Трехслойная ресурсосберегающая железобетонная панель



Трехслойная ресурсосберегающая железобетонная панель
Трехслойная ресурсосберегающая железобетонная панель
Трехслойная ресурсосберегающая железобетонная панель
E04B1/74 - изоляция, поглощение или отражение тепла, звука или шума (придание помещениям определенной формы или сооружение в помещениях специальных устройств для воздействия на акустические условия E04B 1/99); прочие способы, применяемые в строительстве, для обеспечения нормального теплового или акустического режима, например аккумуляции тепла в стенах (противопожарная защита E04B 1/94; строительные элементы, предназначенные преимущественно для конструктивных целей E04C 1/00-E04C 3/00; предназначенные преимущественно для покрытия поверхности E04F 13/00; в качестве внутренних слоев для половых настилов E04F 15/18; закрывающие элементы для проемов в стенах и т.п E06B)

Владельцы патента RU 2669897:

Федеральное государственное бюджетное образовательное учреждение высшего образования " Юго-Западный государственный университет" (ЮЗГУ) (RU)

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Трехслойная ресурсосберегающая железобетонная панель включает теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи. Коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели. Теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков. Пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний. Касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, а касательная винтовой линии второго витого пучка этой пары имеет направление против хода движения часовой стрелки. Участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн. При этом торцы трехслойной ресурсосберегающей панели, контактирующие с наружным воздухом окружающей промышленное здание среды, покрыты нанообразной стеклоподобной пленкой из оксида тантала, выполненной ионно-плазменным методом. Технический результат состоит в обеспечением нормированных теплозащитных свойств в переходные периоды года с повышенной влажностью окружающей среды за счет устранения проникновения парообразной и мелкодисперсной влаги в теплоизоляционный слой. 3 ил.

 

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий.

Известна трехслойная ресурсосберегающая железобетонная панель (см. патент РФ№2558874, МПК Е04С2/06, опубликованный 10.02.2015, Бюл. №22), включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков.

Недостатком является снижение прочностных параметров при эксплуатации в сейсмически опасных условиях, когда вследствие вибрационных колебаний грунта, например, землетрясение и сейсмические волны беспрепятственно перемещаются по горизонтально размешенному теплоизоляционному слою, обладающему более низкой плотностью по сравнению с наружным и внутренним железобетонными слоями. Это провоцирует резонансные всплески вибрационных колебаний с последующим интенсивным разрушением ограждающей конструкции в целом.

Известна трехслойная ресурсосберегающая железобетонная панель (см. патент РФ №2621240 МПК Е04С 2/06, опубл. 01.06.2017. Бюл. №16), включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных; торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков, пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний, кроме того, касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, а касательная винтовой линии второго витого пучка этой пары имеет направление против хода движения часовой стрелки, при этом участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн.

Недостатком является снижение теплозащитных свойств, особенно в переходные периоды года зима-весна и осень-зима, обусловленных высокой влажностью окружающей среды с низкими температурами наружного воздуха, что способствует проникновению парообразной и мелкодисперсной атмосферной влагой, и при наличии технологической влаги через торцевые поверхности в теплоизоляционный слой, с последующим увеличением его коэффициента теплопроводности и, соответственно, потеря тепла зданием в окружающую среду.

Технической задачей предлагаемого изобретения является обеспечение нормированных теплозащитных свойств в переходные периоды года с повышенной влажностью окружающей среды за счет устранения проникновения парообразной и мелкодисперсной влаги в теплоизоляционный слой, путем покрытия контактирующих с наружным воздухом торцов, трехслойной ресурсосберегающей железобетонной панели, нанообразной стеклоподобной пленкой из оксида тантала, выполненной ионно-плазменным методом.

