия в воде при определенном соотношении вода : алюминий Al : H2O = 1:4-16 вес.ч.

Полученную суспензию непрерывно подают в реактор высокого давления, где суспензию порошкообразного алюминия распыляют в воду при температуре 220-900°C и давлении 20-40 МПа при соотношении суспензии к воде 1:50-100 вес.ч. После выхода из реактора высокого давления парогаз подают в конденсатор и из него выводят водород, а гидроксид алюминия или оксид алюминия - в отстойник для суспензии. Причем гидроксид алюминия байеритной формы готовят при температуре 220-250°C, давлении 30-35 МПа и соотношении Al : H2O = 1:12-14 вес.ч. (RU. Патент №2223221, МПК CO1F 7/42, 2004).

Недостаток указанного способа заключается в том, что он сложен и чрезвычайно взрывоопасен, а также сопряжен с использованием крайне дефицитного сырья - чистейшего металлического алюминия.

Известен также способ получения высокодисперсного гидроксида байеритной структуры и эта-оксида на его основе путем активации гидраргиллита и гидратации продуктов активации гидраргиллита. Эта-оксид алюминия, получаемый из байерита используется как катализатор, в том числе в процессе изомеризации. Обработку золя гидроксида алюминия проводят путем терморазложения при pH=7-11, соотношении жидкость к твердому 1-10:1 и температуре 10-80°C. Далее проводят разрушение псевдоаморфной структуры продукта и при получении байерита термообработку осуществляют при температуре не выше 180°C (RU. Патент РФ №2237018, МПК C01F 7/02, 2003 г).

Указанный способ имеет ряд недостатков, препятствующих его широкому использованию в промышленном производстве, а именно: сложность осуществления технологического процесса и высокие энергетические затраты на активацию гидраргиллита и гидратацию продуктов активации, а также на перемешивание. Кроме того, способ зависит от параметров исходного гидраргиллита, которые не всегда постоянны в узких пределах и потому этот способ подразумевает корректировку параметров.

Наиболее близким к заявляемому техническому решению(прототипом) является способ получения высокодисперсного осажденного гидроксида алюминия, включающий смешение щелочного алюминатного и нейтрализующего растворов. В качестве нейтрализующего раствора используют водный раствор плотностью 1100-1300 кг/м3, содержащий бикарбонаты и карбонаты щелочных металлов. Нейтрализацию ведут до остаточного содержания Na2O в смешанном растворе 1-15 г/л. Образовавшийся гель выдерживают до полного его разложения и выделения твердой фазы гидроксида алюминия. Далее байерит прокаливают при повышенной температуре с получением эта-оксида алюминия (RU. Патент №2355638, МПК C07F 7/34, 2009). По указанному способу получают осажденный гидроксид алюминия байеритной структуры, соответствующий по своему гранулометрическому составу требованиям к высокоэффективным носителям различных катализаторов.

Способ-прототип отличается низкой себестоимостью продукции и достаточно простотой реализации. Однако недостатком способа является высокое содержание сопутствующих примесей - щелочных, щелочноземельных металлов и углерода и невысокая активность катализаторов, получаемых из приготовленного байерита.

Технический результат предлагаемого способа заключается в получении гидроксида алюминия с содержанием не менее 75% байерита, (сопутствующими фазами служат псевдобемит и аморфный гидроксид) и не содержащего значительных количеств примесей щелочных металлов (не более 0,025 мас.% Na2O). Способ осуществляется по простой технологии и не требует высоких высоких энергетичесих затрат.

Результат достигается при осуществлении предлагаемого способа, включающего осаждение из алюминатного раствора азотной кислотой или карбонатом натрия при высоких pH=10,4-10,8, выдержку (старение) осадка в материнской пульпе в течение 2-2,5 часов с последующим подкислением пульпы до достаточного низкого значения pH 9,1-9,2 - точки нулевого заряда (ТНЗ) байерита, фильтрацию осадка с промывкой водой, сушку при 100-150°C, прокаливание при 500-550°C и, после нанесения платины повторное прокаливание и хлорирование.

