Зеркально-линзовый объектив



Зеркально-линзовый объектив
Зеркально-линзовый объектив
Зеркально-линзовый объектив
Зеркально-линзовый объектив

Владельцы патента RU 2670237:

Акционерное общество "ЛОМО" (RU)

Зеркально-линзовый объектив содержит установленные последовательно по ходу луча главное вогнутое с центральным отверстием гиперболоидальное зеркало, вторичное выпуклое гиперболоидальное зеркало и линзовую систему с оптической силой ϕл.с., выполненную из одиночных линзовых компонентов и установленную позади главного зеркала. Первый компонент - двояковыпуклая линза со сферическими поверхностями, второй - отрицательный. Между первым и вторым компонентами размещен третий отрицательный компонент. Оптические силы линз удовлетворяют условию: где ϕз.с. - оптическая сила зеркальной системы, состоящей из главного и вторичного зеркал; ϕл.с. - оптическая сила линзовой системы; - оптические силы линз компонентов линзовой системы. Линзы выполнены из материалов с коэффициентами дисперсии, удовлетворяющими условиям: ν12=1,0-1,3; ν12=6,5-8; ν3d=64; n3d=1,516. Технический результат - увеличение углового поля и относительного отверстия при дифракционно-ограниченном качестве изображения. 1 ил.

 

Предлагаемое изобретение относится к оптическому приборостроению, и может быть использовано в оптической промышленности, и, в частности, в астрономических телескопах, и особенно в оптико-электронных камерах космических телескопов и т.д.

Зеркально-линзовые объективы обычно состоят из главного вогнутого зеркала с центральным отверстием, вторичного выпуклого зеркала и линзового корректора полевых аберраций.

Сферическая аберрация и кома исправляются асферизацией главного и вторичного зеркал, придавая им гиперболоидальную форму. Полевые аберрации - астигматизм и кривизна изображения коррегируются линзовым корректором полевых аберраций (КПА), который обычно устанавливается позади главного зеркала перед фокальной плоскостью.

Известны зеркально-линзовые объективы, содержащие гиперболические главное зеркало (ГЗ) и вторичное зеркало (ВЗ), а также однолинзовый КПА с асферической поверхностью [1]. Такой корректор позволил исправить астигматизм. Для исправления кривизны изображения пришлось раздвинуть главное и вторичное зеркала. Это привело к большому коэффициенту центрального экранирования ε=0,57 и значительным продольными габаритам: расстояние d между главным и вторичным зеркалами составило 0,33f'об, где f'об - фокусное расстояние всего объектива, а, следовательно, к недопустимому для космического телескопа увеличению массы.

Наиболее близким техническим решением к заявленному изобретению является зеркально-линзовый объектив [2], содержащий главное вогнутое зеркало гиперболической формы с центральным отверстием, вторичное выпуклое гиперболоидальное зеркало и двухкомпонентную линзовую систему, установленную позади главного зеркала перед фокальной плоскостью. Компоненты линзовой системы - одиночные линзы. Первый компонент - плосковыпуклая линза с положительной оптической силой ϕI с асферической поверхностью, второй компонент - плосковогнутая линза с отрицательной оптической силой ϕII, установленный непосредственно перед фокальной плоскостью. Оптическая сила первого компонента составляет:

, где ϕоб - оптическая сила всего объектива.

Расстояние между линзовыми компонентами d=0,2d0, где d0 - расстояние между главным и вторичным зеркалами или 0,23 f'об, где f'об - фокусное расстояние объектива.

Недостатками такой системы являются:

- ограниченное угловое поле, не превышающее 30' с хорошим качеством изображения: RMS≤0, 08 λ;

- ограниченный спектральный интервал из-за отсутствия возможности обеспечения апохроматической коррекции аберраций.

Основной задачей, на решение которой направлено изобретение, является увеличение углового поля и относительного отверстия при дифракционно-ограниченном качестве изображения.

Для решения поставленной задачи предлагается зеркально-линзовый объектив, который, как и прототип, содержит установленные последовательно по направлению хода луча главное вогнутое с центральным отверстием гиперболоидальное зеркало, вторичное выпуклое гиперболоидальное зеркало и линзовую систему с оптической силой ϕл.с., выполненную из одиночных линзовых компонентов, первый из которых с положительной оптической силой ϕ1, второй - с отрицательной оптической силой ϕ2, установленные позади главного зеркала.

