Способ удаления перенапылённых углеводородных слоёв

Изобретение относится к технологии очистки вакуумных камер и других элементов в вакууме, находящихся в труднодоступных для очистки местах, от перенапыленных углеводородных слоев и может быть использовано в установках с обращенными к плазме элементами из углеродных материалов и в технологических установках. Сущность способа заключается в создании вакуума в рабочем объеме, зажигании ВЧ плазмы в атмосфере рабочего газа при давлении, достаточном для генерации плазмы. Используемую для удаления перенапыленных углеводородных слоев, ВЧ плазму создают с помощью электронного пучка в продольном магнитном поле не менее 1000 Гс, направленного на приемный электрод с коэффициентом вторичной эмиссии >1. При этом на приемный электрод подают напряжение смещения, необходимое для перехода разряда в автоколебательный режим. После перехода разряда в автоколебательный режим в примыкающих к разряду стенках наводятся высокочастотные токи. А в полостях и щелях возникают сильные переменные поля, способствующие появлению химически активных радикалов как в прилегающих к стенкам областях, так и в щелях и затененных от плазмы областях. Взаимодействие химически активных радикалов с углеводородными пленками приводит к появлению летучих соединений и соответственно очистке поверхности. Изобретение обеспечивает расширение возможностей по удалению углеводородных пленок в местах, где это практически невозможно сделать с использованием известных на данный момент технологий. При этом способ можно использовать, когда есть необходимость очистки при низком давлении порядка 10-1-10-2 Па. 5 ил.

 

Изобретение относится к технологии очистки вакуумных камер и других элементов в вакууме, находящихся в труднодоступных для очистки местах, от перенапыленных углеводородных слоев и может быть использовано в установках с обращенными к плазме элементами из углеродных материалов и в технологических установках.

Известен способ плазменной очистки, заключающийся в создании вакуума в рабочем объеме, напуске рабочего газа, зажигании емкостного ВЧ разряда, с специальной системой для подвода потока химически активных частиц из плазмы на обрабатываемую поверхность [патент РФ №2037343].

Недостатком данного способа является невозможность использования его для очистки поверхности с неоднородным, заранее неизвестным рельефом, в котором имеется большое количество щелей, а также крупных поверхностей, таких как стенки камеры. Как следует из описания прототипа, обработка поверхности происходит не за счет прямого воздействия плазмы на очищаемую поверхность, а за счет потока химически активных частиц, образовавшихся в плазме и попадающих на обрабатываемую поверхность уже за счет конфигурации вакуумной системы, что в общем снижает эффективность метода.

Известен способ плазменной очистки углеводородных слоев, который был выбран в качестве прототипа, заключающийся в создании вакуума в рабочем объеме, напуске рабочего газа (кислород или оксид азота) до давления от 100 до 800 Па, в зависимости от того какую область надо очищать (стенки камеры или один из электродов), с последующим зажиганием емкостного ВЧ разряда между электродами с характерным расстоянием между ними порядка нескольких десятков мм [US патент 20070248767 А1]. В вакуумный объем может дополнительно напускаться или буферный инертный газ для изменения давления и, следовательно, свойств плазмы или же фторосодержащие соединения для изменения скорости очистки поверхности.

Недостатком данного способа является, во-первых, невозможность очистки углеводородных слоев в щелях, на неоднородных поверхностях, или же в затененных от плазмы областях, поскольку сам метод ориентирован на очистку гладких поверхностей, напрямую прилегающих к области горения ВЧ разряда. Также имеют место геометрические ограничения размеров и конфигурации обрабатываемой поверхности. Кроме того, данный способ неприменим в случае, когда поверхность необходимо очищать при низком давлении.

Технический результат изобретения направлен на расширение возможностей по удалению углеводородных пленок в местах, где это практически невозможно сделать с использованием известных на данный момент технологий, то есть способ можно использовать для обработки поверхностей различных размеров и конфигураций, в том числе, для очистки в щелях и затененных от плазмы областях, при этом очистка происходит за счет прямого воздействия плазмы на обрабатываемую поверхность. При этом способ можно использовать, когда есть необходимость очистки при низком давлении порядка 10-1-10-2 Па.

Технический результат достигается за счет того, что в предложенном способе удаления перенапыленных углеводородных слоев, включающем в себя создание вакуума в рабочем объеме, зажигание ВЧ плазмы в атмосфере рабочего газа при давлении достаточном для генерации плазмы, используемой для удаления перенапыленных углеводородных слоев, ВЧ плазму создают с помощью электронного пучка в продольном магнитном поле не менее 1000 Гс, направленного на приемный электрод с коэффициентом вторичной эмиссии >1, при этом на приемный электрод подают напряжение смещения, необходимое для перехода разряда в автоколебательный режим. После перехода разряда в автоколебательный режим в примыкающих к разряду стенках наводятся высокочастотные токи, а в полостях и щелях возникают сильные переменные поля, способствующие появлению химически активных радикалов как в прилегающих к стенкам областях, так и в щелях и затененных от плазмы областях. Взаимодействие химически активных радикалов с углеводородными пленками приводит к появлению летучих соединений и соответственно очистке поверхности.