Существенными отличительным признаком заявляемого изобретения является значение pH ТНЗ 9,1-9,2. Получаемый гидроксид алюминия содержит не менее 75% байерита, (сопутствующими фазами служат псевдобемит и аморфный гидроксид) и не содержит значительных количеств примесей щелочных металлов (не более 0,025 мас.% Na2O) Характерным тестом для определения качества катализатора на основе байерита является изомеризация н-бутана (Бурсиан Н.Р. Технология изомеризации парафиновых углеводородов. - Л.: Химия, 1985. - 192 с.). Условия тестового испытания: температура 75°C, загрузка катализатора - 3 см3, объемная скорость подачи сырья - н-бутана - 1 час-1, давление - 1 атм.

Полученный по заявляемому способу катализатор пригоден для использования в качестве компонента катализаторов нефтепереработки, в частности, для изомеризации н-парафинов.

Изобретение иллюстрируется следующими примерами.

Пример 1.

Берут 1,65 л раствора алюмината натрия с концентрацией 10 г-экв/л и 1,2 л раствора азотной кислоты с концентрацией 10 г-экв/л. Растворы сливают в емкость при постоянном перемешивании, при циркуляции и при поддержании постоянного значения pH суспензии 10,7-10,8 в течение 2-х часов. Затем пульпу оставляют стареть в течение 2,5 часов при том же pH без перемешивания. После этого быстро доводят pH пульпы до значения 9,1, затем осадок отмывают от ионов натрия и нитрата водой и высушивают при 150°C. В полученном порошке содержание Na2O составило 0,015 мас.%, а содержание байерита - 88 мас.%, остальное - псевдобемит. Далее проводят прокаливание при температуре 500-550°C в токе сухого воздуха с получением оксида алюминия.

В приготовленный оксид алюминия вводят платину из раствора H2PtCl6 (0,25 мас.% Pt) прокаливают в токе сухого воздуха при 500°C, а затем обрабатывают четыреххлористым углеродом для введения хлора (8% Cl) и испытывают в вышеприведенной тестовой реакции изомеризации н-бутана при 75°C.

Содержание изобутана в сумме бутанов в изомеризате составило 30%.

Пример №2

То же, что в примере №1, но pH при осаждении выдерживают в пределах 10,4-10,5. Старение суспензии продолжают 2 часа, подкисление азотной кислотой проводят до pH=9,2, осадок сушат при 120°C и прокаливают при 500°C. На полученный носитель наносят платину и хлор вышеприведенным способом (0,3% Pt, 7,9% Cl). Содержание Na2O в высушенном катализаторе составило 0,012%, содержание байерита 80%, псевдобемита - 15%, аморфной составляющей - 5%.

Испытание катализатора в тестовой реакции изомеризации н-бутана при 75°C обеспечивает содержание в сумме бутанов в изомеризате 23%.

Пример №3

То же, что в примере №1, но pH при осаждении = 10,4-10,8, старение суспензии - 2,25 часа, азотной кислотой подкисляют до pH=9,15, осадок высушивают при 180°C и прокаливают при 550°C. На полученный носитель описанным способом наносят 0,3% Pt и 8,5% Cl.

Содержание Na2O в катализаторе составило 0,011 мас.%, содержание байеритного эта-оксида алюминия - 90%, остальное - аморфная фаза.

Катализатор в тестовой реакции изомеризации н-бутана обеспечивает содержание изобутана в изомеризате 25%.

Пример №4

То же, что в примере №1, но растворы алюмината и азотной кислоты сливают в емкость содержащую 0,1 н. водный раствор бикарбоната натрия с pH 8,4 при постоянном перемешивании при циркуляции и поддержании постоянного значения pH суспензии 10,7-10,8 в течение 2-х часов. После старения пульпы проводят подкисление до pH 9,2, отмывку от ионов натрия, нитрата и карбоната, сушку при 130°C. В полученном порошке содержание Na2O составило 0,016 мас.%, а содержание байерита - 89 мас.%, остальное - псевдобемит. После формовки гранул, сушки и прокаливания, введения платины, повторного прокаливания и хлорирования при испытании на каталитическую способность в тестовой реакции изомеризации н-бутана получена активность - 29 мас.% изобутана.

Пример №5 (для сравнения)

То же, что в примере №1, но подкисление осуществляют до значения pH=8,5, т.е. при значении pH ниже заявляемого.

