Трехступенчатая система пылеудаления

Изобретение относится к технике пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Трехступенчатая система пылеудаления содержит инерционный пылеосадитель как первую ступень предварительной очистки газовоздушной смеси от пыли, последовательно соединенную со второй ступенью, представленной циклонным пылеуловителем, последовательно соединенным с третьей ступенью тонкой очистки, выполненной в виде рукавного фильтра. Инерционный пылеосадитель содержит корпус, расположенные внутри него преградительные элементы, ввод запыленного газового потока, по крайней мере один бункер для сбора пыли и выходной патрубок очищенного газа, при этом осевые линии преградительных элементов, закрепленных в верхней части корпуса, совпадают с осями бункеров, а преградительные элементы, расположенные на стыке поверхностей, образующих бункерную часть, выполнены в сечении в виде Т-образного профиля. Корпус циклона второй ступени очистки состоит из двух соосных конусных частей. Во входном патрубке соосно корпусу закреплена осевая розетка, которая имеет наклонные лопасти. Соосно корпусу во внутренней его части установлены жалюзийные решетки цилиндрической формы, которые выполнены в виде последовательно соединенных секций разного диаметра, причем диаметры секций увеличиваются, начиная от осевой розетки к выходному патрубку, выполненному в виде диффузора, причем в конце последней секции жалюзийных решеток расположен боковой патрубок под углом к оси корпуса циклона, который соединен с накопительным пылесборником, а выходной патрубок соединен воздуховодом с фильтрующей камерой рукавного фильтра, являющегося третьей ступенью системы пылеулавливания. Вход рукавного фильтра соединен с выходом выхлопной трубы через фланец для входа очищаемого газа в фильтрующую камеру рукавного фильтра, имеющую вид шкафа с выемкой через боковые двери вертикально расположенных фильтроэлементов в виде фильтрующих рукавов, причем фланец для выхода очищенного газа расположен в камере очищенного газа, расположенной над фильтрующей камерой, и имеет размеры поперечного сечения, равные с фланцем для входа очищаемого газа в фильтр, который дополнительно снабжен датчиком температуры, установленным в корпусе фильтровальной секции. В бункере для сбора пыли установлен аварийный датчик уровня пыли, в выходном коробе фильтровальной секции установлен тепловой автоматический датчик-извещатель, выходы с которых соединены с управляющим контроллером. В выходном коробе фильтровальной секции фильтра установлен коллектор с форсунками для подключения к системе пожаротушения, блок управления которым соединен с управляющим контроллером, причем бункер для сбора пыли выполнен конической или пирамидальной формы с углом наклона стенок, превышающим угол естественного откоса улавливаемой пыли. Система регенерации фильтра включает в себя клапанные блоки, в которых смонтированы электромагнитные клапаны, вход которых соединен с выходом управляющего контроллера, импульсные клапаны с импульсными трубами и патрубками, сопла Вентури, дифманометр, подключенный через датчик давления к камере для выхода очищенного газа и через датчик давления к фильтрующей камере для входа очищаемого газа, а также комплект арматуры для подвода сжатого воздуха к блокам клапанов, причем дифманометр соединен с управляющим контроллером. Форсунка системы пожаротушения содержит цилиндрический полый корпус с каналом для подвода жидкости, в котором закреплен распылитель, состоящий из трех дросселирующих элементов. Распылитель выполнен в виде оппозитно расположенных вершинами и осесимметричных полых конических завихрителей: верхнего и нижнего, при этом коническая обечайка нижнего завихрителя фиксируется посредством по крайней мере трех спиц, закрепленных одним концом на конической обечайке нижнего завихрителя в ее верхней части, а другим концом - в кольцевой канавке канала форсунки, выполненной на его внутренней поверхности. Вершина конической поверхности конической обечайки верхнего завихрителя крепится на круглой перфорированной пластине, установленной в кольцевой канавке канала форсунки и опирающейся на вершину нижнего завихрителя, закрепленного в канале форсунки посредством спиц. На внешних поверхностях полых конических завихрителей выполнены сквозные винтовые нарезки, а дросселирующий эффект распылителя в целом определяется суммарной пропускной способностью составляющих его элементов, причем для получения мелкодисперсного распыла суммарную пропускную способность верхнего завихрителя и перфорированной пластины выполняют большей, чем у нижнего завихрителя, а к нижней торцевой поверхности цилиндрического полого корпуса закреплен диффузор с установленной на его срезе круглой перфорированной пластиной. Техническим результатом является повышение эффективности и надежности процесса пылеулавливания, а также снижение металлоемкости и виброакустической активности аппарата в целом. 5 ил.

 

Изобретение относится к технике пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Наиболее близким техническим решением к заявляемому объекту является система пылеудаления по патенту RU №2256510, В04С 9/00 от 15.06.04, содержащая циклон, как первую ступень очистки, имеющий корпус, периферийный ввод газового потока, крышку, бункер и выходной патрубок для выхода очищенного газа, причем на конце выходного патрубка очищенного газа закреплен фильтрующий элемент, выполняющий функцию второй ступени очистки газовоздушной смеси от пыли (прототип).

Недостатком прототипа является сравнительно невысокая эффективность процесса пылеулавливания.

Технически достижимый результат - повышение эффективности и надежности процесса пылеулавливания, а также снижение металлоемкости и виброакустической активности аппарата в целом.