Технический результат достигается тем, что трехслойная ресурсосберегающая железобетонная панель, включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных; торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков, пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний, кроме того, касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, а касательная винтовой линии второго витого пучка этой пары имеет направление против хода движения часовой стрелки, при этом участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн, при этом торцы трехслойной ресурсосберегающей железобетонной панели, контактирующие с наружным воздухом окружающей промышленное здание среды, покрыты нанообразной стеклоподобной пленкой из оксида тантала, выполненной ионно-плазменным методом.

На фиг. 1 изображен общий вид трехслойной ресурсосберегающей железобетонной панели с частичными разрезами и торцами покрытыми нанообразной стеклоподобной пленкой из оксида тантала выполненной ионно-плазменным методом, на фиг. 2 – распределение температурных потоков и градиентов температур, как в торце панели, так и в теплоизоляционном слое панели, на фиг. 3 - элемент теплоизоляционного слоя из тонковолокнистого материала в виде витых пучков, синусоидально продольно вытянутых по длине панели.

Трехслойная ресурсосберегающая железобетонная панель включает наружный 1 и внутренний 2 железобетонные слои и средний теплоизоляционный слой 3. Наружный 1 и внутренний 2 железобетонные слои связаны жесткими связями, выполненными в виде армированных бетонных шпонок 4, проходящих через теплоизоляционный слой 3, и армированных бетонных шпонок 5, которые размещены на противоположных торцах панели. Общее количество армированных бетонных шпонок 4 и 5 определяют расчетным путем, при этом количество шпонок 5 должно быть не менее двух. Наружный 1 и внутренний 2 железобетонные слои также связаны армированными бетонными ребрами 6, которые имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи. Ребра 6 размещены по всему периметру панели и герметизируют пространство между слоями I и 2, тем самым обеспечивая защиту теплоизоляционного слоя 3 от механических повреждений и атмосферного воздействия во время хранения, транспортировки и монтажа панели.

При этом материал армированных бетонных шпонок 4, проходящих через теплоизоляционный слой 3, имеет коэффициент теплопроводности, в 2,5-3 раза превышающий коэффициент теплопроводности армированных бетонных шпонок 5, размешенных на противоположных торцах панели. Теплоизоляционный стой 3 выполнен из тонковолокнистого базальтового материала 7 и расположен в виде витых продольно вытянутых по длине панели пучков 8. Пучки 8 тонковолокнистого материала попарно 9 количеством не менее четырех расположены в виде синусоид 10, продольно вытянутых подлине панели, выступы 11 и впадины 12 которых при попарном совмещении являются концентратами перемещающихся сейсмических волн 13. Кроме того, касательная 14 винтовой линии первого витого пучка 8 каждой пары 9 имеет направление по ходу движения часовой стрелки, а касательная 15 винтовой линии второго пучка 8 этой пары 9 имеет направление против хода движения часовой стрелки, при этом участки 16 и 17 наибольшего сближения попарно 9 расположенных витых пучков 8 составляют узлы, способствующие образованию стоячих волн 18.

Торцы 19 трехслойной ресурсосберегающей железобетонной панели, контактирующие с наружным воздухом окружающей среды, покрыты нанообразной стеклоподобной пленкой 20 из оксида тантала, выполненной ионно-плазменным методом.

Ресурсосберегающие свойства в условиях эксплуатации особенно при высокой влажности и изменяющихся температурах наружного воздуха проявляется следующим образом.

В переходные периоды года с зимы на весну и с осени на зиму наблюдается существенное изменение температуры в течении суток с повышенной влажностью окружающей среды, и в этих условиях через торцы панелей, контактирующие с наружным воздухом, наблюдается интенсивное перемещение парообразной и мелкодисперсной влаги по всей длине конструкции, где особенно проявляются в теплоизоляционном слое.

В связи с тем, что коэффициент теплопроводности атмосферной влаги составляется λ=0,5513 Вт/(м.гр.) (см. стр.312 Нащокин В.В. Техническая термодинамика и теплопередача. М.: Высшая школа. 1980. 469 с., ил) и превышает более чем в 8 раз коэффициент теплопроводности тонковолокнистого базальтового материала, то соответственно, возрастает и общая теплопроводность теплоизоляционного слоя 2 и, как следствие, увеличиваются потери тепла зданием в окружающую среду.