Содержание Na2O в катализаторе - 0,009%, содержание байерита в высушенном катализаторе - 65%, остальное - псевдобемит плюс аморфная фаза. Полученный осадок плохо формуется в результате образования гранулы неправильной формы и неодинакового размера. Испытание осадка в тестовой реакции изомеризации н-бутана показали низкую активность 12-13 мас.%, потому предлагаемый способ приготовления катализатора не может быть использован эффективно в катализе.

Пример №6 (для сравнения)

То же, что в примере №1, но после старения подкисление не проводят, а сразу приступают к сушке и прокалке. Содержание байерита в сушеном носителе 88%, содержание Na2O 0,15%. В испытании на каталитическую способность в тестовой реакции изомеризации н-бутана получена низкая активность - 15 мас.% изобутана.

1. Способ приготовления катализатора изомеризации парафинов на основе байеритного оксида алюминия, состоящего из платины и хлора, нанесенных на поверхность эта-оксида алюминия, путем осаждения из растворов алюмината натрия при высоких рН 10,4-10,8, старения осадка в течение 2-2,5 часов, отмывки осадка от примесей щелочного металла - натрия, высушивания при 100-150°С, прокаливания при температуре 500-550°С, нанесения платины, повторного прокаливания и введения хлора, отличающийся тем, что после старения осадка проводят подкисление пульпы до значения рН 9,1-9,2 - точки нулевого заряда байерита.

2. Способ по п. 1, отличающийся тем, что осаждение из растворов алюмината натрия осуществляют водным раствором азотной кислоты, карбоната и бикарбоната щелочных металлов.



 

Похожие патенты:

Настоящее изобретение относится к композиции для улучшения образования агломератов кристаллов при кристаллизации из маточного раствора, включающей: одну или смесь жирных кислот, их сложных эфиров, амидов или прекурсоров в количестве 0,1-30%, тяжелый керосин в количестве 15,1-50% и воду, при этом указанные компоненты вместе образуют эмульсию.

Изобретение относится к химической технологии. Переработку нитратных солей алюминия и щелочных металлов осуществляют путем выпаривания раствора нитратных солей до концентрации солей 45-55 мас.%, термического гидролиза нитрата алюминия с превращением его в гидроксид алюминия бемитной структуры в автоклаве до степени осаждения алюминия 98% в эквимолярной смеси нитрата натрия и нитрата калия при температуре 220-250°С, давлении 0,6 МПа с подачей в автоклав острого пара.

Изобретение относится к технологии получения технологических солевых растворов горнорудного производства, в частности к повышению стабильности этих растворов. .
Изобретение относится к получению высокодисперсного гидроксида алюминия, используемого в качестве антипирена и наполнителя. .

Изобретение относится к оборудованию для переработки щелочных алюмосиликатов, например нефелина или сиенита, при производстве глинозема. .

Изобретение относится к получению гранулированного катализатора из синтетического цеолита структурного типа пентасил с высоким содержанием цеолитной фазы. Полученный катализатор может быть использован в нефтехимической и нефтеперерабатывающей промышленности, в частности в процессах селективной гидродепарафинизации, алкилирования, изомеризации алкилароматических углеводородов и других.

Изобретение относится к технологии приготовления наночастиц катализатора окислительного дегидрирования углеводородов в условиях СВЧ активации (нагрева) реакционной массы, и в частности Mo-V-Te-Nb-Ox катализатора окислительного дегидрирования этана (ОДЭ).

Каталитическая микросфера каталитического крекинга со взвешенным катализатором, содержащая цеолит, где указанная микросфера сформирована из пульпы, содержащей: i) каолин, который прокаливали вне его экзотермического перехода; и или ii) кристаллы цеолита, или iii) гидратированный каолин и/или метакаолин, пульпа была смешана с 0.005-0.5 мас.% катионоактивного полиэлектролита относительно массы i) + ii) или i) + iii) перед или во время формирования указанной микросферы.