Это достигается тем, что в трехступенчатой системе пылеудаления, содержащей инерционный пылеосадитель, как первую ступень предварительной очистки газовоздушной смеси от пыли, последовательно соединенную со второй ступенью, представленной циклонным пылеуловителем, последовательно соединенным с третьей ступенью тонкой очистки, выполненной в виде рукавного фильтра инерционный пылеосадитель содержит корпус, расположенные внутри него преградительные элементы, ввод запыленного газового потока, по крайней мере один, бункер для сбора пыли и выходной патрубок очищенного газа, при этом осевые линии преградительных элементов, закрепленных в верхней части корпуса, совпадают с осями бункеров, а преградительные элементы, расположенные на стыке поверхностей, образующих бункерную часть, выполнены в сечении в виде Т-образного профиля, а корпус циклона второй ступени очистки состоит из двух соосных конусных частей, а во входном патрубке, соосно корпусу закреплена специальная осевая розетка, которая имеет наклонные лопасти, а соосно корпусу, во внутренней его части, установлены жалюзийные решетки цилиндрической формы, которые выполнены в виде последовательно соединенных секций разного диаметра, причем диаметры секций увеличиваются, начиная от осевой розетки к выходному патрубку, выполненному в виде диффузора, причем в конце последней секции жалюзийных решеток расположен боковой патрубок под углом 90 градусов к оси корпуса циклона, который соединен с накопительным пылесборником, а выходной патрубок соединен воздуховодом с фильтрующей камерой рукавного фильтра, являющегося второй ступенью системы пылеулавливания, а вход рукавного фильтра соединен с выходом выхлопной трубы через фланец для входа очищаемого газа в фильтрующую камеру рукавного фильтра, имеющей вид шкафа с удобной выемкой через боковые двери вертикально расположенных фильтроэлементов в виде фильтрующих рукавов, причем фланец для выхода очищенного газа расположен в камере очищенного газа, расположенной над фильтрующей камерой, и имеет размеры поперечного сечения, равные с фланцем для входа очищаемого газа в фильтр, который дополнительно снабжен датчиком температуры, установленным в корпусе фильтровальной секции, а в бункере для сбора пыли установлен аварийный датчик уровня пыли, в выходном коробе фильтровальной секции установлен тепловой автоматический датчик-извещатель, выходы с которых соединены с управляющим контроллером, а в выходном коробе фильтровальной секции фильтра установлен коллектор с форсунками для подключения к системе пожаротушения, блок управления которым соединен с управляющим контроллером, причем бункер для сбора пыли выполнен конической или пирамидальной формы с углом наклона стенок, превышающим угол естественного откоса улавливаемой пыли, а система регенерации фильтра включает в себя клапанные блоки, в которых смонтированы электромагнитные клапаны, вход которых соединен с выходом управляющего контроллера; импульсные клапаны с импульсными трубами и патрубками, сопла Вентури; дифманометр, подключенный через датчик давления к камере для выхода очищенного газа и через датчик давления к фильтрующей камере для входа очищаемого газа, а также комплект арматуры для подвода сжатого воздуха к блокам клапанов, причем дифманометр соединен с управляющим контроллером.

На фиг. 1 изображена схема трехступенчатой системы пылеудаления, на фиг. 2 - общий вид рукавного фильтра, на фиг. 3 - профильная проекция фиг. 2, на фиг. 4 - схема системы регенерации фильтра, на фиг. 5 - форсунка системы пожаровзрывобезопасности.

Трехступенчатая система пылеудаления состоит из первой ступени грубой (предварительной) очистки запыленного газового потока, выполненной в виде инерционного пылеосадителя, который содержит корпус 34, расположенные внутри него преградительные элементы 37 и 38, ввод запыленного газового потока 35, по крайней мере один, бункер 39 для сбора пыли и выходной патрубок 36 очищенного газа. Осевые линии преградительных элементов 37, закрепленных в верхней части корпуса 34, совпадают с осями бункеров 39, а преградительные элементы 38, расположенные на стыке поверхностей, образующих бункерную часть, выполнены в сечении в виде Т-образного профиля. Преградительные элементы 37, закрепленные в верхней части корпуса 34, выполнены в сечении в виде клина, с вершиной, обращенной в сторону бункера. Детали выполнены из конструкционных композиционных или полимерных материалов, например полиэтилена, капрона, полиуретана с помощью литья, штамповки, формования, причем на поверхности деталей нанесен слой мягкого вибродемпфирующего материала, например мастики ВД-17, причем соотношение между толщиной металла и вибродемпфирующего покрытия находится в оптимальном интервале величин: 1/(2,5…4).

Вторая ступень системы пылеудаления выполнена в виде прямоточного циклона (фиг. 1), соединенного воздуховодом 40 с первой ступенью грубой (предварительной) очистки запыленного газового потока, и содержащего цилиндрический корпус 5, входной патрубок 4 и выходной патрубок 6. На входе в циклон, во входном патрубке 4, соосно корпусу закреплена специальная осевая розетка 1, которая имеет наклонные лопасти для закручивания запыленного газового потока. Соосно корпусу 5, во внутренней его части, установлены жалюзийные решетки 2 цилиндрической формы, которые осуществляют дополнительную очистку воздуха от пыли. Жалюзийные решетки 2 выполнены в виде последовательно соединенных секций разного диаметра, причем диаметры секций увеличиваются, начиная от осевой розетки 1 к выходному патрубку 6, выполненному в виде диффузора. В конце последней секции жалюзийных решеток 2 расположен боковой патрубок 3 под углом 90 градусов к оси корпуса 5 циклона, который соединен с накопительным пылесборником (на чертеже не показано). Корпус циклона изготавливается из листовой стали и окрашивается высококачественной порошковой краской, которая обеспечивает высокую защиту корпуса от воздействий окружающей среды. Рабочее положение корпуса циклона - горизонтальное, патрубка удаления пыли, позволяющего подсоединить к циклону накопительный пылесборник - вертикально вниз. При помощи ниппелей из комплекта поставки циклон соединяется с входным и выходным воздуховодами. При помощи комплекта монтажных опор (на чертеже не показано) циклон может быть установлен на пол.