Поддержание надежностных параметров трехслойной ресурсосберегающей железобетонной панели при эксплуатации в условиях сейсмического воздействия осуществляется следующим образом.

При наличии механического воздействия со стороны грунта, например землетрясение, сейсмическая волна 13 перемещается также и по длине панели как по наружному 1 и внутреннему 2 железобетонному слоям, так и по теплоизоляционному слою 3, выполненному из тонковолокнистого материала. В связи с тем, что плотность теплоизоляционного слоя 3 из тонковолокнистого материала значительно меньше плотности железобетонных слоев 1 и 2, сейсмическая волна имеет более высокую амплитуду и скорость распространения по длине панели с образованием резонансных всплесков на её торцах. Вследствие закручивания первого витого пучка 8 каждой пары 9 из тонковолокнистого материала по винтовой линии, касательная 14 которой имеет направление по ходу движения часовой стрелки, а закручивание витого второго пучка 8 той же пары 9 по винтовой линии, касательная 15 которой имеет направление против хода движения часовой стрелки (см., например, Выгодский М.Я. Высшая математика. М.: 1969. 820 с., ил.) наблюдается, что и слои воздуха, контактирующие при вибрационном сейсмическом воздействии как с первым, так и со вторым витыми пучками 8 каждой пары 9, вращаются во встречном направлении.

В результате при соприкосновении встречно вращающихся слоев воздуха образуются в теплозащитном слое 3 микровзрывы (см., например, Меркулов А. П. Вихревой эффект и его применение в технике. Самара, 2002. 369 с., ил.), которые разрушают горизонтально перемещающиеся в воздушной среде теплоизоляционного слоя 3 сейсмические волны по всей длине панели.

Кроме того, пучки 8 из тонковолокнистого материала, расположенные в виде синусоид 10 и продольно вытянутые по длине панели, также наряду с воздушной средой являются направляющими для перемещающихся сейсмических волн, которые концентрируются в выступах 11, а также во впадинах 12. При этом выделяются участки 16 и 17 наибольшего сближения попарно 9 расположенных витых пучков 8, которые способствуют появлению узлов, вызывающих образование стоячих волн (см., например, Ландау Л.О., Лившиц Е.М. Теоретическая физика. М.: Наука, 1986. 836 с., ил.), которые гасят сейсмические волны и нейтрализуют резонансные всплески, как на торцах панели, так и в основных наружном 1 и внутреннем 2 железобетонных слоях.

При покрытии нанообразной стеклоподобной пленкой 20, выполненной ионно-плазменным методом, торцов 19 трехслойной ресурсосберегающей железобетонной панели, мелкодисперсная и парообразная влага скользит под силой тяжести без коагуляции и укрупнения, не контактируя как с теплоизоляционным слоем 3, так и с наружным 1 и внутренним 2 железобетонными слоями. В результате, не только поддерживается постоянство теплозащитных свойств тонковолокнистого базальтового материала 7, но и устраняется увлажнение материалов наружного 1 и внутреннего 2 железобетонных слоев, что может привести к снижению прочностных параметров в целом всей трехслойной ресурсосберегающей железобетонной панели.

Воздействие суточных изменений температуры воздуха окружающей здание среды приводит к циклическому воздействию тепловых потоков от наружного 1 и внутреннею 2 слоев к теплоизоляционному слою 3, при этом теплоизоляционный слой 3, выполняя основную функцию устранения прохождения теплового потока, препятствует передаче тепла как от внутреннего 2 слоя к наружному 1 слою, так и. наоборот, включая наличие более высокой температуры, например под воздействием солнечной радиации поверхности наружного слоя 1 по сравнению с внутренней поверхностью внутреннего слоя 2 отапливаемого помещения при отрицательных температурах воздуха окружающей среды. Следовательно, энергоемкость отапливаемого здания обусловлена максимально необходимыми ресурсозатратами на высокотемпературный энергоноситель системы отопления, поддерживающий расчетные параметры микроклимата в помещении по условию тепловых потерь через наружные ограждения - трехслойные железобетонные панели (см., например, СНиП 2.04.05-91 Отопление, вентиляция, кондиционирование воздуха. М.: Стройиздат, 1997).