Конкретнее, в предложенном способе плазма инициируется электронным пучком, источником которого может служить электронная пушка, в простейшем варианте состоящая из прямонакального катода и анода. Разряд зажигается в продольном магнитном поле не менее 1000 Гс, это необходимо для того, чтобы плазменный шнур равномерно распространялся вдоль линий магнитного поля. Электроны ускоряются приложенной между катодом и анодом разностью потенциалов в несколько кВ вдоль линий магнитного поля. Прохождение электронного пучка через рабочий газ приводит к появлению пучково-плазменного разряда, обеспечивающего присутствие высокоэнергетичных электронов и достижение требуемого порога по плотности для распространения волн внутри замагниченной плазмы. Приемником пучка является электрод с коэффициентом вторичной эмиссии выше единицы (это может быть охлаждаемый электрод из алюминия (вольфрама, тантала) с тонкой диэлектрической пленкой на поверхности). Вольт-амперная характеристика (ВАХ) такого электрода при контакте с плазмой пучково-плазменного разряда, в котором присутствует высокоэнергетичная группа электронов, будет иметь N-образную форму (Фиг. 1). На приемный электрод с блока питания подается отрицательное смещение, которое изменяет рабочую точку. С ростом величины отрицательного смещения, увеличивается ток разряда, а после достижения порогового значения, которое соответствует началу области отрицательного дифференциального сопротивления (ОДС) N-образной ВАХ (это значение зависит от материала, из которого изготовлен приемный электрод) происходит переход от устойчивого режима к неустойчивому. При дальнейшем увеличении смещения (до значений, соответствующих середине области ОДС участка N-образной ВАХ) устанавливается автоколебательный режим.

Мощность вкладывается в разряд через поддерживаемый источником напряжения смещения ток вторичных электронов с приемного электрода, который играет роль холодного катода, а также за счет возникновения переменных полей и ускорения ионов в приповерхностном слое. В автоколебательном режиме величина среднего тока с приемного электрода в несколько раз превышает величину тока в режиме без колебаний. Плазменный шнур транспортируется вдоль магнитного поля, заполняя весь промежуток от электронной пушки до приемного электрода. Наличие переменных полей в плазме повышает эффективность передачи энергии, приводя к возрастанию плотности плазмы.

На Фиг. 2 показано схематичное изображение токов, электрических и магнитных полей, возбуждаемых в разряде в автоколебательном режиме. Радиус плазменного шнура будет определяться размерами приемного электрода. Примыкание к плазме проводящей поверхности не влияет на автоколебательный режим. При этом в примыкающих к разряду областях наводятся высокочастотные токи, которые генерируют химически активные радикалы. В полостях и щелях примыкающих элементов возникает сильное переменное электромагнитное поле, которое также приводит к появлению химически активных радикалов. Таким способом решается проблема доставки радикалов как к очищаемым от перенапыленных слоев углеводородов прилегающим стенкам, так и к щелям и затененным от плазмы областям. Взаимодействие химически активных радикалов с углеводородными пленками приводит к появлению летучих соединений и соответственно очистке поверхности.

Пример конкретной реализации предложенного способа очистки был продемонстрирован на установке ПР-2 (НИЯУ МИФИ) (Фиг. 3) [K.М. Gutorov et al. // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, June 2016, Vol. 10, No. 3, pp. 612-616] состоящей из вакуумного объема 1, системы откачки 2, системы газонапуска 3, служащей для напуска рабочего газа до давления 10-2-10-1 Па, катушек магнитного поля 4, создающих продольное магнитное поле более 1000 Гс, электронной пушки 5, алюминиевого охлаждаемого приемного электрода 6.

Для проверки эффективности способа очистки из молибденовых пластин, покрытых 15 мкм углеводородной пленкой, была сделана следующая сборка (Фиг. 4), которая имитировала щелевые и затененные от плазмы области. Сборка помещалась в рабочий объем, после чего вакуумная камера откачивалась до давления 10-5 Па. Через систему газонапуска в рабочий напускался кислород до давления 10-2 Па. С помощью электронной пушки в рабочем объеме зажигался пучково-плазменный разряд (который является частным случаем ВЧ разряда) в магнитном поле порядка 1000 Гс. Перевод разряда в автоколебательный режим осуществляется подачей отрицательного напряжения на приемный электрод до достижения порогового значения. Автоколебательный режим поддерживался в течение 15 минут.