Выходной патрубок 6, выполненный в виде диффузора, соединен воздуховодом 33 с фильтрующей камерой 7 рукавного фильтра, являющегося третьей ступенью системы пылеулавливания - ступенью тонкой очистки.

Для снижения виброакустической активности циклона и его металлоемкости, а также повышения его надежности в предлагаемом устройстве предусмотрены следующие мероприятия: детали циклона выполнены из конструкционных композиционных или полимерных материалов, например полиэтилена, капрона, полиуретана с помощью литья, штамповки, формования; винтообразные элементы деталей циклона изготовлены способами пластической деформации, например выдавливания или накатки на оборудовании, имеющем винтообразное формообразующее движение; на винтообразные элементы деталей циклона и поверхности, контактирующие с запыленным газовым потоком нанесен износостойкий слой, например способами напыления или с применением гальванического оборудования; на поверхности деталей нанесен слой мягкого вибродемпфирующего материала, например мастики ВД-17, причем соотношение между толщиной металла и вибродемпфирующего покрытия находится в оптимальном интервале величин: 1/(2,5…4); детали циклона выполнены армированными или слоистыми, причем поверхности слоев, соприкасаемые с движущимся газовым потоком выполнены из материалов, обладающих повышенной износостойкостью и антифрикционными свойствами, а свойства материала арматуры подобраны из условия снижения виброакустической активности аппаратов; детали винтообразных поверхностей циклона выполнены армированными путем формования или заливки винтообразных износостойких элементов в корпусные детали или крышки.

Рукавный фильтр (фиг. 2-4) соединен с выходом выхлопной трубы циклона воздуховодом 33 через фланец 15 для входа очищаемого газа в фильтрующую камеру 7 рукавного фильтра, имеющую вид шкафа с удобной выемкой через боковые двери 12 вертикально расположенных фильтроэлементов 24 в виде фильтрующих рукавов. Фланец 13 для выхода очищенного газа расположен в камере 22 очищенного газа, имеющей блок 14 регенерации фильтра, и расположенной над фильтрующей камерой 7, и имеет размеры поперечного сечения, равные с фланцем 15 для входа очищаемого газа в фильтр. Камеры 7 и 22 фильтра образуют его корпус совместно с расположенным под ними коническим бункером 17 с пылевыгружным устройством типа "двойная мигалка" (на чертеже не показано) или - коническим бункером со шнеком 18 с пылевой задвижкой 19 с ручным приводом с пылевыгружным устройством типа шлюзовой ротационный затвор 21, а также местным пультом управления 20 шнеком и шлюзовым ротационным затвором. На бункере любого типа устанавливается датчик уровня пыли (на чертеже не показано).

Корпус фильтра снабжен опорной эстакадой 16, выполненной в виде, по крайней мере, трех стоек 8, жестко связанных между собой горизонтальными тягами 9, и наклонными ребрами жесткости 10, один конец которых соединен со стойками 8 и тягами 9, а другой - с бункером 17 фильтра. На эстакаде жестко установлены и закреплены между собой и корпусом фильтра лестницы 23 и ограждения 11. При этом, отношение габаритных размеров фильтра с эстакадой: высоты Н и длины L лежит в оптимальном интервале величин H/L=1,0÷2,0; отношение высоты Н фильтра к высоте В эстакады лежит в оптимальном интервале величин Н/В=1,0÷2,0; отношение высоты М геометрического центра фланца 13 для выхода очищенного газа к высоте N геометрического центра фланца 15 для входа очищаемого газа в фильтрующую камеру 7 лежит в оптимальном интервале величин M/N=l,5÷2,0.

Фильтрующие рукава (на чертеже не показано) компонуются в легкосъемные кассеты, по 6 штук в каждую кассету, вертикально (возможно по 4 шт. для легких пыл ей; картриджи - по 2 шт. в кассете для тонкодисперсной пыли и т.п.). Фильтрующие рукава имеют в поперечном сечении прямоугольную форму: 340×32 мм, высота 2 и 3 м. (общая площадь фильтрации Sф=1,4 м2). Фильтроэлемент подобной формы имеет следующие преимущества: высокая компактность; повышенная степень регенерации, - это связано с тем, что у плоского рукава меньше внутренний объем, что увеличивает инжекцию.

В качестве материала фильтроэлементов рукавного фильтра может быть применен: нетканый полиэстер, упрочненный внутренней каркасной сеткой; нетканый арамид, упрочненный внутренней каркасной сеткой; нетканый тонковолокнистый полиэстер, упрочненный внутренней каркасной сеткой, со специальным покрытием; влагостойкий нетканый полиэстер, упрочненный внутренней каркасной сеткой, со специальным покрытием; нетканый, упрочненный внутренней каркасной сеткой полиэстер, антистатический с масловлагоотталкивающей пропиткой с гладкой поверхностью; нетканый тонковолокнистый полиэстер, упрочненный внутренней каркасной сеткой, со специальным покрытием. Картриджные фильтроэлементы имеют размеры: диаметр 327 мм, высота 1 м.

Фильтроэлементы выполнены из специального фильтрополотна и отличаются большей площадью фильтрации по сравнению с кассетой, оснащенной шестью рукавами. Тонковолокнистый состав фильтроэлемента позволяет получать очень низкие показатели по остаточной запыленности - не более 0,2 мг/м3.