Для снижения ресурсозатрат на производство, транспортировку и потребление высокотемпературного (90-150°С) теплоносителя, используемого в системе отопления здания (см., например, СНиП 2.04.07-86 Тепловые сети. М.: Стройиздат* 1987 (с изм. от 21.04.94 г.)), теплоизоляционный слой 3 выполнен из тонковолокнистого базальтового материала 7, расположенного в виде витых продольно вытянутых по длине панели пучков 8. Тогда в светлое время суток при наличии солнечной радиации с отрицательными температурами воздуха окружающей среды поверхность наружного 1 слоя теплопроводностью передает тепло тонковолокнистому базальтовому материалу 7 теплоизоляционного слоя 3, а в связи с тем, что тонковолокнистый базальтовый материал 7 расположен в виде витых продольно вытянутых по длине панели пучков 8, наблюдается аккумулирование тепловой энергии по толщине теплоизоляционного слоя 3 (см., например, Волокнистые материалы из базальтов. Украина, Изд. «Техника», Киев, 1971. 76 с., ил.).

При отсутствии солнечной радиации и/или в темное время суток с аккумулированная в теплоизоляционном слое 3 теплота переходит через внутренний 2 слой в отапливаемое помещение, поддерживая параметры микроклимата в нем, что позволяет снизить расход высокотемпературного теплоносителя системы отопления.

В дневное время суток при отопительном периоде эксплуатации здания тепловая энергия от теплообменного аппарата, преимущественно расположенного у наружного ограждения, например из трехслойных железобетонных панелей, наряду с прогревом внутреннего воздуха теплопроводностью передается внутреннему слою 2 и далее теплоизоляционному слою 3, где аккумулируется на витых продольно вытянутых пучках 8 тонковолокнистого базальтового материала 7, практически устраняя поступление теплового потока в наружный слой 1.

Накопленная путем аккумулирования в теплоизоляционном слое 3 тепловая энергия в наступающее ночное время суток, когда допускается уменьшение нормированной температуры внутреннего воздуха за счет снижения расхода высокотемпературного теплоносителя системы отопления, особенно в офисах и производственных зданиях из- за сокращения наличия людей или их полного отсутствия, теплопроводностью передается через внутренний слой 2 в помещение. В результате обеспечивается ресурсосберегающая эксплуатация здания. Следовательно, выполнение теплоизоляционного слоя 2 из тонковолокнистого базальтового материала 7 в виде витых продольно вытянутых пучков 8 обеспечивает не только защиту от тепловых потерь, но и поддержание нормированного температурного режима в здании за счет отдачи тепла, которое было аккумулировано и в последующем передано внутреннему воздуху отапливаемого помещения.

При отрицательных температурах окружающей среды армированные бетонные ребра определенной толщины представляют собой дополнительные «мостики холода», а устранение данного явления путем уменьшения толщин армированных бетонных ребер по периметру панели (по прототипу), конечно, снижает теплопотери, Но не всегда оправдано по прочности параметрам конструкции.