В отличие от прототипа первый положительный компонент выполнен со сферическими поверхностями, между первым и вторым линзовыми компонентами дополнительно размещен третий отрицательный компонент.

Первый положительный компонент выполнен в виде двояковыпуклой линзы, второй - в виде двояковогнутой линзы.

Оптические силы зеркальной и линзовой системы и ее компонентов удовлетворяют условию:

где ϕз.с. - оптическая сила зеркальной системы, состоящей из главного и вторичного зеркал;

ϕл.с. - оптическая сила линзовой системы;

и - оптические силы линз.

Линзы выполнены из материалов с коэффициентами дисперсии, удовлетворяющими условиям:

ν12=1,0-1,3; ν12=6,5-8; ν3d=64; n3d=1,516.

Сущность предполагаемого изобретения заключается в том, что, благодаря предлагаемой схеме выполнения зеркально-линзового объектива, состоящего из установленных последовательно по направлению луча главного вогнутого с центральным отверстием гиперболоидального зеркала, вторичного выпуклого гиперболоидального зеркала и линзовой системы с оптической силой ϕл.c., состоящей из трех компонентов, выполненных в виде одиночных линз, первая из которых с положительной оптической силой ϕ1, вторая и третья с отрицательными оптическими силами ϕ2 и ϕ3, установленной позади главного зеркала, при этом оптические силы зеркальной системы, линзовой системы и ее компонентов удовлетворяют условию:

где ϕз.с. - оптическая сила зеркальной системы, состоящей из главного и вторичного зеркал;

соотношения оптических сил линз компонентов по отношению к оптической силе всей линзовой системы

В частности, выбранные соотношения сил между компонентами позволяют исправить кривизну изображения и астигматизм всего объектива в целом, а отношение коэффициентов дисперсии линз обеспечило апохроматическую коррекцию и тем самым позволило получить дифракционно-ограниченное качество изображения для больших углов поля 2ω≥1,76° (вместо 1,5°) при увеличенном относительном отверстии 1:10,533 (вместо 1:10,67), при этом средне-квадратическое отклонение волнового фронта RMS не превышает по всему полю 0,055λ, (вместо 0,08λ).

Линзовая система может быть выполнена так, что ее первый компонент представляет собой положительную двояковыпуклую одиночную линзу, второй компонент - отрицательную двояковогнутую одиночную линзу и третий - одиночную отрицательную плосковогнутую линзу.

Сущность предлагаемой полезной модели иллюстрируется чертежом, где на фиг. 1 - представлена оптическая схема зеркально-линзового объектива.

Зеркально-линзовый объектив состоит из главного вогнутого с центральным отверстием гиперболоидального зеркала 1, вторичного выпуклого гиперболоидального зеркала 2 и линзовой системы 3 с оптической силой ϕл.с., состоящей из первого компонента 4 с положительной оптической силой ϕ1, второго компонента 5 с отрицательной оптической силой ϕ2 и третьего компонента 6 - с отрицательной оптической силой ϕ3.

Оптические силы линзовой системы 3 ϕл.с. и ее компонентов удовлетворяют условию:

Первый компонент 4 линзовой системы 3 (фиг. 1) выполнен в виде одиночной двояковыпуклой линзы, второй компонент 5 выполнен в виде двояковогнутой линзы, третий компонент 6 - в виде одиночной плосковогнутой линзы.

Работа предлагаемого объектива осуществляется следующим образом.

Объект расположен на бесконечном расстоянии от объектива. Параллельный пучок света падает на главное зеркало 1 и фокусируется в его фокальной плоскости.

Вторичное зеркало 2, для которого мнимым объектом является изображение объекта в фокальной плоскости главного зеркала 1, изображает его в фокальную плоскость зеркальной системы, состоящей из главного 1 и вторичного 2 зеркал.

Линзовая система 3 проектирует изображение объекта из фокальной плоскости зеркальной системы в фокальную плоскость зеркально-линзового объектива с положительным увеличением, т.е. без оборачивания изображения.

RMS - среднеквадратическое значение волновой аберрации, выраженное в долях основной длины волны излучения (λ=0,65 мкм) спектрального диапазона Δλ.

Благодаря использованию предлагаемого технического решения был рассчитан телескоп с фокусным расстоянием f'=15800 мм, относительным отверстием 1:10.533 и угловым полем зрения 2w=1.76°.