Картриджные фильтроэлементы применяются в случае получения высокой степени очистки и малых габаритов фильтра. В фильтрах собираются по 2 штуки в кассету.

Фильтры могут также комплектоваться: коническим, плоским либо специальным бункером, горизонтальным циклоном, позволяющим уменьшить входную пылевую нагрузку и обеспечить искрогашение; газовоздушным охладителем газа, уменьшающим температуру идущего в фильтр газа; клапаном подсоса атмосферного воздуха, а также отсечными и регулирующими клапанами для установки на газоходах; транспортным контейнером - пылесборным ящиком; пылевыгружными устройствами; аспирационным рукавом пылевыгрузки (на чертеже не показано).

Область применения предлагаемой конструкции фильтра - фильтрация сухих пылегазовых сред малых расходов - от 1100 до 30000 м3/час, при установке в стесненных условиях. Работа с высоким начальным запылением и низким остаточным пылесодержанием (не превышающим 10 мг/м3 в стандартном исполнении; при использовании кассет с картриджными фильтроэлементами или фильтроматериалом "нетканый тонковолокнистый полиэстер" - до 0,2 мг/м3; очищенный воздух можно сбрасывать прямо в цех). Универсальность фильтров: простая замена кассет с фильтроэлементами на кассеты другого типа позволяет использовать фильтр для фильтрации других типов пыли (например, фильтровать сначала тяжелые, а потом легкие пыли). Импульсная система регенерации фильтрорукавов с соплами "Вентури" и плоскими прямоугольными фильтрорукавами позволяет эффективно работать с липкими, комкующимися пылями.

Импульсная система регенерации рукавного фильтра (фиг. 4) включает в себя клапанные блоки 26, в которых смонтированы электромагнитные клапаны 25, вход которых соединен с выходом управляющего контроллера 32; импульсные клапаны 27 с импульсными трубами и патрубками, сопла Вентури 23; дифманометр 31, подключенный по линии связи 30 через датчик давления 28 к камере 22 для выхода очищенного газа и через датчик давления 29 к фильтрующей камере 7 для входа очищаемого газа, а также комплект арматуры для подвода сжатого воздуха к блокам клапанов (на чертеже не показано), причем дифманометр 31 соединен с управляющим контроллером 32.

Система обеспечения пожаровзрывобезопасности работы фильтра (на чертеже не показано) содержит датчик температуры, установленный в корпусе фильтра, аварийный датчик уровня пыли, установленный в бункере для сбора пыли. В камере 22 для выхода очищенного газа установлен тепловой автоматический датчик-извещатель, причем входы и выходы датчиков соединены с управляющим контроллером 32, при этом в камере 22 для выхода очищенного газа установлен коллектор с форсунками для подключения к системе пожаротушения, блок управления которой также соединен с управляющим контроллером 32.

Двухступенчатая система пылеудаления работает следующим образом.

Инерционный пылеосадитель работает следующим образом.

Запыленный газовый поток поступает в корпус 34 (фиг. 1) инерционного пылеосадителя первой ступени очистки через ввод 35 запыленного газового потока. При этом за счет инерционных сил частицы пыли устремляются в бункер 39 для сбора пыли, а через выходной патрубок 36 поступает очищенный газ. Преградительные элементы 37, закрепленные в верхней части корпуса 34, служит дополнительной преградой для попадания мелких фракций пыли в выходной патрубок 36, а преградительные элементы 38, расположенные на стыке поверхностей, образующих бункерную часть, выполненные в сечении в виде Т-образного профиля, препятствуют обратному выходу мелкой пыли из бункера 39. Процесс пылеулавливания протекает в оптимальном гидродинамическом режиме, так как гидравлическое сопротивление прохода, образованного корпусом 34 и преградительными элементами 37 и 38 на 20% меньше, чем гидравлическое сопротивление выходного патрубка 36 очищенного газа. Выполнение преградительных элементов 37 в виде клина, способствует сходу пыли с этих элементов непосредственно в бункер 39.

Затем предварительно очищенный газовый поток поступает во вторую ступень очистки - прямоточный циклон (фиг. 1). Принцип работы прямоточного циклона основан на использовании центробежных сил, возникающих при закручивании газовоздушной смеси внутри корпуса 5 циклона. Воздушный поток на входе в циклон закручивается специальной осевой розеткой 1, в результате чего под действием центробежных сил крупные частицы пыли отбрасываются к стенкам корпуса циклона и направляются через боковой патрубок 3 в пылесборник. Жалюзийные решетки цилиндрической формы, расположенные внутри корпуса циклона, осуществляют дополнительную очистку воздуха от пыли и обеспечивают высокую эффективность циклона. В результате на выходе из патрубка 6 циклона появляется очищенный воздух.

При этом легкие, мелкодисперсные частицы пыли, не уловленные в циклоне, задерживаются в фильтрующей камере 7 рукавного фильтра. Процесс пылеулавливания протекает в оптимальном гидродинамическом режиме. Затем запыленный газовый поток поступает через фланец 15 (фиг. 2-4) для входа очищаемого газа в фильтрующую камеру 7 рукавного фильтра, являющегося второй ступенью системы пылеулавливания, внутрь фильтроэлементов 24 в виде фильтрующих рукавов, где на фильтрующем материале задерживается пыль, а очищенный воздух поступает в камеру очищенного газа 22. Фланец 13 служит для выхода очищенного газа и расположен в камере 22 очищенного газа, которая находится над фильтрующей камерой 7.