Изобретение относится к способу активации самоактивирующегося катализатора гидрообработки, использующегося в обработке тяжелого углеводородного сырья, содержащий этап, на котором приводят в контакт самоактивирующийся катализатор гидрообработки с паром.
Изобретение относится к способу получения ионной жидкости. Способ включает следующие стадии: a) приведение по меньшей мере одного акцептора электронной пары в контакт с по меньшей мере одним донором электронной пары с образованием аддукта, причем молярное соотношение акцептора электронной пары и донора электронной пары варьируется приблизительно от 1:1 до 1:5, при этом донор электрона выбран из группы, включающей в себя фосфин, амид, алкилсульфоксид, сложный эфир и спирт, или любую их комбинацию; и b) приведение аддукта в контакт с по меньшей мере одним акцептором электронной пары с получением ионной жидкости, причем молярное соотношение аддукта и акцептора электронной пары варьируется приблизительно от 1:1 до 1:6.

Изобретение относится к способам приготовления катализаторов гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга.

Настоящее изобретение относится к каталитической композиции для оксихлорирования этилена до 1,2-дихлорэтана, содержащей: подложку, имеющую осажденные на ней каталитически активные металлы, содержащие от 2 до 8 % по массе меди, от 0,1 до 0,6 моль/кг одного или более щелочных металлов, от 0,08 до 0,85 моль/кг одного или более щелочноземельных металлов, и от 0,09 до 0,9 моль/кг Mn, причем количество каждого из каталитически активных металлов приведено в расчете на общую массу композиции катализатора, все каталитически активные металлы нанесены на подложку в виде их хлоридов или других водорастворимых солей, подложка представляет собой псевдоожижаемую подложку, имеющую площадь поверхности по БЭТ от 80 до 220 м2/г, и причем каталитическая композиция не содержит редкоземельных металлов.

Настоящее изобретение относится к способу получения простых эфиров, которые могут быть использованы в качестве присадок к моторным топливам, а также в качестве цетаноповышающих добавок к дизельному топливу.

Изобретение относится к способам производства нанесенного на подложку медного катализатора оксихлорирования этилена путем (i) пропитки, на первом этапе, глиноземного носителя первым водным раствором, который содержит медь, щелочной металл и необязательно щелочноземельный металл, для формирования таким образом первого каталитического компонента; и (ii) пропитки, на следующем этапе, первого каталитического компонента вторым водным раствором, который содержит медь и щелочноземельный металл.

Изобретение относится к каталитической химии, в частности к приготовлению носителей катализаторов глубокого гидрообессеривания вакуумного газойля, и может быть использовано в нефтеперерабатывающей промышленности.

Настоящее изобретение относится к каталитической композиции для использования при аммоксидировании ненасыщенного углеводорода в соответствующий ненасыщенный нитрил, содержащей комплекс оксидов металлов, причем относительные отношения перечисленных элементов в указанном катализаторе представлены следующей формулой: Mom Bia Feb Ac Dd Ee Ff Gg Ceh Nii Coj Mnk Mgl 0#, где А представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из натрия, калия, рубидия и цезия; и D представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из цинка, кальция, стронция, кадмия и бария; Е представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из хрома, вольфрама, бора, алюминия, галлия, индия, фосфора, мышьяка, сурьмы, ванадия и теллура; F представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из лантана, празеодима, неодима, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, скандия, иттрия, титана, циркония, гафния, ниобия, тантала, алюминия, галлия, индия, таллия, кремния, германия и менее чем приблизительно 10 частей на миллион свинца; G представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из серебра, золота, рутения, родия, палладия, осмия, иридия, платины и ртути; и где а составляет от 0,05 до 7, b составляет от 0,1 до 7, с составляет от 0,01 до 5, d составляет 0 или от 0,1 до 12, е составляет от 0 до 5, f составляет от 0 до 5, g составляет от 0 до 0,2, h составляет от 0,01 до 5, i составляет от 0,1 до 12, j составляет 0 или от 0,1 до 12, k составляет 0 или от 0,1 до 12, l составляет 0 или от 0,1 до 12, m составляет от 10 до 15, # представляет собой число атомов кислорода, требуемое для удовлетворения валентных требований других присутствующих составляющих элементов; причем z=d+i+j+k+l; и причем 0,45≤a/h<1,5, и 0,3≤(a+h)/z, и 0,8≤h/b≤5; причем 0,2<i/(i+j+k+l).
Наверх