По прошествии 15 минут сборка вынималась и с помощью сканирующего электронного микроскопа VEGA 3 SBH Tescan с системой рентгеновского энергодисперсионного микроанализа с безазотным детектором INCA X-Act анализировалась толщина углеводородной пленки. Указанная система позволила оценить элементный состав поверхностного слоя образца толщиной несколько десятков микрометров. Для целей данного исследования достаточно отслеживать величину сигнала углерода при постоянных условиях анализа, которая будет пропорциональна толщине углеводородной пленки на поверхности молибдена. После оценки толщины исследуемая сборка помещалась обратно в камеру, после чего вышеуказанный процесс повторялся.

На Фиг. 5 показана зависимость относительного сигнала пиков углерода в щелях от времени очистки в автоколебательном разряде. В вышеописанном режиме достигается полное удаление углеводородных пленок толщиной 15 мкм за 60 минут в щелях и за 30 минут на открытых поверхностях.

Таким образом, из вышесказанного следует, что предлагаемый способ позволяет эффективно удалять перенапыленные углеводородные слои в частности в щелях и затененных от плазмы областях. При этом способ можно использовать, когда есть необходимость очистки при низком давлении порядка 10-1-10-2 Па.

Способ удаления перенапыленных углеводородных слоев, включающий в себя создание вакуума в рабочем объеме, зажигание ВЧ плазмы в атмосфере рабочего газа при давлении, достаточном для генерации плазмы, используемой для удаления перенапыленных углеводородных слоев, отличающийся тем, что ВЧ плазму создают с помощью электронного пучка в продольном магнитном поле не менее 1000 Гс, направленного на приемный электрод с коэффициентом вторичной эмиссии >1, при этом на приемный электрод подают напряжение смещения, необходимое для перехода разряда в автоколебательный режим.



 

Похожие патенты:

Изобретение относится к микрокристаллическому алмазному покрытию, предназначенному для трибологических областей применения в сфере микромеханики, а также в оптике.

Суть настоящего изобретения состоит в процессе формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек. Способ основан на применении перспективной «аддитивной технологии», то есть топологические элементы функционального слоя создаются на локальных участках подложки путем прямого осаждения на них материала.

Изобретение относится к области микроэлектронной технологии, а именно к способу получения полупроводниковой гетероструктуры карбида кремния на кремниевой подложке.

Изобретение относится к СВЧ плазменному реактору с объемно-резонаторной передачей энергии в область над подложкой, ограниченной формой плазменного образования в виде полуэллипса, создающей косвенный нагрев при осаждении покрытия на низкоаспектной подложке или одновременно на группе подложек.

Изобретение относится к металлургии, а именно к фторидной технологии получения сложных по пространственной конфигурации вольфрамовых изделий. Способ получения вольфрамового изделия послойным нанесением вольфрама характеризуется тем, что проводят сканирование изотермически нагретой горизонтальной плоскости формируемого изделия, соответствующей сечению 3D модели, осуществляют дозированную дискретно-точечную струйную подачу газообразного гексафторида вольфрама и газообразного водорода на указанную плоскость, последующее вертикальное перемещение отсканированной плоскости с нанесенной на нее за счет взаимодействия указанных исходных компонентов твердой поверхностью вниз на заданный шаг и сканирование в соответствии с последующей конфигурацией сечения 3D модели.

Изобретение относится к области дозирования реагентов в поток газа-носителя с раздельной подачей реагентов в реакционную камеру. Дозатор-смеситель содержит корпус, испарители и нагреватели, поддерживающие заданную температуру для испарения реагентов, и два испарителя, установленные друг над другом и закрытые через прокладки крышками с отверстиями для подачи газа-носителя.

Изобретение может быть использовано в двигателях внутреннего сгорания. Внутренняя сторона гильзы двигателя внутреннего сгорания обработана так, чтобы быть абсолютно гладкой, и на нее нанесено покрытие типа DLC.

Изобретение относится к полимерной пленке, поверхность которой покрыта слоем неорганического нанопокрытия, за счет чего обеспечиваются такие усовершенствования, как улучшенная способность к металлизации, низкая стоимость, низкое содержание полимерных добавок и модификаторов, более высокая пригодность к переработке для вторичного использования и хорошие рулонные свойства.

Изобретение относится к области химии комплексных соединений редкоземельных металлов, а именно к новым летучим соединениям иттербия и способу их синтеза. Летучие соединения иттербия представляют собой трис-циклопентадиенильные общей формулы {(R1-С5Н4)(R2-C5H4)(R3-C5H4)Yb}, где R1, R2, R3 - алкильные радикалы, C5H4 - циклопентадиенильный лиганд, Yb - иттербий, причем алкильные радикалы содержат в качестве заместителей атомы фтора и имеют общую формулу R1, R2, R3=CF3(СН2)n, где n=2-3.