Получена среднеквадратическая деформация волнового фронта RMS<0,03λ по всему полю, что соответствует дифракционно-ограниченному качеству изображения, при угловом поле 2ω≥1,76°.

Фокусное расстояние, мм: 15799.9
Диафрагменное число F/D: 10.5333
Диаметр входного зрачка, мм: 1500.0000
Положение входного зрачка, мм: 3699.5260
Диаметр выходного зрачка, мм: 207.9980
Положение выходного зрачка, мм: -2190.8433
Параксиальная высота изображения, мм: 245.15
Длина системы, мм: 4762.8
Угловое поле зрения, градусы 1.76

Спектральные характеристики

Таким образом, в предлагаемом зеркально-линзовом объективе достигнуто увеличение углового поля и относительного отверстия при дифракционно-ограниченном качестве изображения.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Н.Н. Михельсон "Оптика астрономических телескопов и методы ее расчета", "Физико-математическая литература", 1995, сс. 328-331.

2. Патент США №4101195, МПК: G02B 17/06, 23/06, 1977 - прототип.

Зеркально-линзовый объектив, содержащий установленные последовательно по направлению хода луча главное вогнутое с центральным отверстием гиперболоидальное зеркало, вторичное выпуклое гиперболоидальное зеркало и линзовую систему с оптической силой ϕл.с., выполненную из одиночных линзовых компонентов, первый из которых с положительной оптической силой ϕ1, второй - с отрицательной оптической силой ϕ2, установленную позади главного зеркала, отличающийся тем, что первый одиночный линзовый положительный компонент выполнен двояковыпуклым со сферическими поверхностями, а между первым и вторым линзовыми компонентами дополнительно размещен третий отрицательный компонент, при этом оптические силы линз удовлетворяют условию:

где ϕз.с. - оптическая сила зеркальной системы, состоящей из главного и вторичного зеркал;

ϕл.с. - оптическая сила линзовой системы;

- оптические силы линз компонентов линзовой системы, при этом линзы выполнены из материалов с коэффициентами дисперсии, удовлетворяющими условиям:

ν12=1,0-1,3; ν12=6,5-8; ν3d=64; n3d=1,516.



 

Похожие патенты:

Способ борьбы с засветкой астрономических приборов светом уличных осветительных приборов включает разделение периодов работы осветительных приборов и астрономических приборов по времени.
Катадиоптрический телескоп может быть использован для обнаружения и каталогизации космических объектов в области спектра 400-850 нм. Катадиоптрический телескоп содержит главное вогнутое сферическое зеркало 1, корректирующий элемент 2 и установленный перед фокальной плоскостью телескопа линзовый компенсатор внеосевых аберраций 3, состоящий из афокальной 3(1) и силовой 3(2) частей.

Комплекс может быть использован для наблюдения небесных тел в ясную, пасмурную и дождливую погоду. Комплекс содержит наземный телескоп с блоком управления, его защитное укрытие с его блоком управления, наземный пункт управления комплексом.

Голографический коллиматорный прицел с синтезированным зрачком содержит лазерный диод, коллимирующий объектив, дифракционную решетку пропускающего типа, голографический формирователь неподвижной метки в виде объемной пропускающей голограммы, стеклянную пластинку, выполняющую роль световода.

Оптическая система прицела состоит из расположенных по ходу лучей объектива, плоскопараллельной пластинки с прицельной маркой и шкалами, оборачивающей системы, полевой диафрагмы и окуляра.

Оптическое устройство относится к оптическому приборостроению и может быть использовано в устройствах, предназначенных для внешнетраекторных измерений в космической геодезии и полигонных измерениях.

Телескоп // 2603820
Предлагаемое изобретение относится к области контрольно-измерительной техники, а именно к телескопическим оптическим системам, используемым для измерения параллельности визирных осей двух или более контролируемых оптических систем в видимом диапазоне спектра.

Изобретение относится к области обработки изображений и, в частности, к способу обнаружения движущегося объекта в захваченных изображениях, например, космических обломков.

Способ исследования изменений климата Земли заключается в том, что измерительную систему, включающую два идентичных оптических телескопа, располагают на видимой поверхности Луны.

Изобретение относится к области обработки изображений, в частности к способу обнаружения движущегося объекта, например космических обломков, исходя из захваченных изображений.