Выполнение армированных бетонных шпонок, размещенных на противоположных торцах панели, из материала с коэффициентом теплопроводности в 2,5-3 раза меньшим, чем коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, приводит к местному перераспределению температурных и тепловых полей в местах контакта бетонных шпонок с основным материалом трехслойной панели. Температурное поле внешней окружающей среды с минусовой температурой воздействует на армированную бетонную шпонку на торце панели и температурное поле внутренней с минусовой температурой окружающей среды (например, расположение панели как перекрытия здания) с градиентом температур различной (до трехкратной) интенсивности, обусловленной теплопроводностью соответствующих материалов. В результате в месте контакта (фиг. 1) для торца панели, где возможно появление «мостиков холода», образуется температурно-тепловой пограничный слой (см., например, стр.68-77. Исаченко В.П. и др. Теплопередача. М.: Энергоиздат, 1981, 416 с., ил.), обусловленный встречным направлением градиентов температур (grad t) внешней окружающей среды и теплового потока рассеивания (qpac)» определяющих тепловые потери панели от внутренней окружающей среды, например тепла помещения при использовании панели в качестве перекрытия здания. При этом толщина температурно-теплового пограничного слоя увеличивается при периодическом в течение суток разном изменении температуры воздуха окружающей среды от минусовых до нулевых и даже плюсовых. В то же время в месте контакта армированных бетонных шпонок, проходящих через теплоизоляционный слой, также образуется температурно-тепловой пограничный слой, обеспечивающий рассеивание теплового потока, определяющего тепловые потери как по внешнему и внутреннему железобетонному слою, так и теплоизоляционному слою, но со значением температурных градиентов, трехкратно меньших, чем для наружных условий.

В результате наличия местных зон (армирование бетонных шпонок на торцах панели и в теплоизоляционном слое) перераспределение температурных и тепловых полей обеспечивает повышение теплотехнических свойств трехслойной железобетонной панели в целом.

Оригинальность предлагаемого технического решения заключается в том, что обеспечение нормированных теплозащитных свойств теплоизоляционного слоя при высокой влажности окружающей промышленное здание среды и изменяющихся температурах наружного воздуха достигаются путем предотвращения парообразной и мелкодисперсной влаги через торцы трехслойной ресурсосберегающей железобетонной панели за счет покрытия из стеклоподобной нанообразной пленки выполненной ионно-плазменным методом. Кроме того предотвращение увлажнения наружного и внутреннего слоев панели сохраняет нормированные прочностные параметры при длительной эксплуатации промышленного здания в условиях влажного климата.

Трехслойная ресурсосберегающая железобетонная панель, включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных; торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков, пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний, кроме того, касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, а касательная винтовой линии второго витого пучка этой пары имеет направление против хода движения часовой стрелки, при этом участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн, отличающаяся тем, что торцы трехслойной ресурсосберегающей панели, контактирующие с наружным воздухом окружающей промышленное здание среды, покрыты нанообразной стеклоподобной пленкой из оксида тантала, выполненной ионно-плазменным методом.



 

Похожие патенты:

Полезная модель относится к строительным конструкциям - панелям из монолитного бетона для ограждающих частей зданий: наружных стен, утепляемых покрытий и перекрытий.
Изобретение относится к области строительства, в частности к несъемным опалубкам, и может быть использовано в качестве конструктивного элемента для основных частей зданий и сооружений, таких как стены, колонны, перекрытия, покрытия, фундаменты и т.п.
Изобретение относится к технологии изготовления строительных конструкций, а более конкретно к технологии изготовления многослойных, в частности, трехслойных строительных изделий (ТСИ), например, несущих стеновых блоков или панелей, также панелей перекрытий со средним теплоизоляционным слоем.

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Трехслойная ресурсоберегающая железобетонная панель включает теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненными в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели.

Изобретение относится к области строительства, а именно к многопустотным плитам перекрытия. Технический результат изобретения – повышение прочности стыковых соединений.

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Технический результат: поддержание заданной надежной эксплуатации трехслойной ресурсосберегающей железобетонной панели при землетрясениях за счет резонансных всплесков сейсмических волн в теплоизоляционном слое, выполненном из тонковолокнистого материала, который расположен в виде витых продольно вытянутых по длине панели пучков, причем пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний, кроме того, касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, а касательная винтовой линии второго витого пучка этой пары имеет направление против хода движения часовой стрелки, при этом участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн.