Импульсная система регенерации рукавного фильтра (фиг. 4) работает в следующем порядке. При фильтрации газов на поверхности рукавов нарастает слой пыли, увеличивающий гидравлическое сопротивление фильтра, т.е. перепад давления между камерой 22 и фильтрующей камерой 7 (этот перепад давления задействован в системе регенерации как управляющий фактор). Дифманометр 31 постоянно измеряет перепад давления; при достижении установленного значения (по заданному положению на циферблате) выдается сигнал на контроллер 32, последний в соответствии со своей программой запускает работу импульсных клапанов 26. При срабатывании импульсного клапана 27 сжатый воздух из данного клапанного блока через импульсную трубу с патрубком выбрасывается в сопла Вентури 23 и, далее, внутрь рукавов 24 (или картриджей). Наличие импульсных патрубков и сопел Вентури повышает эффективность воздействия импульса сжатого воздуха и обеспечивает улучшенную очистку фильтроэлементов от пыли.

Все фильтры комплектуются системой подготовки сжатого воздуха (на чертеже не показано) на входе в систему регенерации. Система подготовки допускает работу фильтра от сетевого сжатого воздуха практически при любых температурах окружающей среды. Система регенерации может устанавливаться с минимальной воздухоподготовкой: входной фильтр сжатого воздуха и влагоотделитель.

Система регенерации обеспечивает своевременную очистку рукавов от пыли и поддерживает номинальную газопроницаемость фильтроэлементов.

При недостаточной эффективности работы системы регенерации увеличивается гидравлическое сопротивление фильтра и падает расход очищаемого газа. В тоже время, при чрезмерном увеличении степени очистки рукавов в процессе фильтрации от осевшей пыли наблюдается повышенный проскок пыли через фильтрополотно, так как внешняя сторона рукава слишком "оголяется": с нее убирается фильтрующий слой.

Поэтому система регенерации содержит элементы, обеспечивающие настройку ее эффективности в различных эксплуатационных условиях за счет управляющего контроллера 32.

Система обеспечения пожаровзрывобезопасности работает следующим образом. Тепловой датчик-извещатель и коллектор с форсунками системы пожаротушения установлены в камере 22 фильтра потому, что она является выходным звеном в предлагаемом устройстве, и чтобы предотвратить распространение пламя в случае возгорания дальше по вентиляционным каналам, эти системы устанавливают именно здесь, что повысит надежность и безопасность всего устройства. Работа коллектора с форсунками осуществляется по принципу открытия аварийного электромагнитного клапана подачи воды: при подаче на клапан управляющего сигнала от управляющего контроллера 32, обрабатывающего сигнал с теплового датчика-извещателя, который в свою очередь реагирует на увеличение температуры в камере 22 фильтра, вплоть до самовоспламенения пылевых аэрозолей и фильтрующих материалов фильтроэлемента.

Форсунка системы пожаротушения (фиг. 5) содержит цилиндрический полый корпус 44 с каналом 42 для подвода жидкости, резьбовым участком 41 и пояском 43 со срезами под ключ.

В канале 42 для подвода жидкости закреплен распылитель, состоящий из трех дросселирующих элементов, и выполненный в виде, оппозитно расположенных вершинами, и осесимметричных полых конических завихрителей: верхнего 46 и нижнего 47. Коническая обечайка нижнего 47 завихрителя фиксируется посредством, по крайней мере, трех спиц 48, закрепленных одним концом на конической обечайке нижнего завихрителя, в ее верхней части, а другим концом - в кольцевой канавке канала 42 форсунки (на чертеже не показана), выполненной на его внутренней поверхности.

Вершина конической поверхности конической обечайки верхнего 46 завихрителя крепится на круглой перфорированной пластине 45, установленной в кольцевой канавке канала 42 форсунки, и опирающейся на вершину нижнего 47 завихрителя, закрепленного в канале 42 форсунки посредством спиц 48.

На внешних поверхностях полых конических завихрителей 46 и 47 выполнены сквозные винтовые нарезки. При этом дросселирующий эффект распылителя в целом определяется суммарной пропускной способностью составляющих его элементов. Для получения мелкодисперсного распыла суммарную пропускную способность верхнего 46 завихрителя и перфорированной пластины 45 выполняют большей, чем у нижнего 47 завихрителя.

Работа форсунки со встречно направленными коническими завихрителями осуществляется следующим образом.

Жидкость под давлением подается в полость канала 42 для подвода жидкости корпуса 44 форсунки, а затем поступает в распылитель, и выходит наружу, образуя мелкодисперсный поток жидкости.

Использование форсунки описанной конструкции позволяет получить равномерный по объему поток капель мелкодисперсного распыла в диапазоне диаметров капель от 30 до 150 мкм при давлении подачи воды не более 1 МПа.

Возможен вариант, когда к нижней торцевой поверхности цилиндрического полого корпуса 44 закреплен диффузор 49, с установленной на его срезе круглой перфорированной пластины 50. Возможен вариант, когда на внешних поверхностях полых конических завихрителей 46 и 47 выполнена перфорация.