Коллимационная оптическая система содержит отражающий коллиматор, имеющий чашеобразную форму, содержит первое отверстие в центре нижней стороны чаши для приема светодиодного источника света, второе отверстие в верхнем отверстии чаши для обеспечения возможности исходящему свету выходить из упомянутого отражающего коллиматора и элемент стенки, проходящий от первого отверстия ко второму отверстию и имеющий внутреннюю отражающую поверхность, первую выпуклую линзу, соединенную с отражающим коллиматором через крепежное средство и размещенную на расстоянии от первого отверстия между первым и вторым отверстиями, вторую выпуклую линзу, размещенную на поверхностной пластине, которая покрывает по меньшей мере часть второго отверстия.
Катадиоптрический телескоп может быть использован для обнаружения и каталогизации космических объектов в области спектра 400-850 нм. Катадиоптрический телескоп содержит главное вогнутое сферическое зеркало 1, корректирующий элемент 2 и установленный перед фокальной плоскостью телескопа линзовый компенсатор внеосевых аберраций 3, состоящий из афокальной 3(1) и силовой 3(2) частей.

Телескоп содержит зеркально-линзовый осевой объектив с некруглой апертурой, включающий собирающую входную линзу, в центре которой расположено выпуклое вторичное зеркало, вогнутое главное зеркало-линзу и предфокальный двухлинзовый корректор, и оптомеханическую конструкцию.

Устройство для наблюдения, предназначенное для наблюдения объекта при увеличении, содержит объектив, апертурную диафрагму; полупрозрачное зеркало, узел зеркала, который принимает составляющую света от полупрозрачного зеркала и расположен так, что сфокусированное изображение объекта образуется на узле зеркала и свет, принимаемый узлом зеркала, отражается обратно к полупрозрачному зеркалу и передается для образования изображения объекта; окуляр для образования оптического изображения объекта.

Изобретение относится к технологиям панорамного видеонаблюдения. Техническим результатом является обеспечение возможности одновременного независимого панорамного видеонаблюдения различных участков панорамы с различным увеличением несколькими операторами.

Солнечный модуль содержит на рабочей поверхности защитное покрытие, полупараболоцилиндрический зеркальный отражатель с параметрическим углом δ с поверхностью входа и выхода лучей и приемник излучения в виде полосы.

Изобретение относится к солнечной энергетике, в частности касается концентраторов солнечной энергии для световодов. .

Изобретение относится к измерительной технике. .

Изобретение относится к области лазерной локации, в частности к системам с удаленными КО для высокоточного наведения излучения в процессе юстировки. .

Коллимационная оптическая система содержит отражающий коллиматор, имеющий чашеобразную форму, содержит первое отверстие в центре нижней стороны чаши для приема светодиодного источника света, второе отверстие в верхнем отверстии чаши для обеспечения возможности исходящему свету выходить из упомянутого отражающего коллиматора и элемент стенки, проходящий от первого отверстия ко второму отверстию и имеющий внутреннюю отражающую поверхность, первую выпуклую линзу, соединенную с отражающим коллиматором через крепежное средство и размещенную на расстоянии от первого отверстия между первым и вторым отверстиями, вторую выпуклую линзу, размещенную на поверхностной пластине, которая покрывает по меньшей мере часть второго отверстия.

Зеркально-линзовый объектив содержит установленные последовательно по ходу луча главное вогнутое с центральным отверстием гиперболоидальное зеркало, вторичное выпуклое гиперболоидальное зеркало и линзовую систему с оптической силой ϕл.с., выполненную из одиночных линзовых компонентов и установленную позади главного зеркала. Первый компонент - двояковыпуклая линза со сферическими поверхностями, второй - отрицательный. Между первым и вторым компонентами размещен третий отрицательный компонент. Оптические силы линз удовлетворяют условию: где ϕз.с. - оптическая сила зеркальной системы, состоящей из главного и вторичного зеркал; ϕл.с. - оптическая сила линзовой системы; - оптические силы линз компонентов линзовой системы. Линзы выполнены из материалов с коэффициентами дисперсии, удовлетворяющими условиям: ν1ν21,0-1,3; ν1-ν26,5-8; ν3d64; n3d1,516. Технический результат - увеличение углового поля и относительного отверстия при дифракционно-ограниченном качестве изображения. 1 ил.

Наверх