Изобретение относится к области нанесения на гибкую подложку органических материалов, в частности к испарителям для испарения органических материалов, например меламина.

Изобретение может быть использовано для лазерной очистки свариваемых поверхностей от нежелательных слоев и загрязнений, в частности для удаления ржавчины, окалины, нефтепродуктов с поверхности стальной сформованной трубной заготовки, толщиной от 8 до 45 мм.

Изобретение может быть использовано для лазерной очистки свариваемых поверхностей от нежелательных слоев и загрязнений при подготовке к выполнению лазерной сварки стальной сформованной трубной заготовки, толщиной от 8 до 45 мм.

Изобретение относится к способу и устройству предохранения от обрастания поверхности в то время, когда указанная поверхность по меньшей мере частично погружена в жидкую окружающую среду, в частности, к предохранению от обрастания корпусов судов.

Изобретение относится к очистке деталей от герметика, в частности к способу очистки перемешивающих фрез от кремнийорганических герметиков холодного отверждения марки ВИКСИНТ.

Использование: в лазерной технике, где необходима прецизионная очистка оптических поверхностей. Способ очистки рабочих поверхностей призм при изготовлении оптико-механического модулятора добротности лазера на эффекте нарушения полного внутреннего отражения включает погружение призм в водный раствор поверхностно-активных веществ (ПАВ), возбуждение в нем ультразвуковых колебаний и постановку призм на оптический контакт.

Устройство относится к очистке наружной поверхности трубопроводов от продуктов коррозии и изоляционного материала и может быть использовано при строительстве и ремонте магистральных трубопроводов.

Изобретение относится к области машиностроения, приборостроения, лазерной техники и технологии и может быть использовано для лазерной очистки от нежелательных слоев и загрязнений, в частности для удаления ржавчины, окалины, краски с поверхностей различных металлических объектов, таких как стальные трубы, листы, колесные пары подвижного состава на железнодорожном транспорте, монеты, бронза, оружие и т.д.

Изобретение относится к технологии демонтажа резиновых и полимерных покрытий, приклеенных к поверхности различных конструкций. Описанный способ основан на локальном инфракрасном лазерном термическом воздействии непосредственно на зону клеевого слоя.

Изобретение относится к химической промышленности, а именно к способам очистки технологического оборудования, изготовленного из рядовых и легированных сталей, от полимерных отложений и эмульсионных каучуков путем термического разложения.

Изобретение относится к области пиролизной очистки технологической оснастки от производственных загрязнений, содержащих органические и углеводородные вещества, образующиеся в результате технологических процессов.

Изобретение относится к функциональной тонкой пленке, которая включает гибридную органическую/неорганическую тонкую пленку и слой оксида металла, а также к способу ее изготовления. Органическая/неорганическая гибридная тонкая пленка функциональной тонкой пленки включает новую функциональную группу и формируется с помощью метода молекулярного наслаивания, в котором попеременно применяют неорганический прекурсор и органический прекурсор. Функциональные тонкие пленки, полученные данным способом, могут найти применение в области наноконструирования для изготовления полупроводников и электронных устройств, химических датчиков и биосенсоров, в сфере разработок нанотрибологии, поверхностных модификаций, наноэлектронных машинных систем и в энергонезависимых запоминающих устройствах. 5 н. и 11 з.п. ф-лы, 19 ил., 1 табл.

Изобретение относится к технологии очистки вакуумных камер и других элементов в вакууме, находящихся в труднодоступных для очистки местах, от перенапыленных углеводородных слоев и может быть использовано в установках с обращенными к плазме элементами из углеродных материалов и в технологических установках. Сущность способа заключается в создании вакуума в рабочем объеме, зажигании ВЧ плазмы в атмосфере рабочего газа при давлении, достаточном для генерации плазмы. Используемую для удаления перенапыленных углеводородных слоев, ВЧ плазму создают с помощью электронного пучка в продольном магнитном поле не менее 1000 Гс, направленного на приемный электрод с коэффициентом вторичной эмиссии >1. При этом на приемный электрод подают напряжение смещения, необходимое для перехода разряда в автоколебательный режим. После перехода разряда в автоколебательный режим в примыкающих к разряду стенках наводятся высокочастотные токи. А в полостях и щелях возникают сильные переменные поля, способствующие появлению химически активных радикалов как в прилегающих к стенкам областях, так и в щелях и затененных от плазмы областях. Взаимодействие химически активных радикалов с углеводородными пленками приводит к появлению летучих соединений и соответственно очистке поверхности. Изобретение обеспечивает расширение возможностей по удалению углеводородных пленок в местах, где это практически невозможно сделать с использованием известных на данный момент технологий. При этом способ можно использовать, когда есть необходимость очистки при низком давлении порядка 10-1-10-2 Па. 5 ил.

Наверх