Трехступенчатая система пылеудаления, содержащая инерционный пылеосадитель как первую ступень предварительной очистки газовоздушной смеси от пыли, последовательно соединенную со второй ступенью, представленной циклонным пылеуловителем, последовательно соединенным с третьей ступенью тонкой очистки, выполненной в виде рукавного фильтра, инерционный пылеосадитель содержит корпус, расположенные внутри него преградительные элементы, ввод запыленного газового потока, по крайней мере один бункер для сбора пыли и выходной патрубок очищенного газа, при этом осевые линии преградительных элементов, закрепленных в верхней части корпуса, совпадают с осями бункеров, а преградительные элементы, расположенные на стыке поверхностей, образующих бункерную часть, выполнены в сечении в виде Т-образного профиля, а корпус циклона второй ступени очистки состоит из двух соосных конусных частей, а во входном патрубке соосно корпусу закреплена осевая розетка, которая имеет наклонные лопасти, а соосно корпусу во внутренней его части установлены жалюзийные решетки цилиндрической формы, которые выполнены в виде последовательно соединенных секций разного диаметра, причем диаметры секций увеличиваются, начиная от осевой розетки к выходному патрубку, выполненному в виде диффузора, причем в конце последней секции жалюзийных решеток расположен боковой патрубок под углом к оси корпуса циклона, который соединен с накопительным пылесборником, а выходной патрубок соединен воздуховодом с фильтрующей камерой рукавного фильтра, являющегося третьей ступенью системы пылеулавливания, а вход рукавного фильтра соединен с выходом выхлопной трубы через фланец для входа очищаемого газа в фильтрующую камеру рукавного фильтра, имеющую вид шкафа с выемкой через боковые двери вертикально расположенных фильтроэлементов в виде фильтрующих рукавов, причем фланец для выхода очищенного газа расположен в камере очищенного газа, расположенной над фильтрующей камерой, и имеет размеры поперечного сечения, равные с фланцем для входа очищаемого газа в фильтр, который дополнительно снабжен датчиком температуры, установленным в корпусе фильтровальной секции, а в бункере для сбора пыли установлен аварийный датчик уровня пыли, в выходном коробе фильтровальной секции установлен тепловой автоматический датчик-извещатель, выходы с которых соединены с управляющим контроллером, а в выходном коробе фильтровальной секции фильтра установлен коллектор с форсунками для подключения к системе пожаротушения, блок управления которым соединен с управляющим контроллером, причем бункер для сбора пыли выполнен конической или пирамидальной формы с углом наклона стенок, превышающим угол естественного откоса улавливаемой пыли, а система регенерации фильтра включает в себя клапанные блоки, в которых смонтированы электромагнитные клапаны, вход которых соединен с выходом управляющего контроллера, импульсные клапаны с импульсными трубами и патрубками, сопла Вентури, дифманометр, подключенный через датчик давления к камере для выхода очищенного газа и через датчик давления к фильтрующей камере для входа очищаемого газа, а также комплект арматуры для подвода сжатого воздуха к блокам клапанов, причем дифманометр соединен с управляющим контроллером, отличающаяся тем, что форсунка системы пожаротушения содержит цилиндрический полый корпус с каналом для подвода жидкости, в котором закреплен распылитель, состоящий из трех дросселирующих элементов, распылитель выполнен в виде оппозитно расположенных вершинами и осесимметричных полых конических завихрителей: верхнего и нижнего, при этом коническая обечайка нижнего завихрителя фиксируется посредством по крайней мере трех спиц, закрепленных одним концом на конической обечайке нижнего завихрителя в ее верхней части, а другим концом - в кольцевой канавке канала форсунки, выполненной на его внутренней поверхности, а вершина конической поверхности конической обечайки верхнего завихрителя крепится на круглой перфорированной пластине, установленной в кольцевой канавке канала форсунки и опирающейся на вершину нижнего завихрителя, закрепленного в канале форсунки посредством спиц, при этом на внешних поверхностях полых конических завихрителей выполнены сквозные винтовые нарезки, а дросселирующий эффект распылителя в целом определяется суммарной пропускной способностью составляющих его элементов, причем для получения мелкодисперсного распыла суммарную пропускную способность верхнего завихрителя и перфорированной пластины выполняют большей, чем у нижнего завихрителя, а к нижней торцевой поверхности цилиндрического полого корпуса закреплен диффузор с установленной на его срезе круглой перфорированной пластиной.



 

Похожие патенты:

Изобретение относится к технике пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к областям энергетики и экологической защиты окружающей среды и может быть использовано в химической, энергетической, нефтегазодобывающей и других областях промышленности, в частности, для очистки промышленных и бытовых стоков.

Настоящее изобретение относится к комнатному блоку устройства для кондиционирования воздуха, имеющему осевой вентилятор. Комнатный блок устройства для кондиционирования воздуха, содержащий: кожух, имеющий впуск для воздуха, сформированный в верхней поверхности, выпуск, сформированный ниже впуска, и заднюю панель, образующую заднюю поверхность; вентиляторный блок, содержащий внешнюю рамку вентилятора, имеющую раструб, осевой вентилятор в раструбе и двигатель вентилятора, при этом вентиляторный блок расположен в кожухе после впуска для воздуха; теплообменник, расположенный в кожухе после вентилятора, при этом задняя панель содержит пару поддерживающих рычагов, выступающих вперед, и вентиляторный блок поддерживается парой поддерживающих рычагов снизу.

Настоящее изобретение относится к устройству и способу обнаружения параметров для воздухоочистителя, а также к соответствующему терминалу. Способ обнаружения параметров воздухоочистителя, реализуемый при работе воздухоочистителя, включает этапы: получают параметр качества воздуха в зоне впуска воздуха воздухоочистителя и параметр качества воздуха в зоне отвода воздуха воздухоочистителя; определяют параметр очистки, соответствующий указанному параметру качества воздуха в зоне впуска воздуха и указанному параметру качества воздуха в зоне отвода воздуха, и выводят указанный параметр очистки.

Изобретение относится к технике пылеулавливания. Предлагается установка акустическая пылеулавливающая с кассетным фильтром, состоящая из предварительного и тонкого фильтров, связанных между собой воздуховодом таким образом, что выход предварительного фильтра соединен со входом тонкого фильтра.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности. Сетчатый вертикальный фильтр содержит корпус, установленный на укрытии источника паропылевой смеси, входной и выходной патрубки, фильтрующий элемент в виде вращающегося ротора, имеющего форму экспоноида вращения и выполненного из двух нержавеющих сеток, орошаемых форсунками, поддон для шлама и орошаемую зону фильтра в виде коаксиальной цилиндрической обечайки.

