Способ измерения угла косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для измерения угла косоглазия. Получают снимок косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой. Измеряют на снимке расстояние х между центром зрачка и бликом от источника света, а также – расстояние а между вертикальными линиями, проходящими через внешний и внутренний углы косящего глаза. Дополнительно получают снимок в профиль при отведении косящего глаза в сторону от камеры. Измеряют на снимке расстояние b между вертикальной линией, проходящей через край склеры, и вертикальной линией, проходящей через внешний угол глаза. Определяют радиус кривизны склеры r по формуле r=(b2+а2)/(2⋅а) и рассчитывают угол косоглазия α по формуле α=arcsin(x/r). Способ обеспечивает увеличение точности измерения угла косоглазия за счет более точного определения радиуса кривизны склеры. 5 ил., 1 пр.

 

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для определения значения угла косоглазия.

Известен способ диагностики косоглазия по Лоуренсу (см. Шамшинова A.M., Волков В.В., Функциональные методы исследования в офтальмологии // М.: Медицина, 1999. С. 378-380). В способе пациенту прикрывают рукой здоровый глаз, а косящий глаз устанавливают в правильное положение (по центру глазной щели). После этого миллиметровую линейку прикладывают к краю нижнего века так, чтобы вертикальный меридиан роговицы совмещался с отметкой "0". Затем открывают здоровый глаз и устанавливают уже его в правильное положение. При этом косящий глаз отклоняется в сторону от нулевой отметки на величину в миллиметрах, которую умножают на 5° и получают угол косоглазия.

Однако в данном способе не учитывается размер глазного яблока, и, как следствие, определение угла может происходить со значительной погрешностью, кроме того, при проведении измерений линейкой с погрешностью 0.5 мм, погрешность в определении угла косоглазия составит 2.5°.

Известен способ определения угла косоглазия по Головину (см. Шамшинова A.M., Волков В.В., Функциональные методы исследования в офтальмологии // М.: Медицина, 1999. С. 378-380). В способе пациент устанавливает подбородок на подставку настольного периметра так, чтобы центр измерительной дуги прибора (0°) оказался против переносицы. Пациент фиксирует здоровым глазом точечный источник света, который врач держит перед этим центром. Второй точечный источник света он перемещает по дуге периметра в ту или иную сторону (в зависимости от вида косоглазия) до тех пор, пока его изображение не займет на роговице косящего глаза такое же положение, какое занимает изображение первого источника света на роговице здорового глаза. Отклонение второго точечного источника света от нуля указывает на угол косоглазия в градусах.

Однако данный способ недостаточно точен, не находит применения в современной практике и не позволяет определять угол косоглазия у пациентов с сочетанными заболеваниями, например, нистагмом.

Известен способ измерения угла косоглазия по Гиршбергу (см. Шамшинова A.M., Волков В.В. Функциональные методы исследования в офтальмологии // М.: Медицина, 1999. С. 378-380). В способе пациент смотрит обоими глазами в зеркало офтальмоскопа, который отражает свет от горящей настольной лампы. При отсутствии косоглазия световые рефлексы от зеркала окажутся в центре обеих роговиц. В косящем глазу изображение одного из них сместится в какую-либо сторону. Угол косоглазия принимают равным: 15° при расположении рефлекса по краю зрачка; 25-30° градусов, если он располагается посередине радужки; 45° при его локализации на лимбе.

Однако данный способ обладает большой погрешностью - 5°, не подходит пациентам, плохо фиксирующим взгляд.

Наиболее близким к заявляемому изобретению является способ обнаружения косоглазия (см. патент CN на изобретение №104661580, МПК А61В 3/113). В способе определяют угол косоглазия по соотношению расстояния между центром зрачка и бликом от источника света и расстояния между мишенью, куда смотрит пациент, и источником света.

Недостатком способа является то, что радиус кривизны склеры, необходимый для расчета значения угла косоглазия не измеряется, вместо него используется среднее значение радиуса глазного яблока, что вносит неконтролируемую погрешность в результат измерений.

Технической проблемой является низкая точность измерения при использовании оптического оборудования, связанная с наличием субъективного фактора.

Технический результат заключается в увеличении точности измерения угла косоглазия за счет более точного определения радиуса кривизны склеры.