Изобретение касается стенового модуля для сооружения конструкции, выполненного в виде бетонного сборного элемента. Оно касается также конструкции, изготовленной с применением такого рода стеновых модулей, в частности, производственного или машинного здания атомной электростанции.

Изобретение относится к области монолитного строительства и может быть использовано для возведения крупных зданий и сооружений, в том числе в сейсмических районах.

Изобретение относится к технике возведения стойких к землетрясениям сооружений. Технический результат - повышение эффективности сейсмостойкости за счет пространственной защиты от сейсмических волн путем введения каждого блока в единую сейсмостойкую конструкцию посредством соединительных демпфирующих элементов.

Изобретение относится к строительству, а именно к строительному элементу, который может использоваться как потолочный элемент или как стеновой элемент, а также способу его изготовления.

Изобретение относится к конструкции наружной изоляции здания. Техническим результатом является увеличение прочности для крепления наружных стеновых элементов, а также улучшение теплоизоляционной способности.

Изобретение относится к конструкции наружной изоляции здания. Техническим результатом является увеличение прочности для крепления наружных стеновых элементов, а также улучшение теплоизоляционной способности.

Изобретение относится к дюбелю (1) и способу установки для крепления изоляционных материалов (25). Дюбель (1) имеет шуруп (13), дюбельную гильзу (2) и стопорную тарелку (8).

Группа изобретений относится к способу изготовления многослойного формованного изделия для теплоизоляции зданий, многослойному формованному изделию, полученному этим способом, и его применению.

Изобретение относится к области строительных материалов и может быть использовано в качестве конструкционных теплоизоляционных плит и панелей. Теплоизоляционная панель содержит поверхностные слои с древесными частицами, пространство между которыми заполнено теплоизоляционным материалом.

Изобретение относится к способу строительства здания с улучшенной теплоизоляцией и зданию, построенному при помощи этого способа. Здание с улучшенной теплоизоляцией, в котором по меньшей мере некоторые из стен (1a, 1b, 2, 3) в основном образованы плитами из теплоизоляционного материала низкой плотности.

Настоящее изобретение относится к изолирующему фасаду, который установлен перед наружной стеной здания. Технический результат: обеспечение улучшения возможности монтажа изолирующего фасада с учетом несущей способности и плоскостности.

Настоящее изобретение относится к изолирующему фасаду, который установлен перед наружной стеной здания. Технический результат: обеспечение улучшения возможности монтажа изолирующего фасада с учетом несущей способности и плоскостности.

Изобретение относится к способу теплоизоляции поверхности здания изоляционными панелями, каждая из которых имеет две параллельные основные поверхности и четыре боковые поверхности, соединяющие две большие поверхности.

Изобретение относится к строительной отрасли, в частности к ремонтно-изоляционным работам. Технология утепления балкона или лоджии теплоизоляционным материалом рулонного формата из несшитого вспененного полиэтилена (НПЭ) с теплоотражающим покрытием, имеющим замковое соединение, включает раскрой утеплителя НПЭ с запасом от 5 до 10 мм и его монтаж «враспор».

Изобретение относится к звукоизоляции оборудования. Техническим результатом является повышение эффективности глушения шума.

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Трехслойная ресурсосберегающая железобетонная панель включает теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи. Коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели. Теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков. Пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний. Касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, а касательная винтовой линии второго витого пучка этой пары имеет направление против хода движения часовой стрелки. Участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн. При этом торцы трехслойной ресурсосберегающей панели, контактирующие с наружным воздухом окружающей промышленное здание среды, покрыты нанообразной стеклоподобной пленкой из оксида тантала, выполненной ионно-плазменным методом. Технический результат состоит в обеспечением нормированных теплозащитных свойств в переходные периоды года с повышенной влажностью окружающей среды за счет устранения проникновения парообразной и мелкодисперсной влаги в теплоизоляционный слой. 3 ил.

Наверх