Изобретение относится к технической области фильтрующих элементов. Способ изготовления мембраны для тангенциальной фильтрации текучей среды, при этом указанная мембрана содержит: подложку, имеющую трехмерную структуру и образованную монолитным керамическим пористым телом, в котором выполнены пути для циркуляции фильтруемой текучей среды и разделительный фильтрующий слой, нанесенный на стенку циркуляционных путей, в котором трехмерную структуру подложки получают посредством аддитивной технологии, согласно которой трехмерную структуру подложки рассекают на участки при помощи программы компьютерного проектирования, при этом указанные участки создают поочередно в форме элементарных пластов, расположенных друг над другом и последовательно связанных между собой, при помощи повторения следующих двух этапов, на которых: а) наносят однородный сплошной слой порошка постоянной толщины, предназначенного для формирования керамического пористого тела на площади, превышающей рисунок сечения указанного формируемого пористого тела на уровне пласта; b) в соответствии с рисунком, определенным для каждого пласта, локально уплотняют часть нанесенного материала для создания элементарного пласта, при этом указанные два этапа повторяют для того, чтобы при каждом повторении одновременно связывать сформированный таким образом элементарный пласт с предыдущим пластом, постепенно наращивая требуемую трехмерную форму.

Изобретение относится к области систем всасывания для промышленных работ, например, процессов сварки. Всасывающая стенка содержит коробчатый каркас с плоским основанием, внутренний отсек между задней панелью и передней проницаемой диафрагмой каркаса, возведенного перпендикулярно от основания.

Изобретение относится к способу распознавания процесса очистки установки с размещенными с пространственным смещением относительно друг друга фильтрами (1,31), причем первый, содержащий твердые частицы (20) газ (21) может пропускаться по первому направлению течения через соответствующий фильтр (1,31) и посредством соответствующего фильтра (1,31) может быть профильтрован, причем для очистки соответствующего фильтра (1,31) второй газ (22) может быть пропущен через соответствующий фильтр (1,31) в направлении течения, обратном первому направлению течения.

Изобретение относится к области очистки отработанных газов двигателя внутреннего сгорания. Устройство управления выбросом отработавших газов для двигателя включает в себя электронный блок управления (ECU).

Изобретение относится к технике пылеулавливания и может применяться в химической текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов, предназначено для центральных систем аспирации. Устройство пылеулавливания содержит корпус, опорную часть с бункером для сбора пыли и пылесборной тележкой или шлюзовой перегрузчик, входной и выходной короба фильтровальной секции пылеуловителя с фильтрами рукавного типа, механизм регенерации фильтра, во входном коробе фильтровальной секции установлено газораспределительное устройство, выполненное в виде створчатой пластины с механизмом изменения ее ширины и блоком управления. Створчатая пластина состоит из двух створок, плотно прилегающих друг к другу таким образом, что они образуют пластину, выполняющую функции инерционного пылеотделительного элемента. В корпусе фильтровальной секции установлен датчик температуры, в бункере для сбора пыли - аварийный датчик уровня пыли, в выходном коробе фильтровальной секции - тепловой автоматический датчик-извещатель, выходы с которых соединены с общим микропроцессором, расположенным в шкафу управления. В выходном коробе фильтровальной секции установлены коллектор с форсунками системы обеспечения пожаровзрывобезопасности работы устройства с блоком управления, связанным электронной связью с общим микропроцессором, и система регенерации рукавных фильтров с механизмом импульсной продувки, которая снабжена блоком управления каждого электромагнитного клапана сопел и соединена с общим блоком управления регенерацией, связанным электронной связью с общим микропроцессором. Бункер для сбора пыли выполнен конической или пирамидальной формы с углом наклона стенок, превышающим угол естественного откоса улавливаемой пыли. Каждая из форсунок системы обеспечения пожаровзрывобезопасности работы устройства содержит корпус с камерой завихрения и сопло, корпус выполнен в виде подводящего штуцера с центральным отверстием и жестко соединенной с ним и соосной цилиндрической гильзой с внутренней резьбой и расширительной камерой, соосной корпусу. При этом соосно корпусу в его нижней части подсоединено к гильзе посредством резьбы сопло, выполненное в виде перевернутого стакана, в днище которого выполнен турбулентный завихритель потока жидкости с по крайней мере двумя наклонными к оси сопла вводами в виде цилиндрических отверстий, расположенных в торцевой поверхности сопла, где также выполнено центральное цилиндрическое дроссельное отверстие, соединенное со смесительной камерой сопла, последовательно соединенной с диффузорной выходной камерой. В диффузорной выходной камере установлен рассекатель, выполненный в виде по крайней мере трех спиц, каждая из которых одним концом закреплена на внешней поверхности диффузорной выходной камеры, перпендикулярно образующим ее поверхности, а другим - в поверхности тела вращения, например шара, ось которого совпадает с осью диффузорной выходной камеры, а само тело вращения расположено в нижней части за срезом диффузорной выходной камеры. К торцевой поверхности цилиндрической гильзы, соосной с корпусом, соосно диффузорной камере прикреплен диффузор, поверхность среза которого лежит в плоскости, находящейся ниже поверхности тела вращения рассекателя. Или рассекатель выполнен в виде двух спиц, каждая из которых одним концом закреплена на внешней поверхности диффузорной выходной камеры, перпендикулярно образующим ее поверхности, а другим - на оси, на которой с возможностью вращения установлено тело вращения, выполненное в виде шара, центр которого лежит на оси диффузорной выходной камеры, при этом поверхность тела вращения, выполненного в виде шара, установленного на оси, с возможностью вращения, выполнена перфорированной, а к поверхности тела вращения, выполненного в виде шара, установленного на оси, с возможностью вращения, установлены элементы, осуществляющие его вращение, например, в виде отрезков винтовых лопастей. При этом на внутренней поверхности центрального цилиндрического дроссельного отверстия форсунки, расположенного в торцевой поверхности сопла, выполнены винтовые канавки для осуществления дополнительного закручивания потока жидкости, а в теле вращения форсунки, ось которого совпадает с осью диффузорной выходной камеры, а само тело вращения расположено в нижней части за срезом диффузорной выходной камеры, выполнены резонансные выемки по форме в виде цилиндрической поверхности разного диаметра и длины, выполняющие функции резонаторов Гельмгольца, размеры которых определяются необходимой частотой пульсации потока жидкости. Техническим результатом является повышение эффективности и надежности процесса пылеулавливания. 4 ил.