Указанная техническая проблема решается тем, что в способе измерения угла косоглазия, включающем получение снимка косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой, измерение на снимке расстояния х между центром зрачка и бликом от источника света, расстояния а между вертикальными линиями, проходящими через внешний и внутренний углы косящего глаза, согласно решению дополнительно получают снимок в профиль при отведении косящего глаза в сторону от камеры, измеряют на снимке расстояние b между вертикальной линией, проходящей через край склеры, и вертикальной линией, проходящей через внешний угол глаза, определяют радиус кривизны склеры r по формуле r=(b2+а2)/(2⋅а) и рассчитывают угол косоглазия α по формуле α=arcsin(x r).

Изобретение поясняется чертежами.

На фиг. 1 - снимок в профиль пациента; на фиг. 2 представлена схема съемки в профиль пациента при отведении косящего глаза в сторону от камеры; на фиг. 3 представлена схема определения расстояния b с использованием съемки в профиль (вид А фиг. 2); на фиг. 4 - снимок в анфас пациента; на фиг. 5 представлена схема определения расстояний а и x с использованием съемки в анфас пациента.

Позициями на чертежах обозначено:

1 - сфера, сегментом которого является видимая часть склеры;

2 - камера;

3 - край склеры;

4 - вертикальная линия, проходящая через внешний угол глаза;

5 - вертикальная линия, проходящая через внутренний угол глаза;

6 - блик от источника света на склере.

7 - точечный источник света.

Заявляемый способ определения угла косоглазия осуществляется следующим образом.

Голову пациента фиксируют на лобно-подбородной опоре, сбоку от него располагают камеру 2 (фотокамеру или видеокамеру). Пациента просят отвести взгляд в сторону от камеры 2. К лицу пациента прикладывают измерительную линейку для проведения калибровки, путем установления соответствия между количеством пикселей на изображении и реальном расстоянии, фиксируют снимок (фиг. 1), на котором измеряют расстояние b между вертикальной линией, проходящей через край склеры 3, и вертикальной линией, проходящей через внешний угол глаза 4.

Затем располагают камеру 2 перед пациентом. За камерой 2 устанавливают точечный источник света 7. Пациент фиксирует взгляд на источнике света 7, в этот момент камерой 2 фиксируют снимок (фиг. 4), на котором измеряют расстояние а между вертикальными линиями, проходящими через внешний 4 и внутренний 5 углы косящего глаза, расстояние х между центром зрачка и бликом от источника света 6 на косящем глазе, определяют радиус кривизны склеры r по формуле r=(b2+a2)/(2⋅a) и рассчитывают угол косоглазия α по формуле α=arcsin(x/r).

Пример исполнения способа

Использовалась современная фотокамера, фокусное расстояние объектива 50 мм, фотографии с разрешением 2304×1296 пикселей. Голова пациента Д. фиксировалась в лобно-подбородной опоре. Сбоку от пациента располагалась фотокамера, пациент отводил взгляд в сторону от фотокамеры, к лицу прикладывали измерительную линейку для проведения калибровки, фиксировали снимок (фиг. 1), на котором измеряли расстояние b между вертикальной линией, проходящей через край склеры, и вертикальной линией, проходящей через внешний угол глаза, которое составило b=7.22 мм.

Затем фотокамеру располагали перед пациентом, за фотокамерой установили точечный источник света. Пациент фиксировал взгляд на источнике света, в этот момент фотокамерой фиксировали снимок (фиг. 4), на котором измеряли расстояние а между вертикальными линиями, проходящими через внешний и внутренние углы косящего глаза, которое составило а=23.88 мм. Измеряли расстояние х между центром зрачка и бликом от источника света на косящем глазе, которое составило х=0.48 мм. Затем определяли радиус кривизны склеры r по формуле r=(b2+а2)/(2⋅а), который составил r=13.03 мм и рассчитали угол косоглазия α по формуле α=arcsin(x/r), который составил α=2.1 градуса.

Таким образом, был рассчитан угол косоглазия пациента, с относительной погрешностью Δα=0.4 градуса.

Способ измерения угла косоглазия, включающий получение снимка косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой, измерение на снимке расстояния х между центром зрачка и бликом от источника света, расстояния а между вертикальными линиями, проходящими через внешний и внутренний углы косящего глаза, отличающийся тем, что дополнительно получают снимок в профиль при отведении косящего глаза в сторону от камеры, измеряют на снимке расстояние b между вертикальной линией, проходящей через край склеры, и вертикальной линией, проходящей через внешний угол глаза, определяют радиус кривизны склеры r по формуле r=(b2+а2)/(2⋅а) и рассчитывают угол косоглазия α по формуле α=arcsin(x/r).



 

Похожие патенты:

Группа изобретений относится к медицине. Офтальмологический зонд для получения изображения содержит ручку; канюлю, соединенную с ручкой; оптическое волокно, расположенное по меньшей мере частично внутри ручки и канюли, при этом оптическое волокно выполнено с возможностью приема светового пучка, формирующего изображение, от источника светового пучка, формирующего изображение, и направления светового пучка, формирующего изображение, на оптический элемент, расположенный внутри дистальной части канюли; и исполнительную систему, выполненную с возможностью приведения в движение оптического волокна, при этом исполнительная система содержит механическую конструкцию и электрически возбуждаемый элемент, выполненный с возможностью выборочного приведения в движение механической конструкции при электрическом возбуждении электрически возбуждаемого элемента.
Изобретение относится к области медицины, а именно к офтальмологии. Для коррекции роговичного астигматизма посредством лимбальных послабляющих разрезов при факоэмульсификации и имплантации асферической интраокулярной линзы (ИОЛ) с использованием системы Verion-LenSx создают перед началом операции ее план с формированием высокоточного интраоперационного изображения глаза пациента при совмещении на экране монитора фемтолазера LenSx предоперационного изображения, скорректированного при дополнительных исследованиях с помощью системы Verion, с on-line 3D изображением, формируемого оптической системой фемтолазера LenSx.

Группа изобретений относится к медицинской технике, а именно к средствам обработки изображений в диагностике и лечении глазных болезней. Устройство содержит блок принятия решения, выполненный с возможностью принятия решения из вторых изображений в отношении по меньшей мере одного изображения, которое включает по меньшей мере одну область, которая не заснята в по меньшей мере одном изображении из первых изображений, и модуль генерации изображения, выполненный с возможностью генерации одного изображения путем использования по меньшей мере одного изображения из первых изображений, и принятия решения в отношении по меньшей мере одного изображения.

Группа изобретений относится к медицине. Офтальмологическая система позиционирования содержит: офтальмологическую систему формирования изображения, содержащую систему формирования изображения на основе оптической когерентной томографии, выполненную с возможностью формирования изображения участка глаза пациента в ходе позиционирования интерфейса пациента по отношению к глазу, и процессор изображений, выполненный с возможностью определения положения и ориентации изображаемого участка глаза путем анализа изображения; и систему наведения, соединенную с офтальмологической системой формирования изображения, выполненную с возможностью наведения позиционирования на основании определенных положения и ориентации перед позиционированием интерфейса пациента по отношению к глазу, причем изображаемый участок глаза содержит изображаемый участок хрусталика глаза; и процессор изображений выполнен с возможностью осуществления процесса распознавания изображений для распознавания сканированного изображения переднего капсулярного слоя хрусталика и сканированного изображения заднего капсулярного слоя хрусталика в изображении.

Изобретение относится к технологиям обработки изображений, используемых для офтальмологической диагностики. Техническим результатом является установление подходящих условий захвата изображений, чтобы получить в заданной области захвата изображений множество изображений с большим увеличением, имеющих угол рассматривания меньше, чем у области захвата изображений.

Заявлена группа изобретений для лазерной хирургии на основе формирования изображений ткани-мишени посредством нелинейного сканирования. После размещений интерфейса пациента лазерной хирургической системы и системы формирования изображений на глазу создают первые данные сканирования путем определения глубины области мишени глаза на первом наборе точек вдоль первой дуги.

Изобретение относится к медицинской технике, а именно к офтальмологическим системам. Система содержит стыковочный блок, выполненный с возможностью совмещения офтальмологической системы и глаза, систему формирования изображений, контроллер формирования изображений, содержащий процессор, контроллер локальной памяти, выполненный с возможностью управлять передачей вычисленных данных сканирования из процессора в буфер данных, и выходной цифроаналоговый преобразователь, связанный с буфером данных.

Последовательный датчик волнового фронта большого диоптрийного диапазона для коррекции зрения или выполнения оценочных процедур включает в себя устройство для сдвига волнового фронта и выборки волнового фронта.