Изобретение относится к технике пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Трехступенчатая система пылеудаления содержит инерционный пылеосадитель как первую ступень предварительной очистки газовоздушной смеси от пыли, последовательно соединенную со второй ступенью, представленной циклонным пылеуловителем, последовательно соединенным с третьей ступенью тонкой очистки, выполненной в виде рукавного фильтра. Инерционный пылеосадитель содержит корпус, расположенные внутри него преградительные элементы, ввод запыленного газового потока, по крайней мере один бункер для сбора пыли и выходной патрубок очищенного газа, при этом осевые линии преградительных элементов, закрепленных в верхней части корпуса, совпадают с осями бункеров, а преградительные элементы, расположенные на стыке поверхностей, образующих бункерную часть, выполнены в сечении в виде Т-образного профиля. Корпус циклона второй ступени очистки состоит из двух соосных конусных частей. Во входном патрубке соосно корпусу закреплена осевая розетка, которая имеет наклонные лопасти. Соосно корпусу во внутренней его части установлены жалюзийные решетки цилиндрической формы, которые выполнены в виде последовательно соединенных секций разного диаметра, причем диаметры секций увеличиваются, начиная от осевой розетки к выходному патрубку, выполненному в виде диффузора, причем в конце последней секции жалюзийных решеток расположен боковой патрубок под углом к оси корпуса циклона, который соединен с накопительным пылесборником, а выходной патрубок соединен воздуховодом с фильтрующей камерой рукавного фильтра, являющегося третьей ступенью системы пылеулавливания. Вход рукавного фильтра соединен с выходом выхлопной трубы через фланец для входа очищаемого газа в фильтрующую камеру рукавного фильтра, имеющую вид шкафа с выемкой через боковые двери вертикально расположенных фильтроэлементов в виде фильтрующих рукавов, причем фланец для выхода очищенного газа расположен в камере очищенного газа, расположенной над фильтрующей камерой, и имеет размеры поперечного сечения, равные с фланцем для входа очищаемого газа в фильтр, который дополнительно снабжен датчиком температуры, установленным в корпусе фильтровальной секции. В бункере для сбора пыли установлен аварийный датчик уровня пыли, в выходном коробе фильтровальной секции установлен тепловой автоматический датчик-извещатель, выходы с которых соединены с управляющим контроллером. В выходном коробе фильтровальной секции фильтра установлен коллектор с форсунками для подключения к системе пожаротушения, блок управления которым соединен с управляющим контроллером, причем бункер для сбора пыли выполнен конической или пирамидальной формы с углом наклона стенок, превышающим угол естественного откоса улавливаемой пыли. Система регенерации фильтра включает в себя клапанные блоки, в которых смонтированы электромагнитные клапаны, вход которых соединен с выходом управляющего контроллера, импульсные клапаны с импульсными трубами и патрубками, сопла Вентури, дифманометр, подключенный через датчик давления к камере для выхода очищенного газа и через датчик давления к фильтрующей камере для входа очищаемого газа, а также комплект арматуры для подвода сжатого воздуха к блокам клапанов, причем дифманометр соединен с управляющим контроллером. Форсунка системы пожаротушения содержит цилиндрический полый корпус с каналом для подвода жидкости, в котором закреплен распылитель, состоящий из трех дросселирующих элементов. Распылитель выполнен в виде оппозитно расположенных вершинами и осесимметричных полых конических завихрителей: верхнего и нижнего, при этом коническая обечайка нижнего завихрителя фиксируется посредством по крайней мере трех спиц, закрепленных одним концом на конической обечайке нижнего завихрителя в ее верхней части, а другим концом - в кольцевой канавке канала форсунки, выполненной на его внутренней поверхности. Вершина конической поверхности конической обечайки верхнего завихрителя крепится на круглой перфорированной пластине, установленной в кольцевой канавке канала форсунки и опирающейся на вершину нижнего завихрителя, закрепленного в канале форсунки посредством спиц. На внешних поверхностях полых конических завихрителей выполнены сквозные винтовые нарезки, а дросселирующий эффект распылителя в целом определяется суммарной пропускной способностью составляющих его элементов, причем для получения мелкодисперсного распыла суммарную пропускную способность верхнего завихрителя и перфорированной пластины выполняют большей, чем у нижнего завихрителя, а к нижней торцевой поверхности цилиндрического полого корпуса закреплен диффузор с установленной на его срезе круглой перфорированной пластиной. Техническим результатом является повышение эффективности и надежности процесса пылеулавливания, а также снижение металлоемкости и виброакустической активности аппарата в целом. 5 ил.

Наверх