Изобретение относится к медицинской технике. Устройство для конъюнктивальной микроскопии содержит оптическую систему со встроенным блоком питания, включающую видеокамеру с системой переноса изображений, осветитель и систему управления, регистрации и анализа полученных изображений, реализованную на базе ЭВМ, беспроводной блок связи, выполненный с возможностью поддержания динамической обратной связи между оптической системой и системой управления.
Изобретение относится к медицине, офтальмологии и предназначено для определения показаний к проведению лазерной коагуляции при миопии различной степени у беременных.

Группа изобретений относится к квантово-точечным спектрометрам для применения в биомедицинских устройствах. Биомедицинское устройство по первому варианту содержит элемент подачи питания, включающий в себя первый и второй токосъемники, катод, анод и электролит, квантово-точечный спектрометр, включающий в себя квантово-точечный излучатель света, фотодетектор и средство передачи информации от квантово-точечного спектрометра к пользователю, причем квантово-точечный спектрометр получает питание от элемента подачи питания, и устройство-вставку, которое содержит элемент подачи питания и квантово-точечный спектрометр и изолирует элемент подачи питания от биомедицинской среды, внутри которой действует биомедицинское устройство.
Изобретение относится к области медицины, а именно к офтальмологии. Для дифференцированного подхода к хирургическому лечению закрытоугольной глаукомы (ЗУГ) с плоской радужкой проводят факоэмульсификацию катаракты, имплантацию ИОЛ.

Изобретение относится к офтальмологическим линзам. Способ обновления частоты осциллятора, расположенного на контактной линзе, включает прием системным контроллером на контактной линзе по меньшей мере одного сигнала от внешнего источника, содержащего информацию, позволяющую регулировать частоту осциллятора; после получения сигнала расчет регулировки частоты осциллятора на основании информации, содержащейся в сигнале, регулировку частоты осциллятора в соответствии с рассчитанной регулировкой.
Изобретение относится к области медицины, в частности неврологии. Проводят отоневрологическое обследование и выявляют нарушения оптокинетического нистагма, а также двустороннее высокочастотное снижения слуха, стволовой характер вестибулярной реакции и угнетения вестибулярной возбудимости по типу гипо- или арефлексии в процессе проведения вращательной пробы.

Группа изобретений относится к медицине. Способ оптической когерентной томографии (ОКТ) глаза осуществляется с помощью аппарата для оптической когерентной томографии (ОКТ).

Изобретение относится к области медицины, а именно к офтальмологии. Для исследования зрительных функций используют портативное устройство, состоящее из шлема виртуальной реальности с дисплеем; компьютера для формирования точки фиксации, последовательного предъявления паттернов и фиксации результатов исследования; окулографа для контроля за положением линии взора и скоординированного с ним приспособления для смещения координатной сетки паттернов, предъявляемых для исследуемого глаза.

Группа изобретений относится к медицине. Устройство контактной линзы содержит: контактную линзу, содержащую: подложку; множество датчиков, расположенных на или в подложке в предварительно определенных положениях контактной линзы друг относительно друга; схему управления, расположенную на подложке и соединенную с указанными датчиками.

Группа изобретений относится к медицине. Бесконтактный пупиллометр для скрининг-диагностики функционального состояния организма включает корпус, держатель, излучатель, приемник, температурный датчик, камеру, кожух, индикатор положения, два инфракрасных (ИК) светодиода, красный светодиод, источник белого света, датчик освещенности и компьютер с программным обеспечением.

Группа изобретений относится к области медицины и медицинской техники. Осуществляют выборку уровня света, падающего на глаз человека, с предварительно заданной частотой.

Изобретение относится к медицинской технике. Представлено устройство для мониторинга одного или более хирургических параметров глаза пациента на протяжении многих сеансов, разнесенных во времени и между которыми глаз пациента может иметь перемещение.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для измерения угла косоглазия. Получают снимок косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой. Измеряют на снимке расстояние х между центром зрачка и бликом от источника света, а также – расстояние а между вертикальными линиями, проходящими через внешний и внутренний углы косящего глаза. Дополнительно получают снимок в профиль при отведении косящего глаза в сторону от камеры. Измеряют на снимке расстояние b между вертикальной линией, проходящей через край склеры, и вертикальной линией, проходящей через внешний угол глаза. Определяют радиус кривизны склеры r по формуле r и рассчитывают угол косоглазия α по формуле αarcsin. Способ обеспечивает увеличение точности измерения угла косоглазия за счет более точного определения радиуса кривизны склеры. 5 ил., 1 пр.

Наверх